Compare commits

...

163 Commits

Author SHA1 Message Date
Christopher Leaman efa94e6069 Update notebooks 6 years ago
Chris Leaman 5776111fdb Update notebooks 6 years ago
Chris Leaman 6925424661 Reinstall nbstripout 6 years ago
Chris Leaman 965dcf2ec0 Optimize calculation of change in volume
We now calculate the where the pre-storm and post-storm profiles change a bit more robustly.
6 years ago
Chris Leaman f0f77f5505 Update packages 6 years ago
Chris Leaman 3a1d87eaeb Update notebooks 6 years ago
Chris Leaman f616f56fd3 Optimize volume change calculations 6 years ago
Chris Leaman d06a5ab576 Removes TWL forecast using foreshore slope from Makefile
Predicting TWL using time-varying foreshore slope is pretty slow, so let's remove it from our data analysis pipeline. The code is still there if we want to call it, but for the time being, let's remove this model when we're looking at comparisons.
6 years ago
Chris Leaman a293d5d691 Fix incorrect calculation of pre/post change point
If pre and post storm profiles returned to similar elevations within the sampled profile length, the change point detection would select the most seaward point and incorrectly calculate the swash zone volumes. This change looks at the slope of the difference between the two profiles and assumes that the difference between the two profiles should be increasing at the location of the change point.
6 years ago
Chris Leaman c17051788c Fix formatting 6 years ago
Chris Leaman 34ada7c12f Add checking of inputs early in slope_from_profile
This allows us to exit early and suppresses the annoying warnings.
6 years ago
Chris Leaman 708606391f Update QGIS and notebooks 6 years ago
Chris Leaman ecd1d66dd2 Fix typos 6 years ago
Chris Leaman 7e09b9a084 Add new notebook for examining variables
Want to find relationships between explanatory variables.
6 years ago
Chris Leaman 7069c3b627 Extract slope & width change for observed impacts 6 years ago
Chris Leaman 217e633ffc Extract function for getting slopes
This is so it can be called from observed_storm_impacts.py. It might be better to put these in a slope_utils.py function?
6 years ago
Chris Leaman cb090d1a41 Use default line length for black formatter 6 years ago
Chris Leaman 557c15df1f Enable observed impacts to be overwritten with NaN
This is useful where we have a structure or rock wall and want to specify that we don't know what the observed storm regime is. In this case, we'll put a 'unknown' string in the ./data/raw/profile_features observed storm impact csv field and overwrite it with a NaN in our pandas dataframe.
6 years ago
Chris Leaman ba9b3244f3 Ignore vscode settings 6 years ago
Chris Leaman e1dc57ead6 Fix formatting 6 years ago
Chris Leaman 1774c15e89 Fix finding z elevation of dune toe/crests
If the x-coordinate specified for the toe/crest does not exist for the profile type, this fixes an issue where the z-elevation of the other profile type was not being correctly calculated. Also, some commented out code is removed.
6 years ago
Chris Leaman 16ca2aa482 Fix volume difference percent when difference equal to zero 6 years ago
Chris Leaman bc1778c473 Fix dependency in Makefile 6 years ago
Chris Leaman cdca489e4a Fix dune toe TWL exceedence hours
Dune toe TWL exceedence hours were being left as zero if the profile didn't have a dune toe (technically correct). In these cases it's more useful to calculate the exceedence hours of the dune crest level.
6 years ago
Chris Leaman 1fca122276 Ensure float precision is limited when outputting csv
Without this change, interim .csv files were being recorded with 9 decimal places, greatly increasing the file size. This keeps the number of decimals limited to a practical amount.
6 years ago
Chris Leaman 9e3716480a Fix hard-coded file names in create_observed_impacts 6 years ago
Chris Leaman bf61116efb Remove R_low requirement when forecasting overwash
Some runup parameterizations only give R_high, but not R_low. In these cases, let's just classify the profile as overwash if R_high > D_high.
6 years ago
Chris Leaman 86c2e0e763 Update README.md 6 years ago
Chris Leaman bbe86b231a Fix swash regime not detected if there is no dune toe 6 years ago
Chris Leaman cbfd69c852 Fix typo in comment 6 years ago
Chris Leaman 1e45675611 Optimize calculation of profile volume difference 6 years ago
Chris Leaman 95f525ef00 Add better error detection when calculating slope from profile 6 years ago
Chris Leaman 48f2142708 Change default slope calculation to least squares
Rather than end points
6 years ago
Chris Leaman a9a5e02933 Improve performance of TWL forecasting function
Use faster pandas indexing instead of .query function
6 years ago
Chris Leaman 25a26d9e46 Add intertidal slope option to TWL forecasts 6 years ago
Chris Leaman 66c7b25cc4 Update notebooks 6 years ago
Chris Leaman 6ffdd2611d Allow crossing to return empty list if all values are masked 6 years ago
Chris Leaman 36256514b5 Allow crossing function to detect crossings at end points 6 years ago
Chris Leaman 46589da736 Update notebooks 6 years ago
Chris Leaman 6efae1c0da Add Power et al. (2018) runup model 6 years ago
Chris Leaman 4ea435a814 Add grain size as required runup parameter
Used by Power et al. (2018), but not required for other models
6 years ago
Chris Leaman 1830d06e40 Fix Makefile command for waves.csv 6 years ago
Chris Leaman f649c3adc7 Update README.md for error when using Qt5Agg/PyCharm 6 years ago
Chris Leaman 821e5c34cf Include grain size inputs 6 years ago
Chris Leaman 6c13fc389c Parse cumulative wave power and energy from mat file into .csv 6 years ago
Chris Leaman d4995266c9 Create new notebook for comparing models 6 years ago
Chris Leaman 3bfb13e9d6 Rename notebooks 6 years ago
Chris Leaman d8353bd635 Add Nielsen & Hanslow 1991 runup parameterization 6 years ago
Chris Leaman 4e5b0ce81c Fix formatting 6 years ago
Chris Leaman 43e85224e8 Remove pre-commit 6 years ago
Chris Leaman 0adbf68635 Add Holman 1986 to list of runup functions 6 years ago
Chris Leaman 7526ab1f3c Add pre-commit hooks to ensure code formatting 6 years ago
Chris Leaman 0713a1302a Update environment 6 years ago
Chris Leaman 5850871c14 Update notebooks 6 years ago
Chris Leaman 1bad6f6dd7 Update .gitignore 6 years ago
Chris Leaman bb17d6c786 Update notebooks 6 years ago
Chris Leaman 01fe1a80c8 Add automatic nbstripout to jupyter notebooks
Automatically removes output from notebooks for easier version control.
6 years ago
Chris Leaman d00a9d8c21 Add TODOs for getting observed storm impacts 6 years ago
Chris Leaman 976ecc8ebb Rename notebook 6 years ago
Chris Leaman ebd8ef3ffa Update commands and README 6 years ago
Chris Leaman e6bb50c00e Fix bug when calculating R_high lat/lon geojson 6 years ago
Chris Leaman faa843ce21 Fix formatting 6 years ago
Chris Leaman 3443062d85 Update notebook and QGIS file 6 years ago
Chris Leaman 9755810f40 Refactor PYTHON_CLI command 6 years ago
Chris Leaman 2d22734bfa Fix position of R_high in geojson to be closest to dune face 6 years ago
Chris Leaman 3af90601ef Refactor overwriting dune crest/toes and impacts
Uses one, central .csv file contained in ./data/raw/profile_features_chris_leaman
6 years ago
Chris Leaman e1d95a1752 Improve performance by replacing .query with .loc 6 years ago
Chris Leaman 6912c50a49 Use dune crest for mean slope calculation if no dune toe 6 years ago
Chris Leaman c7090a43b9 Change log level to info 6 years ago
Chris Leaman db3c45e12d Add line_profiler to environment 6 years ago
Chris Leaman df3946d15c Ignore line_profiler files 6 years ago
Chris Leaman ac06165b07 Add make commands for geojsons 6 years ago
Chris Leaman a6ab8b8354 Clean up cli 6 years ago
Chris Leaman 79d46c0433 Refactor crossings and lat/lon conversion functions 6 years ago
Chris Leaman 6f215da826 Refactor crossings and lat/lon conversion functions 6 years ago
Chris Leaman a94fdd2dfb Refactor logging configuration 6 years ago
Chris Leaman e50fadb35c Rename csv_to_shp to csv_to_geojson 6 years ago
Chris Leaman 3f2cfa50aa Update functions to output geojson for QGIS 6 years ago
Chris Leaman 614a55a44f Include description of profile_feature data 6 years ago
Chris Leaman 20709c6f8f Update notebook and QGIS file 6 years ago
Chris Leaman 8d98eda308 Simplify environment 6 years ago
Chris Leaman daad9c5b82 Remove other packages from logging 6 years ago
Chris Leaman 4b9e69f2f0 Add override of profile features 6 years ago
Chris Leaman 12070a1acf Plot site .shp as line instead of points 6 years ago
Chris Leaman 91a0d8327e Rename data shape function 6 years ago
Chris Leaman b7704c2d35 Fix formatting 6 years ago
Chris Leaman 65f5f2b2c0 Update notebook 6 years ago
Chris Leaman 947d2093bd Take post-storm profile based on isgood parameter in .mat file 6 years ago
Chris Leaman 44e03892f3 Comment out unneeded commands 6 years ago
Chris Leaman 6c5444fc06 Merge branch 'master' into develop 6 years ago
Chris Leaman 4681f17b6d Merge branch 'develop' 6 years ago
Chris Leaman a7a3a88a34 Merge branch 'feature/twl-exceedence-time' into develop 6 years ago
Chris Leaman f23b273de0 Merge branch 'feature/twl-exceedence-time' 6 years ago
Chris Leaman 25d2518fbb Update notebooks 6 years ago
Chris Leaman 3a1a3dddf1 Update Stockdon 2006 runup function to accept either a list or a float
This is an improvement over having two separate functions, depending on the parameter type. Other runup functions should be written in a similar style.
6 years ago
Chris Leaman 836873b3f3 Fix formatting 6 years ago
Chris Leaman ee7f7ad6cf Update CLI options in Makefile for impact forecasting 6 years ago
Chris Leaman 4592cb858e Remove profile_type from impacts.csv 6 years ago
Chris Leaman 9f1b801687 Add function for estimating twl exceedence time 6 years ago
Chris Leaman f6c43fda38 Merge branch 'bugfix/fix-mean-slopes' into develop 6 years ago
Chris Leaman 5f59c8f8ee Update slope function to accept top x coordinate
Needed to ensure correctly mean slope is calculated. If only inputting dune toe z coordinates, sometimes the function can chose the wrong x coordinate if there are multiple crossings of the z coordinate.
6 years ago
Chris Leaman b8ead25cd5 Disable numpy futurewarnings when running from CLI 6 years ago
Chris Leaman e3b782abbd Update notebooks 6 years ago
Chris Leaman dcadf0bf12 Add jupyter packages to environment.yml 6 years ago
Chris Leaman 494c8d9052 Update README.md 6 years ago
Chris Leaman 174ddce102 Update Makefile 6 years ago
Chris Leaman 4910d103f2 Update .gitignore for images in notebook directory 6 years ago
Chris Leaman 75f372154d Update logging format 6 years ago
Chris Leaman 5b9b4141b3 Fix bugs for forecasting impacts 6 years ago
Chris Leaman 44310e3be4 Fix bugs for forecasting impacts 6 years ago
Chris Leaman c73e2dd254 Update notebooks 6 years ago
Chris Leaman 06cc97ef7e Add functions to parse Tom Beuzen's dune toe and crests 6 years ago
Chris Leaman 23557cdf8e Update notebooks 6 years ago
Chris Leaman 8991657410 Add instructions for adding package 6 years ago
Chris Leaman 2a98dc2b01 Fix environment: add autopep8 for jupyter notebooks 6 years ago
Chris Leaman 64602d5c7d Fix environment 6 years ago
Chris Leaman dac2f9824d Fix environment 6 years ago
Chris Leaman c391edf755 Keep old index number of site when parsing .mat file 6 years ago
Chris Leaman 7e314757ce Fix typos in README.md 6 years ago
Chris Leaman c4d9e02821 Merge branch 'bugfix/fix-cli' into develop 6 years ago
Chris Leaman 5fe3445aaa Add item to TODO list 6 years ago
Chris Leaman 44b1ac3775 Fix logging and cli
Logging now uses .yaml file and is stored in the utils.py file. New CLI entrypoint has been created cli.py to deal with relative import issues - when running the analysis, this should be used as the main entrypoint.
6 years ago
Chris Leaman 8033df931c Merge branch 'bugfix/change-profiles-mat' into develop 6 years ago
Chris Leaman 851393ecd9 Parse new profiles.mat from Mitch
Mitch has updated profiles.mat to include more information, like time of LIDAR acquisition, profile flags and recovery profiles. The updates to the code parse this new information.
6 years ago
Chris Leaman 022c7b8907 Update notebook 6 years ago
Chris Leaman b811565e99 Improve README for starting out 6 years ago
Chris Leaman 0cf76b3165 Update Makefile 6 years ago
Chris Leaman db59978895 Switch to conda rather than pipenv to manage environment 6 years ago
Chris Leaman f141b85745 Ignore .log files 6 years ago
Chris Leaman 2cfe20606d Update README.md, notebook and qgis 6 years ago
Chris Leaman 3047700323 Improve jupyter notebook 6 years ago
Chris Leaman f54af8656a Update README 6 years ago
Chris Leaman 209a023d96 Improve iterative calculation of prestorm foreshore slope 6 years ago
Chris Leaman 16b36fa71f Update README 6 years ago
Chris Leaman 28e150137a Merge branch 'bugfix/observed-storm-regime' into develop 6 years ago
Chris Leaman 2a64c17353 Fix bug with how observed storm impacts are were calculated 6 years ago
Chris Leaman 8b75cced69 Update notebook 6 years ago
Chris Leaman a49d98c4e4 Update todos 6 years ago
Chris Leaman c9e665ded3 Update packages 6 years ago
Chris Leaman 131b3d814c Improve site_id widgets for data exploration 6 years ago
Chris Leaman ca1add7fa7 Remove extra, uneeded comments 6 years ago
Chris Leaman 5a8990df60 Update jupyter notebook 6 years ago
Chris Leaman f73ceb5bcf Merge branch 'feature/refactor-commands' into develop 6 years ago
Chris Leaman 07046d4686 Update CLI commands 6 years ago
Chris Leaman fd25086327 Fix issues with PYTHONPATH 6 years ago
Chris Leaman 9879a9d18c Fix formatting 6 years ago
Chris Leaman 21b12a34be Remove extra pandas options 6 years ago
Chris Leaman 96bb259755 Add environment variable for number of cores to use for analysis 6 years ago
Chris Leaman 70f3ad90be Change default logging level to info 6 years ago
Chris Leaman 88a149590f Add function for creating profile_features.csv 6 years ago
Chris Leaman caee3e033a Add additional logging 6 years ago
Chris Leaman c6cbee8920 Convert function to CLI command 6 years ago
Chris Leaman 133a1ace1a Add pyproj requirement 6 years ago
Chris Leaman 6ddd015a66 Include .env file (as an example) 6 years ago
Chris Leaman 60f78a4e10 Update Makefile 6 years ago
Chris Leaman 03c4655c05 Fix formatting 6 years ago
Chris Leaman 4bba8a3331 Convert to CLI commands 6 years ago
Chris Leaman 99e036a4cd Rename mat parsing file and convert to callable CLI commands 6 years ago
Chris Leaman 67b7043ec3 Update logging config to quiet fiona package 6 years ago
Chris Leaman 8f790cbf1b Fix formatting with black 6 years ago
Chris Leaman 6d62a30b2f Use pipenv to setup virtualenv and packages 6 years ago
Chris Leaman ccf7601041 Update .gitignore 6 years ago
Chris Leaman f4e3169bd1 Update beach orientations MATALB to run on command 6 years ago

18
.env

@ -0,0 +1,18 @@
# Environment variables go here, these will be automatically read when using "pipenv run python 'file.py'"
# Location where data is backed up to. Should be able to copy a set of the data from here.
DATA_BACKUP_DIR="J:/Coastal/Temp/CKL/nsw_2016_storm_impact/data"
# Location where the matlab interpreter is located. Required for a couple of data processing scripts.
MATLAB_PATH="C:/Program Files/MATLAB/R2016b/bin/win64/MATLAB.exe"
# Number of threads to use for multi-core processing. Used when calculating time-varying beach slope when estimating
# total water level.
MULTIPROCESS_THREADS=2
# The settings below should be left as is unless you know what you're doing.
# Need to set pythonpath so that relative imports can be properly used in with pipenv
# Refer to https://stackoverflow.com/q/52986500 and https://stackoverflow.com/a/49797761
# PYTHONPATH=${PWD}

5
.gitattributes vendored

@ -0,0 +1,5 @@
*.ipynb filter=nbstripout
*.ipynb diff=ipynb

16
.gitignore vendored

@ -1,5 +1,11 @@
# Jupyter NB Checkpoints
.ipynb_checkpoints/
/notebooks/*.png
/notebooks/*.csv
/notebooks/14_nearshore_waves/
/notebooks/15_nearshore_waves/
/notebooks/*.pkl
/notebooks/15_data/
# exclude data from source control by default
/data/
@ -7,11 +13,17 @@
# Pycharm
.idea
# DotEnv configuration
.env
# Matlab
*.asv
# DotEnv configuration
# .env
# Python
__pycache__/
*.py[cod]
*$py.class
/.venv/
*.log
*.py.lprof
/.vscode/settings.json

@ -1,26 +1,729 @@
DATA_BACKUP_DIR = "J:/Coastal/Temp/CKL/nsw_2016_storm_impact/data"
SHELL=cmd
#################################################################################
# PROJECT RULES #
#################################################################################
.PHONY: push-data mat_to_csv sites-csv-to-shp
###############################
# Load environment variables
include .env
export $(shell sed 's/=.*//' .env)
CURRENT_DIR = $(shell pwd)
###############################
# Create python virtual environment
.PHONY: venv-init
venv-init: ##@environment Setup virtual environment
conda env create -f environment.yml --prefix=.venv
.PHONY: venv-activate
venv-activate: ##@environment Activates the virtual environment
activate $(CURRENT_DIR)/.venv
.PHONY: venv-update
venv-update: ##@environment Updates to latest packages
conda update ipykernel && conda update --prefix .venv --all
.PHONY: venv-requirements-install
venv-requirements-install: ##@environment Ensures environment.yml packages are installed
conda env update
# To install new packages: conda install --prefix .venv PACKAGE
###############################
notebook: ##@notebooks Open jupyter notebook in venv
activate ./.venv && jupyter notebook
###############################
# Get data from network drive
.PHONY: push-data pull-data
push-data: ##@data Copies data from ./data/ to data backup directory
rclone copy ./data/ $(DATA_BACKUP_DIR) --exclude "*.las" --progress
# We probably don't want to pull the raw LIDAR .las files, so lets exclude them
pull-data: ##@data Copies data from data backup directory to ./data/
# We probably don't want to pull the raw LIDAR .las files, so lets exclude them
rclone copy $(DATA_BACKUP_DIR) ./data/ --exclude "*.las" --progress
mat-to-csv: ##@data Converts raw .mat files to .csv for python
cd ./src/data/ && python mat_to_csv.py
sites-csv-to-shp: ##@data Create the sites.shp from sites.csv
cd ./src/data && python csv_to_shp.py sites_csv_to_shp "..\..\data\interim\sites.csv" "..\..\data\interim\sites.shp"
###############################
# Process data
.PHONY: process-mat
# Command for activating our virtual environment and calling the CLI entry point
PYTHON_CLI = activate ./.venv && python ./src/cli.py
### Parses raw matfiles
./data/raw/processed_shorelines/orientations.mat: ./data/raw/processed_shorelines/profiles.mat
$(MATLAB_PATH) -nosplash -r "cd $(CURRENT_DIR); run('./src/data/beach_orientations.m'); quit"
./data/interim/sites.csv ./data/interim/profiles.csv: ./data/raw/processed_shorelines/profiles.mat
$(PYTHON_CLI) create-sites-and-profiles-csv \
--profiles-mat "./data/raw/processed_shorelines/profiles.mat" \
--profiles-output-file "./data/interim/profiles.csv" \
--sites-output-file "./data/interim/sites.csv"
./data/interim/waves.csv: ./data/interim/sites.csv ./data/raw/processed_shorelines/waves.mat ./data/raw/processed_shorelines/waves.mat
$(PYTHON_CLI) create-waves-csv \
--waves-mat "./data/raw/processed_shorelines/waves.mat" \
--sites-csv "./data/interim/sites.csv" \
--waves-output-file "./data/interim/waves.csv" \
--sites-waves-output-file "./data/interim/sites_waves.csv"
./data/interim/tides.csv: ./data/interim/sites.csv ./data/raw/processed_shorelines/tides.mat
$(PYTHON_CLI) create-tides-csv \
--tides-mat "./data/raw/processed_shorelines/tides.mat" \
--sites-csv "./data/interim/sites.csv" \
--output-file "./data/interim/tides.csv"
./data/interim/profile_features_crest_toes.csv : ./data/raw/profile_features_chris_leaman/profile_features_chris_leaman.csv ./data/interim/profiles.csv
$(PYTHON_CLI) create-crest-toes \
--profile-features-csv "./data/raw/profile_features_chris_leaman/profile_features_chris_leaman.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--output-file "./data/interim/profile_features_crest_toes.csv" \
./data/interim/sites_grain_size.csv : ./data/raw/grain_size/sites_grain_size.csv
$(PYTHON_CLI) create-grain-size-csv \
--grain-size-csv "./data/raw/grain_size/sites_grain_size.csv" \
--output-file "./data/interim/sites_grain_size.csv" \
### TWLs
twls: ./data/interim/twl_premean_slope_sto06.csv
twls: ./data/interim/twl_premean_slope_hol86.csv
twls: ./data/interim/twl_premean_slope_nie91.csv
twls: ./data/interim/twl_premean_slope_pow18.csv
twls: ./data/interim/twl_postmean_slope_sto06.csv
twls: ./data/interim/twl_postmean_slope_hol86.csv
twls: ./data/interim/twl_postmean_slope_nie91.csv
twls: ./data/interim/twl_postmean_slope_pow18.csv
twls: ./data/interim/twl_preintertidal_slope_sto06.csv
twls: ./data/interim/twl_preintertidal_slope_hol86.csv
twls: ./data/interim/twl_preintertidal_slope_nie91.csv
twls: ./data/interim/twl_preintertidal_slope_pow18.csv
twls: ./data/interim/twl_postintertidal_slope_sto06.csv
twls: ./data/interim/twl_postintertidal_slope_hol86.csv
twls: ./data/interim/twl_postintertidal_slope_nie91.csv
twls: ./data/interim/twl_postintertidal_slope_pow18.csv
./data/interim/twl_foreshore_slope_sto06.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "sto06" \
--slope "foreshore" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_foreshore_slope_sto06.csv"
./data/interim/twl_premean_slope_sto06.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "sto06" \
--slope "mean" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_premean_slope_sto06.csv"
./data/interim/twl_premean_slope_hol86.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "hol86" \
--slope "mean" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_premean_slope_hol86.csv"
./data/interim/twl_premean_slope_nie91.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "nie91" \
--slope "mean" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_premean_slope_nie91.csv"
./data/interim/twl_premean_slope_pow18.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv ./data/interim/sites_grain_size.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "pow18" \
--slope "mean" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_premean_slope_pow18.csv"
./data/interim/twl_postmean_slope_sto06.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "sto06" \
--slope "mean" \
--profile-type "poststorm" \
--output-file "./data/interim/twl_postmean_slope_sto06.csv"
./data/interim/twl_postmean_slope_hol86.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "hol86" \
--slope "mean" \
--profile-type "poststorm" \
--output-file "./data/interim/twl_postmean_slope_hol86.csv"
./data/interim/twl_postmean_slope_nie91.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "nie91" \
--slope "mean" \
--profile-type "poststorm" \
--output-file "./data/interim/twl_postmean_slope_nie91.csv"
./data/interim/twl_postmean_slope_pow18.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv ./data/interim/sites_grain_size.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "pow18" \
--slope "mean" \
--profile-type "poststorm" \
--output-file "./data/interim/twl_postmean_slope_pow18.csv"
./data/interim/twl_preintertidal_slope_sto06.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "sto06" \
--slope "intertidal" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_preintertidal_slope_sto06.csv"
./data/interim/twl_preintertidal_slope_hol86.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "hol86" \
--slope "intertidal" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_preintertidal_slope_hol86.csv"
./data/interim/twl_preintertidal_slope_nie91.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "nie91" \
--slope "intertidal" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_preintertidal_slope_nie91.csv"
./data/interim/twl_preintertidal_slope_pow18.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv ./data/interim/sites_grain_size.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "pow18" \
--slope "intertidal" \
--profile-type "prestorm" \
--output-file "./data/interim/twl_preintertidal_slope_pow18.csv"
./data/interim/twl_postintertidal_slope_sto06.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "sto06" \
--slope "intertidal" \
--profile-type "poststorm" \
--output-file "./data/interim/twl_postintertidal_slope_sto06.csv"
./data/interim/twl_postintertidal_slope_hol86.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "hol86" \
--slope "intertidal" \
--profile-type "poststorm" \
--output-file "./data/interim/twl_postintertidal_slope_hol86.csv"
./data/interim/twl_postintertidal_slope_nie91.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "nie91" \
--slope "intertidal" \
--profile-type "poststorm" \
--output-file "./data/interim/twl_postintertidal_slope_nie91.csv"
./data/interim/twl_postintertidal_slope_pow18.csv: ./data/interim/waves.csv ./data/interim/tides.csv ./data/interim/profiles.csv ./data/interim/sites.csv ./data/interim/profile_features_crest_toes.csv ./data/interim/sites_grain_size.csv
$(PYTHON_CLI) create-twl-forecast \
--waves-csv "./data/interim/waves.csv" \
--tides-csv "./data/interim/tides.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--grain-size-csv "./data/interim/sites_grain_size.csv" \
--runup-function "pow18" \
--slope "intertidal" \
--profile-type "poststorm" \
--output-file "./data/interim/twl_postintertidal_slope_pow18.csv"
### IMPACTS
impacts: ./data/interim/impacts_observed.csv
impacts: ./data/interim/impacts_forecasted_premean_slope_sto06.csv
impacts: ./data/interim/impacts_forecasted_premean_slope_hol86.csv
impacts: ./data/interim/impacts_forecasted_premean_slope_nie91.csv
impacts: ./data/interim/impacts_forecasted_premean_slope_pow18.csv
impacts: ./data/interim/impacts_forecasted_postmean_slope_sto06.csv
impacts: ./data/interim/impacts_forecasted_postmean_slope_hol86.csv
impacts: ./data/interim/impacts_forecasted_postmean_slope_nie91.csv
impacts: ./data/interim/impacts_forecasted_postmean_slope_pow18.csv
impacts: ./data/interim/impacts_forecasted_preintertidal_slope_sto06.csv
impacts: ./data/interim/impacts_forecasted_preintertidal_slope_hol86.csv
impacts: ./data/interim/impacts_forecasted_preintertidal_slope_nie91.csv
impacts: ./data/interim/impacts_forecasted_preintertidal_slope_pow18.csv
impacts: ./data/interim/impacts_forecasted_postintertidal_slope_sto06.csv
impacts: ./data/interim/impacts_forecasted_postintertidal_slope_hol86.csv
impacts: ./data/interim/impacts_forecasted_postintertidal_slope_nie91.csv
impacts: ./data/interim/impacts_forecasted_postintertidal_slope_pow18.csv
./data/interim/impacts_observed.csv: ./data/interim/profiles.csv ./data/interim/profile_features_crest_toes.csv ./data/raw/profile_features_chris_leaman/profile_features_chris_leaman.csv
$(PYTHON_CLI) create-observed-impacts \
--profiles-csv "./data/interim/profiles.csv" \
--profile-features-crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--raw-profile-features-csv "./data/raw/profile_features_chris_leaman/profile_features_chris_leaman.csv" \
--output-file "./data/interim/impacts_observed.csv"
./data/interim/impacts_forecasted_foreshore_slope_sto06.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_foreshore_slope_sto06.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_foreshore_slope_sto06.csv" \
--output-file "./data/interim/impacts_forecasted_foreshore_slope_sto06.csv"
./data/interim/impacts_forecasted_premean_slope_sto06.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_premean_slope_sto06.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_premean_slope_sto06.csv" \
--output-file "./data/interim/impacts_forecasted_premean_slope_sto06.csv"
./data/interim/impacts_forecasted_premean_slope_hol86.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_premean_slope_hol86.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_premean_slope_hol86.csv" \
--output-file "./data/interim/impacts_forecasted_premean_slope_hol86.csv"
./data/interim/impacts_forecasted_premean_slope_nie91.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_premean_slope_nie91.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_premean_slope_nie91.csv" \
--output-file "./data/interim/impacts_forecasted_premean_slope_nie91.csv"
./data/interim/impacts_forecasted_premean_slope_pow18.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_premean_slope_pow18.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_premean_slope_pow18.csv" \
--output-file "./data/interim/impacts_forecasted_premean_slope_pow18.csv"
./data/interim/impacts_forecasted_postmean_slope_sto06.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_postmean_slope_sto06.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_postmean_slope_sto06.csv" \
--output-file "./data/interim/impacts_forecasted_postmean_slope_sto06.csv"
./data/interim/impacts_forecasted_postmean_slope_hol86.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_postmean_slope_hol86.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_postmean_slope_hol86.csv" \
--output-file "./data/interim/impacts_forecasted_postmean_slope_hol86.csv"
./data/interim/impacts_forecasted_postmean_slope_nie91.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_postmean_slope_nie91.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_postmean_slope_nie91.csv" \
--output-file "./data/interim/impacts_forecasted_postmean_slope_nie91.csv"
./data/interim/impacts_forecasted_postmean_slope_pow18.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_postmean_slope_pow18.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_postmean_slope_pow18.csv" \
--output-file "./data/interim/impacts_forecasted_postmean_slope_pow18.csv"
./data/interim/impacts_forecasted_preintertidal_slope_sto06.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_preintertidal_slope_sto06.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_preintertidal_slope_sto06.csv" \
--output-file "./data/interim/impacts_forecasted_preintertidal_slope_sto06.csv"
./data/interim/impacts_forecasted_preintertidal_slope_hol86.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_preintertidal_slope_hol86.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_preintertidal_slope_hol86.csv" \
--output-file "./data/interim/impacts_forecasted_preintertidal_slope_hol86.csv"
./data/interim/impacts_forecasted_preintertidal_slope_nie91.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_preintertidal_slope_nie91.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_preintertidal_slope_nie91.csv" \
--output-file "./data/interim/impacts_forecasted_preintertidal_slope_nie91.csv"
./data/interim/impacts_forecasted_preintertidal_slope_pow18.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_preintertidal_slope_pow18.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_preintertidal_slope_pow18.csv" \
--output-file "./data/interim/impacts_forecasted_preintertidal_slope_pow18.csv"
./data/interim/impacts_forecasted_postintertidal_slope_sto06.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_postintertidal_slope_sto06.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_postintertidal_slope_sto06.csv" \
--output-file "./data/interim/impacts_forecasted_postintertidal_slope_sto06.csv"
./data/interim/impacts_forecasted_postintertidal_slope_hol86.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_postintertidal_slope_hol86.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_postintertidal_slope_hol86.csv" \
--output-file "./data/interim/impacts_forecasted_postintertidal_slope_hol86.csv"
./data/interim/impacts_forecasted_postintertidal_slope_nie91.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_postintertidal_slope_nie91.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_postintertidal_slope_nie91.csv" \
--output-file "./data/interim/impacts_forecasted_postintertidal_slope_nie91.csv"
./data/interim/impacts_forecasted_postintertidal_slope_pow18.csv: ./data/interim/profile_features_crest_toes.csv ./data/interim/twl_postintertidal_slope_pow18.csv
$(PYTHON_CLI) create-forecasted-impacts \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--forecasted-twl-csv "./data/interim/twl_postintertidal_slope_pow18.csv" \
--output-file "./data/interim/impacts_forecasted_postintertidal_slope_pow18.csv"
### GEOJSONs
geojsons: ./data/interim/impacts_forecasted_premean_slope_pow18.geojson ./data/interim/impacts_forecasted_premean_slope_pow18_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_premean_slope_nie91.geojson ./data/interim/impacts_forecasted_premean_slope_nie91_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_premean_slope_hol86.geojson ./data/interim/impacts_forecasted_premean_slope_hol86_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_premean_slope_sto06.geojson ./data/interim/impacts_forecasted_premean_slope_sto06_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_postmean_slope_pow18.geojson ./data/interim/impacts_forecasted_postmean_slope_pow18_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_postmean_slope_nie91.geojson ./data/interim/impacts_forecasted_postmean_slope_nie91_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_postmean_slope_hol86.geojson ./data/interim/impacts_forecasted_postmean_slope_hol86_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_postmean_slope_sto06.geojson ./data/interim/impacts_forecasted_postmean_slope_sto06_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_preintertidal_slope_pow18.geojson ./data/interim/impacts_forecasted_preintertidal_slope_pow18_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_preintertidal_slope_nie91.geojson ./data/interim/impacts_forecasted_preintertidal_slope_nie91_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_preintertidal_slope_hol86.geojson ./data/interim/impacts_forecasted_preintertidal_slope_hol86_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_preintertidal_slope_sto06.geojson ./data/interim/impacts_forecasted_preintertidal_slope_sto06_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_postintertidal_slope_pow18.geojson ./data/interim/impacts_forecasted_postintertidal_slope_pow18_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_postintertidal_slope_nie91.geojson ./data/interim/impacts_forecasted_postintertidal_slope_nie91_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_postintertidal_slope_hol86.geojson ./data/interim/impacts_forecasted_postintertidal_slope_hol86_R_high.geojson
geojsons: ./data/interim/impacts_forecasted_postintertidal_slope_sto06.geojson ./data/interim/impacts_forecasted_postintertidal_slope_sto06_R_high.geojson
geojsons: ./data/interim/profile_features_crest_toes.geojson ./data/interim/sites.geojson
./data/interim/impacts_forecasted_premean_slope_sto06.geojson: ./data/interim/impacts_forecasted_premean_slope_sto06.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_premean_slope_sto06.csv" \
--output-geojson "./data/interim/impacts_forecasted_premean_slope_sto06.geojson"
./data/interim/impacts_forecasted_premean_slope_sto06_R_high.geojson: ./data/interim/impacts_forecasted_premean_slope_sto06.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_premean_slope_sto06.csv" \
--output-geojson "./data/interim/impacts_forecasted_premean_slope_sto06_R_high.geojson"
./data/interim/impacts_forecasted_premean_slope_hol86.geojson: ./data/interim/impacts_forecasted_premean_slope_hol86.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_premean_slope_hol86.csv" \
--output-geojson "./data/interim/impacts_forecasted_premean_slope_hol86.geojson"
./data/interim/impacts_forecasted_premean_slope_hol86_R_high.geojson: ./data/interim/impacts_forecasted_premean_slope_hol86.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_premean_slope_hol86.csv" \
--output-geojson "./data/interim/impacts_forecasted_premean_slope_hol86_R_high.geojson"
./data/interim/impacts_forecasted_premean_slope_nie91.geojson: ./data/interim/impacts_forecasted_premean_slope_nie91.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_premean_slope_nie91.csv" \
--output-geojson "./data/interim/impacts_forecasted_premean_slope_nie91.geojson"
./data/interim/impacts_forecasted_premean_slope_nie91_R_high.geojson: ./data/interim/impacts_forecasted_premean_slope_nie91.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_premean_slope_nie91.csv" \
--output-geojson "./data/interim/impacts_forecasted_premean_slope_nie91_R_high.geojson"
./data/interim/impacts_forecasted_premean_slope_pow18.geojson: ./data/interim/impacts_forecasted_premean_slope_pow18.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_premean_slope_pow18.csv" \
--output-geojson "./data/interim/impacts_forecasted_premean_slope_pow18.geojson"
./data/interim/impacts_forecasted_premean_slope_pow18_R_high.geojson: ./data/interim/impacts_forecasted_premean_slope_pow18.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_premean_slope_pow18.csv" \
--output-geojson "./data/interim/impacts_forecasted_premean_slope_pow18_R_high.geojson"
./data/interim/impacts_forecasted_postmean_slope_sto06.geojson: ./data/interim/impacts_forecasted_postmean_slope_sto06.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_postmean_slope_sto06.csv" \
--output-geojson "./data/interim/impacts_forecasted_postmean_slope_sto06.geojson"
./data/interim/impacts_forecasted_postmean_slope_sto06_R_high.geojson: ./data/interim/impacts_forecasted_postmean_slope_sto06.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_postmean_slope_sto06.csv" \
--output-geojson "./data/interim/impacts_forecasted_postmean_slope_sto06_R_high.geojson"
./data/interim/impacts_forecasted_postmean_slope_hol86.geojson: ./data/interim/impacts_forecasted_postmean_slope_hol86.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_postmean_slope_hol86.csv" \
--output-geojson "./data/interim/impacts_forecasted_postmean_slope_hol86.geojson"
./data/interim/impacts_forecasted_postmean_slope_hol86_R_high.geojson: ./data/interim/impacts_forecasted_postmean_slope_hol86.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_postmean_slope_hol86.csv" \
--output-geojson "./data/interim/impacts_forecasted_postmean_slope_hol86_R_high.geojson"
./data/interim/impacts_forecasted_postmean_slope_nie91.geojson: ./data/interim/impacts_forecasted_postmean_slope_nie91.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_postmean_slope_nie91.csv" \
--output-geojson "./data/interim/impacts_forecasted_postmean_slope_nie91.geojson"
./data/interim/impacts_forecasted_postmean_slope_nie91_R_high.geojson: ./data/interim/impacts_forecasted_postmean_slope_nie91.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_postmean_slope_nie91.csv" \
--output-geojson "./data/interim/impacts_forecasted_postmean_slope_nie91_R_high.geojson"
./data/interim/impacts_forecasted_postmean_slope_pow18.geojson: ./data/interim/impacts_forecasted_postmean_slope_pow18.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_postmean_slope_pow18.csv" \
--output-geojson "./data/interim/impacts_forecasted_postmean_slope_pow18.geojson"
./data/interim/impacts_forecasted_postmean_slope_pow18_R_high.geojson: ./data/interim/impacts_forecasted_postmean_slope_pow18.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_postmean_slope_pow18.csv" \
--output-geojson "./data/interim/impacts_forecasted_postmean_slope_pow18_R_high.geojson"
./data/interim/impacts_forecasted_preintertidal_slope_sto06.geojson: ./data/interim/impacts_forecasted_preintertidal_slope_sto06.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_preintertidal_slope_sto06.csv" \
--output-geojson "./data/interim/impacts_forecasted_preintertidal_slope_sto06.geojson"
./data/interim/impacts_forecasted_preintertidal_slope_sto06_R_high.geojson: ./data/interim/impacts_forecasted_preintertidal_slope_sto06.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_preintertidal_slope_sto06.csv" \
--output-geojson "./data/interim/impacts_forecasted_preintertidal_slope_sto06_R_high.geojson"
./data/interim/impacts_forecasted_preintertidal_slope_hol86.geojson: ./data/interim/impacts_forecasted_preintertidal_slope_hol86.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_preintertidal_slope_hol86.csv" \
--output-geojson "./data/interim/impacts_forecasted_preintertidal_slope_hol86.geojson"
./data/interim/impacts_forecasted_preintertidal_slope_hol86_R_high.geojson: ./data/interim/impacts_forecasted_preintertidal_slope_hol86.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_preintertidal_slope_hol86.csv" \
--output-geojson "./data/interim/impacts_forecasted_preintertidal_slope_hol86_R_high.geojson"
./data/interim/impacts_forecasted_preintertidal_slope_nie91.geojson: ./data/interim/impacts_forecasted_preintertidal_slope_nie91.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_preintertidal_slope_nie91.csv" \
--output-geojson "./data/interim/impacts_forecasted_preintertidal_slope_nie91.geojson"
./data/interim/impacts_forecasted_preintertidal_slope_nie91_R_high.geojson: ./data/interim/impacts_forecasted_preintertidal_slope_nie91.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_preintertidal_slope_nie91.csv" \
--output-geojson "./data/interim/impacts_forecasted_preintertidal_slope_nie91_R_high.geojson"
./data/interim/impacts_forecasted_preintertidal_slope_pow18.geojson: ./data/interim/impacts_forecasted_preintertidal_slope_pow18.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_preintertidal_slope_pow18.csv" \
--output-geojson "./data/interim/impacts_forecasted_preintertidal_slope_pow18.geojson"
./data/interim/impacts_forecasted_preintertidal_slope_pow18_R_high.geojson: ./data/interim/impacts_forecasted_preintertidal_slope_pow18.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_preintertidal_slope_pow18.csv" \
--output-geojson "./data/interim/impacts_forecasted_preintertidal_slope_pow18_R_high.geojson"
./data/interim/impacts_forecasted_postintertidal_slope_sto06.geojson: ./data/interim/impacts_forecasted_postintertidal_slope_sto06.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_postintertidal_slope_sto06.csv" \
--output-geojson "./data/interim/impacts_forecasted_postintertidal_slope_sto06.geojson"
./data/interim/impacts_forecasted_postintertidal_slope_sto06_R_high.geojson: ./data/interim/impacts_forecasted_postintertidal_slope_sto06.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_postintertidal_slope_sto06.csv" \
--output-geojson "./data/interim/impacts_forecasted_postintertidal_slope_sto06_R_high.geojson"
./data/interim/impacts_forecasted_postintertidal_slope_hol86.geojson: ./data/interim/impacts_forecasted_postintertidal_slope_hol86.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_postintertidal_slope_hol86.csv" \
--output-geojson "./data/interim/impacts_forecasted_postintertidal_slope_hol86.geojson"
./data/interim/impacts_forecasted_postintertidal_slope_hol86_R_high.geojson: ./data/interim/impacts_forecasted_postintertidal_slope_hol86.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_postintertidal_slope_hol86.csv" \
--output-geojson "./data/interim/impacts_forecasted_postintertidal_slope_hol86_R_high.geojson"
./data/interim/impacts_forecasted_postintertidal_slope_nie91.geojson: ./data/interim/impacts_forecasted_postintertidal_slope_nie91.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_postintertidal_slope_nie91.csv" \
--output-geojson "./data/interim/impacts_forecasted_postintertidal_slope_nie91.geojson"
./data/interim/impacts_forecasted_postintertidal_slope_nie91_R_high.geojson: ./data/interim/impacts_forecasted_postintertidal_slope_nie91.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_postintertidal_slope_nie91.csv" \
--output-geojson "./data/interim/impacts_forecasted_postintertidal_slope_nie91_R_high.geojson"
./data/interim/impacts_forecasted_postintertidal_slope_pow18.geojson: ./data/interim/impacts_forecasted_postintertidal_slope_pow18.csv ./data/interim/impacts_observed.csv
$(PYTHON_CLI) impacts-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--observed-impacts-csv "./data/interim/impacts_observed.csv" \
--forecast-impacts-csv "./data/interim/impacts_forecasted_postintertidal_slope_pow18.csv" \
--output-geojson "./data/interim/impacts_forecasted_postintertidal_slope_pow18.geojson"
./data/interim/impacts_forecasted_postintertidal_slope_pow18_R_high.geojson: ./data/interim/impacts_forecasted_postintertidal_slope_pow18.csv
$(PYTHON_CLI) r-high-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profiles-csv "./data/interim/profiles.csv" \
--crest-toes-csv "./data/interim/profile_features_crest_toes.csv" \
--impacts-csv "./data/interim/impacts_forecasted_postintertidal_slope_pow18.csv" \
--output-geojson "./data/interim/impacts_forecasted_postintertidal_slope_pow18_R_high.geojson"
# Site specific properties
./data/interim/profile_features_crest_toes.geojson: ./data/interim/profile_features_crest_toes.csv
$(PYTHON_CLI) profile-features-crest-toes-to-geojson \
--sites-csv "./data/interim/sites.csv" \
--profile-features-csv "./data/interim/profile_features_crest_toes.csv" \
--output-geojson "./data/interim/profile_features_crest_toes.geojson"
./data/interim/sites.geojson: ./data/interim/sites.csv
$(PYTHON_CLI) sites-csv-to-geojson \
--input-csv "./data/interim/sites.csv" \
--output-geojson "./data/interim/sites.geojson"
###############################
# Misc commands
format: ./src/*.py ##@misc Check python file formatting
activate ./.venv && black "src/"
###############################
# Help command
#################################################################################
# Self Documenting Commands #
#################################################################################
.DEFAULT_GOAL := help
.PHONY: help
@ -49,5 +752,3 @@ HELP_FUN = \
help: ##@other Show this help.
@perl -e '$(HELP_FUN)' $(MAKEFILE_LIST)

@ -1,56 +1,90 @@
# 2016 Narrabeen Storm EWS Performance
This repository investigates whether the storm impacts (i.e. Sallenger, 2000) of the June 2016 Narrabeen Storm could
have been forecasted in advance.
This repository investigates whether the storm impacts ([Sallenger, 2000](https://www.jstor.org/stable/4300099#metadata_info_tab_contents)) of the June 2016 Narrabeen Storm could have been forecasted in advance. At 100 m intervals along each beach, we hindcast the storm impact as one of the four regimes defined by Sallenger (2000): swash, collision, overwash or inundation.
![image](https://i.imgur.com/urMx8Yx.jpg)
## Repository and analysis format
This repository follows the [Cookiecutter Data Science](https://drivendata.github.io/cookiecutter-data-science/)
structure where possible. The analysis is done in python (look at the `/src/` folder) with some interactive,
exploratory notebooks located at `/notebooks`.
structure where possible. The analysis is done in python (look at the `/src/` folder) with some interactive,exploratory notebooks located at `/notebooks`.
Development is conducted using a [gitflow](https://www.atlassian
.com/git/tutorials/comparing-workflows/gitflow-workflow) approach - mainly the `master` branch stores the official
release history and the `develop` branch serves as an integration branch for features. Other `hotfix` and `feature`
branches should be created and merged as necessary.
Development is conducted using a [gitflow](https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow) approach. The `master` branch stores the officialrelease history and the `develop` branch serves as an integration branch for features. Other `hotfix` and `feature` branches should be created and merged as necessary.
## Where to start?
1. Clone this repository.
2. Pull data from WRL coastal J drive with `make pull-data`
3. Check out jupyter notebook `./notebooks/01_exploration.ipynb` which has an example of how to import the data and
some interactive widgets.
## How to start?
## Requirements
#### Getting software requirements
The following requirements are needed to run various bits:
- [Python 3.6+](https://conda.io/docs/user-guide/install/windows.html): Used for processing and analysing data.
Jupyter notebooks are used for exploratory analyis and communication.
- [QGIS](https://www.qgis.org/en/site/forusers/download): Used for looking at raw LIDAR pre/post storm surveys and
extracting dune crests/toes
- [rclone](https://rclone.org/downloads/): Data is not tracked by this repository, but is backed up to a remote
Chris Leaman working directory located on the WRL coastal drive. Rclone is used to sync local and remote copies.
Ensure rclone.exe is located on your `PATH` environment.
- [gnuMake](http://gnuwin32.sourceforge.net/packages/make.htm): A list of commands for processing data is provided in
the `./Makefile`. Use gnuMake to launch these commands. Ensure make.exe is located on your `PATH` environment.
- [Anaconda](https://www.anaconda.com/download/): Used for processing and analysing data. The Anaconda distribution is used for managing environments and is available for Windows, Mac and Linux. Jupyter notebooks are used for exploratory analyis and communication.
- [QGIS](https://www.qgis.org/en/site/forusers/download): Used for looking at raw LIDAR pre/post storm surveys and extracting dune crests/toes
- [rclone](https://rclone.org/downloads/): Data is not tracked by this repository, but is backed up to a remote Chris Leaman working directory located on the WRL coastal drive. Rclone is used to sync local and remote copies. Ensure rclone.exe is located on your `PATH` environment.
- [gnuMake](http://gnuwin32.sourceforge.net/packages/make.htm): A list of commands for processing data is provided in the `./Makefile`. Use gnuMake to launch these commands. Ensure make.exe is located on your `PATH` environment.
- [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git): You'll need to have git installed to push and pull from this repo. If you're not familiar with the command line usage of git, [Git Extensions](http://gitextensions.github.io/) is a Windows based GUI which makes it easier to work with git. There are a whole bunch of other [git clients](https://github.com/dictcp/awesome-git#client) that are available as well.
#### Getting the repository
Clone the repository onto into your local environment:
```sh
git clone http://git.wrl.unsw.edu.au:3000/chrisl/nsw-2016-storm-impact.git
cd nsw-2016-storm-impact
```
#### Getting the python environment set up
Commands for setting up the python environment are provided in the `Makefile`. Simply run the following commands in the repo root directory, ensuring `make` is located on your path:
```sh
make venv-init
make venv-activate
make venv-requirements-install
```
You can see what these commands are actually running by inspecting the `Makefile`.
#### Pull data
The actual raw, interim and processed data are not tracked by the repository as part of good git practices. A copy of the raw data is stored on the WRL Coastal J:\ drive and can be copied using the following command.
```sh
make pull-data
```
If you have updated the data and want to copy it back to the J:\ drive, use the following command. Note that it is probably not a good idea to modify data stored in `./data/raw/`.
```sh
make push-data
```
#### View notebooks
Jupyter notebooks have been set up to help explore the data and do preliminary analysis. Once you have set up your environment and pulled the data, this is probably a good place to start. To run the notebook, use the following command and navigate to the `./notebooks/` folder once the jupyter interface opens in your web browser.
```sh
make notebook
```
In order to allow notebook to be version controlled, [nbstripout](https://github.com/kynan/nbstripout) has been installed as a git filter. It will run automatically when commiting any changes to the notebook and strip out the outputs.
## Available data
Raw, interim and processed data used in this analysis is kept in the `/data/` folder. Data is not tracked in the
repository due to size constraints, but stored locally. A mirror is kept of the coastal folder J drive which you can
use to push/pull to, using rclone. In order to get the data, run `make pull-data`.
Raw, interim and processed data used in this analysis is kept in the `/data/` folder. Data is not tracked in the repository due to size constraints, but stored locally. A mirror is kept of the coastal folder `J:\` drive which you can use to push/pull to, using rclone. In order to get the data, run `make pull-data`.
List of data:
- `/data/raw/processed_shorelines`: This data was recieved from Tom Beuzen in October 2018. It consists of pre/post
storm profiles at every 100 m sections along beaches ranging from Dee Why to Nambucca . Profiles are based on raw
aerial LIDAR and were processed by Mitch Harley. Tides and waves (10 m contour and reverse shoaled deepwater) for
each individual 100 m section is also provided.
- `/data/raw/raw_lidar`: This is the raw pre/post storm aerial LIDAR which was taken for the June 2016 storm. `.las`
files are the raw files which have been processed into `.tiff` files using `PDAL`. Note that these files have not
been corrected for systematic errors, so actual elevations should be taken from the `processed_shorelines` folder.
Obtained November 2018 from Mitch Harley from the black external HDD labeled "UNSW LIDAR".
- `/data/raw/profile_features`: Dune toe and crest locations based on prestorm LIDAR. Refer to `/notebooks/qgis.qgz`
as this shows how they were manually extracted. Note that the shapefiles only show the location (lat/lon) of the dune
crest and toe. For actual elevations, these locations need to related to the processed shorelines.
- `./data/raw/grain_size/`: The `sites_grain_size.csv` file contains the D50 grain size of each beach as well as the references for where these values were taken from. Grain size is needed to estimate wave runup using the Power et al. (2018) runup model.
- `./data/raw/land_lims/`: Not used (?) CKL to check
- `./data/raw/near_maps/`: This folder contains aerial imagery of some of the beaches taken from Nearmaps. It can be loaded into QGIS and examined to determine storm impacts by comparing pre and post storm images.
- `./data/raw/processed_shorelines/`: This data was recieved from Tom Beuzen in October 2018. It consists of pre/poststorm profiles at every 100 m sections along beaches ranging from Dee Why to Nambucca . Profiles are based on raw aerial LIDAR and were processed by Mitch Harley. Tides and waves (10 m contour and reverse shoaled deepwater) for each individual 100 m section is also provided.
- `./data/raw/profile_features/`: Dune toe and crest locations based on prestorm LIDAR. Refer to `/notebooks/qgis.qgz` as this shows how they were manually extracted. Note that the shapefiles only show the location (lat/lon) of the dune crest and toe. For actual elevations, these locations need to related to the processed shorelines.
- `./data/raw/profile_features_chris_leaman/`: An excel file containing manually selected dune toes, crests, berms and impacts by Chris Leaman. The values in this file should take preceedence over values picked by Tom Beuzen.
- `./data/raw/profile_features_tom_beuzen/`: This mat file contains dune toes and crests that Tom Beuzen picked out for each profile. This is used as a basis for the toe/crest locations, but is overridden from data contained in `/data/raw/profile_features_chris_leaman`.
- `./data/raw/raw_lidar/`: This is the raw pre/post storm aerial LIDAR which was taken for the June 2016 storm. `.las` files are the raw files which have been processed into `.tiff` files using `PDAL`. Note that these files have not been corrected for systematic errors, so actual elevations should be taken from the `processed_shorelines` folder. Obtained November 2018 from Mitch Harley from the black external HDD labeled "UNSW LIDAR".
- `./data/raw/vol_change_kml/`: This data was obtained from Mitch Harley in Feb 2019 and is a `.kml` showing the change in subaerial volume during the storm. It is included for reference only and is not used in the analysis.
## Notebooks
- `/notebooks/01_exploration.ipynb`: Shows how to import processed shorelines, waves and tides. An interactive widget
plots the location and cross sections.
- `/notebooks/qgis.qgz`: A QGIS file which is used to explore the aerial LIDAR data in `/data/raw/raw_lidar`. By
examining the pre-strom lidar, dune crest and dune toe lines are manually extracted. These are stored in the
`/data/profile_features/`.
- `./notebooks/01_exploration.ipynb`: Shows how to import processed shorelines, waves and tides. An interactive widget plots the location and cross sections.
- `./notebooks/02_collision_protection_volume.ipynb`:
- `./notebooks/03_dune_toe_vs_runup.ipynb`:
- `./notebooks/04a_profile_picker_superseded.ipynb`:
- `./notebooks/04b_profile_picker.ipynb`:
- `./notebooks/04c_profile_picker_manual.ipynb`:
- `./notebooks/05_twl_exceedence.ipynb`:
- `./notebooks/06_change_in_slope.ipynb`:
- `./notebooks/07_evaluate_model_performance.ipynb`:
- `./notebooks/08_narr_topo_bathy_slope_test.ipynb`:
- `./notebooks/09_superseded_run_comparison.ipynb`:
- `./notebooks/10_profile_clustering.ipynb`:
- `/notebooks/qgis.qgz`: A QGIS file which is used to explore the aerial LIDAR data in `/data/raw/raw_lidar`. By examining the pre-strom lidar, dune crest and dune toe lines are manually extracted. These are stored in the `/data/profile_features/`.
## TODO
- [ ] Raw tide WL's are interpolated based on location from tide gauges. This probably isn't the most accurate method, but should have a small effect since surge elevation was low during this event. Need to assess the effect of this method.
- [ ] Estimate max TWL from elevation where pre storm and post storm profiles are the same. Need to think more about this as runup impacting dune toe will move the dune face back, incorrectly raising the observed twl. Perhaps this estimation of max TWL is only useful for the swash regime.
- [ ] Implement [bayesian change detection algorithm](https://github.com/hildensia/bayesian_changepoint_detection) to help detect dune crests and toes from profiles. Probably low priority at the moment since we are doing manual detection.
- [ ] Implement dune impact calculations as per Palmsten & Holman. Calculation should be done in a new dataframe.
- [ ] Implement data/interim/*.csv file checking using py.test. Check for correct columns, number of nans etc. Testing of code is probably a lower priority than just checking the interim data files at the moment. Some functions which should be tested are the slope functions in `forecast_twl.py`, as these can be tricky with different profiles.
- [ ] Convert runup model functions to use numpy arrays instead of pandas dataframes. This should give a bit of a speedup.

@ -0,0 +1,52 @@
channels:
- conda-forge
- plotly
dependencies:
- python=3.6
- attrs
- pre_commit
- beautifulsoup4
- autopep8
- black
- cartopy
- colorcet
- click
- click-plugins
- colorlover
- fiona
- ipykernel
- ipython
- ipywidgets
- matplotlib
- line_profiler
- nbformat
- nbstripout
- notebook
- numpy
- pandas
- geopandas
- pandoc
- pip
- plotly
- plotly-orca
- proj4
- pyproj
- python-dateutil
- pytz
- pyyaml
- psutil
- requests
- scikit-learn
- scipy
- setuptools
- seaborn
- shapely
- statsmodels
- tqdm
- yaml
- yapf
- jupyterlab
- pip:
- blackcellmagic
- mat4py
- overpass

@ -0,0 +1,3 @@
*.ipynb filter=nbstripout
*.ipynb diff=ipynb

File diff suppressed because one or more lines are too long

@ -0,0 +1,627 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Investigate \"collision protection volume\" concept"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T02:45:14.908283Z",
"start_time": "2018-12-05T02:45:14.556163Z"
}
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"%reload_ext autoreload\n",
"%autoreload"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T02:45:34.323928Z",
"start_time": "2018-12-05T02:45:14.911088Z"
}
},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"\n",
"import plotly\n",
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"import plotly.tools as tls\n",
"import plotly.figure_factory as ff\n",
"import plotly.io as pio"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Load data\n",
"Load data from the `./data/interim/` folder and parse into `pandas` dataframes."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T02:45:53.010702Z",
"start_time": "2018-12-05T02:45:34.324930Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Importing profiles.csv\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\z5189959\\Desktop\\nsw-2016-storm-impact\\.venv\\lib\\site-packages\\numpy\\lib\\arraysetops.py:522: FutureWarning:\n",
"\n",
"elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Importing profile_features.csv\n",
"Importing impacts_forecasted_foreshore_slope_sto06.csv\n",
"Importing impacts_forecasted_mean_slope_sto06.csv\n",
"Importing impacts_observed.csv\n",
"Importing twl_foreshore_slope_sto06.csv\n",
"Importing twl_mean_slope_sto06.csv\n",
"Done!\n"
]
}
],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
"df_profile_features = df_from_csv('profile_features.csv', index_col=[0])\n",
"\n",
"impacts = {\n",
" 'forecasted': {\n",
" 'foreshore_slope_sto06': df_from_csv('impacts_forecasted_foreshore_slope_sto06.csv', index_col=[0]),\n",
" 'mean_slope_sto06': df_from_csv('impacts_forecasted_mean_slope_sto06.csv', index_col=[0]),\n",
" },\n",
" 'observed': df_from_csv('impacts_observed.csv', index_col=[0])\n",
" }\n",
"\n",
"twls = {\n",
" 'forecasted': {\n",
" 'foreshore_slope_sto06': df_from_csv('twl_foreshore_slope_sto06.csv', index_col=[0, 1]),\n",
" 'mean_slope_sto06':df_from_csv('twl_mean_slope_sto06.csv', index_col=[0, 1]),\n",
" }\n",
"}\n",
"\n",
"print('Done!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets define a function to calculate the \"collision protection volume\" based on prestorm profiles."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Get berm feature functions\n",
"Define a couple of functions which are going to help us get features of our berms."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T03:01:56.646213Z",
"start_time": "2018-12-05T03:01:56.366466Z"
},
"code_folding": []
},
"outputs": [],
"source": [
"from shapely.geometry import Point, LineString, Polygon\n",
"\n",
"\n",
"def collision_protection_vol(x, z, d_low_x, d_low_z, lower_z, angle):\n",
" # First, get the bounding line strings of our protection volume\n",
" lower_line = LineString([Point(min(x), lower_z), Point(max(x), lower_z)])\n",
" profile_line = LineString([Point(x_coord, z_coord) for x_coord, z_coord in zip(x, z)\n",
" if all([not np.isnan(x_coord), not np.isnan(z_coord)])])\n",
" slope_line = LineString([Point(d_low_x, d_low_z),\n",
" Point(max(x), d_low_z - max(x) * np.sin(np.deg2rad(angle)))])\n",
"\n",
" # Work out where our lower line and slope line intersect\n",
" lower_profile_intersection = lower_line.intersection(profile_line)\n",
" d_protected_intersection = lower_line.intersection(slope_line)\n",
"\n",
" # Define the perimeter of the protection area\n",
" profile_protected = LineString([Point(x_coord, z_coord) for x_coord, z_coord\n",
" in zip(profile_line.xy[0], profile_line.xy[1])\n",
" if d_low_x < x_coord < lower_profile_intersection.xy[0][0]]\n",
" + [lower_profile_intersection]\n",
" + [d_protected_intersection]\n",
" + [Point(d_low_x, d_low_z)])\n",
"\n",
" # Convert to polygon and return the area (m3/m)\n",
" protection_area_poly = Polygon(profile_protected)\n",
" protection_area_vol = protection_area_poly.area\n",
" return protection_area_vol\n",
"\n",
"\n",
"def get_berm_width(z, d_low_x):\n",
" \"\"\"\n",
" Returns the width of the berm, defined by the distance between dune toe to z=0\n",
" \"\"\"\n",
" x_seaward_limit = z.dropna().tail(1).reset_index().x[0]\n",
" return x_seaward_limit - d_low_x\n",
"\n",
"\n",
"\n",
"\n",
"site_id = 'NARRA0018'\n",
"profile_type = 'prestorm'\n",
"query = \"site_id == '{}' and profile_type == '{}'\".format(\n",
" site_id, profile_type)\n",
"prestorm_profile = df_profiles.query(query)\n",
"profile_features = df_profile_features.query(query)\n",
"\n",
"x = prestorm_profile.index.get_level_values('x')\n",
"z = prestorm_profile.z\n",
"d_low_x = profile_features.dune_toe_x.tolist()[0]\n",
"d_low_z = profile_features.dune_toe_z.tolist()[0]\n",
"angle = 60 # degrees from the horizontal\n",
"lower_z = 0.5 # from mhw\n",
"\n",
"vol = collision_protection_vol(x, z, d_low_x, d_low_z, lower_z, angle)\n",
"berm_width = get_berm_width(z, d_low_x)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T02:45:54.224110Z",
"start_time": "2018-12-05T02:45:54.030142Z"
}
},
"outputs": [],
"source": [
"from datetime import timedelta\n",
"\n",
"def wl_time(t, wl, z_lower, z_upper):\n",
" \"\"\"\n",
" Returns the amount of time the water level is between two elevations.\n",
" \"\"\"\n",
" df_wl = pd.DataFrame.from_records([(t_val, R2_val) for t_val, R2_val in zip(t,R2)], columns=['datetime','wl'])\n",
" df_wl.set_index(pd.DatetimeIndex(df_wl['datetime']),inplace=True)\n",
" df_wl.drop(columns=['datetime'], inplace=True)\n",
" \n",
" # Assumes that each record is one hour... probably need to check this\n",
" hours = len(df_wl.query('{} < wl < {}'.format(z_lower, z_upper)))\n",
" return timedelta(hours=hours)\n",
"\n",
"def wave_power(t, wl, z_lower, z_upper, Hs0, Tp):\n",
" \"\"\"\n",
" Returns the cumulative wave power when the water level is between two elevations.\n",
" \"\"\"\n",
" df_wl = pd.DataFrame.from_records([(t_val, R2_val,Hs0_val,Tp_val) for t_val, R2_val,Hs0_val,Tp_val in zip(t,R2,Hs0,Tp)], columns=['datetime','wl', 'Hs0','Tp'])\n",
" df_wl.set_index(pd.DatetimeIndex(df_wl['datetime']),inplace=True)\n",
" df_wl.drop(columns=['datetime'], inplace=True)\n",
" \n",
" # Assumes that each record is one hour... probably need to check this\n",
" rho = 1025 # kg/m3\n",
" g = 9.8 # m/s2\n",
" df_wl_times = df_wl.query('{} < wl < {}'.format(z_lower, z_upper))\n",
" power = rho * g ** 2 / 64 / np.pi * df_wl_times.Hs0 ** 2 * df_wl_times.Tp\n",
" return power.sum()\n",
"\n",
"df_twl = twls['forecasted']['mean_slope_sto06']\n",
"df_twl_site = df_twl.query(\"site_id == '{}'\".format(site_id))\n",
"\n",
"R2 = df_twl_site.R2.tolist()\n",
"t = df_twl_site.index.get_level_values('datetime')\n",
"z_lower = 0.5\n",
"z_upper = d_low_z\n",
"\n",
"exposed_time = wl_time(t, R2, z_lower,z_upper)\n",
"\n",
"Hs0 = df_twl.Hs0.tolist()\n",
"Tp = df_twl.Tp.tolist()\n",
"wave_p = wave_power(t, R2, z_lower,z_upper,Hs0, Tp)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T02:45:54.231129Z",
"start_time": "2018-12-05T02:45:54.225660Z"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T03:37:45.472885Z",
"start_time": "2018-12-05T03:37:45.462857Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"0.96"
]
},
"execution_count": 57,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def dune_toe_elevation_change(site_id, df_profile_features):\n",
" query = \"site_id == '{}'\".format(site_id)\n",
" profile_features = df_profile_features.query(query)\n",
" prestorm_dune_toe_z = profile_features.query(\"profile_type=='prestorm'\").dune_toe_z.tolist()[0]\n",
" poststorm_dune_toe_z = profile_features.query(\"profile_type=='poststorm'\").dune_toe_z.tolist()[0]\n",
" return prestorm_dune_toe_z - poststorm_dune_toe_z\n",
"\n",
"toe_ele_change = dune_toe_elevation_change(\"MANNING0081\", df_profile_features)\n",
"toe_ele_change"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T03:45:45.203827Z",
"start_time": "2018-12-05T03:45:13.608478Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 of 816\n",
"20 of 816\n",
"40 of 816\n",
"60 of 816\n",
"80 of 816\n",
"100 of 816\n"
]
}
],
"source": [
"vols = []\n",
"exposed_times = []\n",
"toe_ele_changes = []\n",
"wave_powers = []\n",
"berm_widths = []\n",
"swash_vol_changes = []\n",
"dune_face_vol_changes = []\n",
"site_ids_to_plot = []\n",
"\n",
"# Get site ids where we observed collision\n",
"observed_site_ids = impacts['observed'].query(\"storm_regime=='collision'\").index.get_level_values('site_id').unique()\n",
"\n",
"# # Get site ids where we forecast swash\n",
"# forecasted_site_ids = impacts['forecasted']['mean_slope_sto06'].query(\"storm_regime=='swash'\").index.get_level_values('site_id').unique()\n",
"\n",
"# site_ids = set(observed_site_ids).intersection(set(forecasted_site_ids))\n",
"\n",
"site_ids = observed_site_ids\n",
"\n",
"# Calculate for each site\n",
"\n",
"for n, site_id in enumerate(site_ids):\n",
" \n",
" if n%20 ==0:\n",
" print('{} of {}'.format(n, len(site_ids)))\n",
" \n",
" try:\n",
" query = \"site_id == '{}' and profile_type == '{}'\".format(site_id, 'prestorm')\n",
" prestorm_profile = df_profiles.query(query)\n",
" profile_features = df_profile_features.query(query)\n",
"\n",
" vol = collision_protection_vol(x = prestorm_profile.index.get_level_values('x'),\n",
" z = prestorm_profile.z,\n",
" d_low_x = profile_features.dune_toe_x.tolist()[0],\n",
" d_low_z = profile_features.dune_toe_z.tolist()[0],\n",
" lower_z = profile_features.dune_toe_z.tolist()[0] - 2, # from mhw\n",
" angle = 60, # degrees from the horizontal\n",
" )\n",
" \n",
" df_twl = twls['forecasted']['mean_slope_sto06']\n",
" df_twl_site = df_twl.query(\"site_id == '{}'\".format(site_id))\n",
" \n",
" berm_width = get_berm_width(z = prestorm_profile.z,\n",
" d_low_x = profile_features.dune_toe_x.tolist()[0]) \n",
" \n",
" exposed_time = wl_time(t = df_twl_site.index.get_level_values('datetime'),\n",
" wl = df_twl_site.R2.tolist(),\n",
" z_lower = profile_features.dune_toe_z.tolist()[0] -2,\n",
" z_upper = profile_features.dune_toe_z.tolist()[0],\n",
" )\n",
" swash_vol_change = impacts['observed'].query(\"site_id == '{}'\".format(site_id)).swash_vol_change.tolist()[0]\n",
" dune_face_vol_change = impacts['observed'].query(\"site_id == '{}'\".format(site_id)).dune_face_vol_change.tolist()[0]\n",
" \n",
" power = wave_power(t = df_twl_site.index.get_level_values('datetime'),\n",
" wl = df_twl_site.R2.tolist(),\n",
" z_lower = profile_features.dune_toe_z.tolist()[0] -2,\n",
" z_upper = profile_features.dune_toe_z.tolist()[0],\n",
" Hs0=df_twl_site.Hs0.tolist(),\n",
" Tp=df_twl_site.Tp.tolist())\n",
" \n",
" toe_ele_change = dune_toe_elevation_change(site_id, df_profile_features)\n",
" except:\n",
" continue\n",
" \n",
"# print(site_id, toe_ele_change)\n",
" vols.append(vol)\n",
" exposed_times.append(exposed_time)\n",
" toe_ele_changes.append(toe_ele_change)\n",
" wave_powers.append(power)\n",
" berm_widths.append(berm_width)\n",
" swash_vol_changes.append(swash_vol_change)\n",
" dune_face_vol_changes.append(dune_face_vol_change)\n",
" site_ids_to_plot.append(site_id)\n",
" \n",
" if n>100:\n",
" break\n",
"\n",
" \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-03T03:12:11.598150Z",
"start_time": "2018-12-03T03:12:11.590128Z"
}
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T05:03:39.147413Z",
"start_time": "2018-12-05T05:03:39.070207Z"
}
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "225855bac0d0464d9be74917812c19ac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"FigureWidget({\n",
" 'data': [{'marker': {'size': 4},\n",
" 'mode': 'markers',\n",
" 'text': [-0…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"trace1 = go.Scatter(\n",
" x=berm_widths,\n",
" y=dune_face_vol_changes,\n",
" text = ['{}<br>{}'.format(ele, site_id) for ele,site_id in zip(toe_ele_changes,site_ids_to_plot)],\n",
" mode='markers',\n",
" marker=dict(\n",
" size=4,\n",
"# color = [-1 if x<0 else 1 for x in toe_ele_changes],\n",
"# color = toe_ele_changes,\n",
"# color = dune_face_vol_changes,\n",
"# color = [x.total_seconds() / 60 / 60 for x in exposed_times],\n",
"# colorscale='Viridis',\n",
"# showscale=True\n",
" ))\n",
"\n",
"layout = go.Layout(\n",
" title='Dune Collision Protection',\n",
"# height=300,\n",
"# legend=dict(font={'size': 10}),\n",
"# margin=dict(t=50, b=50, l=50, r=20),\n",
" xaxis=dict(\n",
" title='Berm width',\n",
" autorange=True,\n",
" showgrid=True,\n",
" zeroline=True,\n",
" showline=True,\n",
" ),\n",
" yaxis=dict(\n",
" title='Dune face vol change',\n",
" autorange=True,\n",
" showgrid=True,\n",
" zeroline=True,\n",
" showline=True,\n",
" ))\n",
"\n",
"g_plot = go.FigureWidget(data=[trace1], layout=layout)\n",
"g_plot"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"ExecuteTime": {
"end_time": "2018-12-05T03:15:46.517975Z",
"start_time": "2018-12-05T03:15:46.512936Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"[64.5799,\n",
" 21.0163,\n",
" 38.106,\n",
" 28.101,\n",
" 58.7247,\n",
" 33.5534,\n",
" 71.1675,\n",
" 52.6043,\n",
" 50.5765,\n",
" 39.9074,\n",
" 67.8385,\n",
" 43.9043,\n",
" 39.8181,\n",
" 37.7153,\n",
" 20.4454,\n",
" 39.7757,\n",
" 42.1843,\n",
" 33.6152,\n",
" 42.9587,\n",
" 39.9773,\n",
" 35.7835,\n",
" 31.2884,\n",
" -0.4618,\n",
" 31.0094,\n",
" 33.3479,\n",
" 47.8394,\n",
" 32.3566,\n",
" 36.5205,\n",
" 45.7109,\n",
" 16.0687,\n",
" 35.4375,\n",
" 43.327,\n",
" 53.5016,\n",
" 31.0357,\n",
" 47.6528,\n",
" 25.5658,\n",
" 41.0514,\n",
" 28.1645,\n",
" 44.5443,\n",
" 42.925,\n",
" 33.9535,\n",
" 36.2626,\n",
" 35.2536]"
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# impacts['observed']\n",
"swash_vol_changes"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": true
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,407 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import numpy.ma as ma\n",
"\n",
"import numpy\n",
"from pyearth import Earth\n",
"from matplotlib import pyplot\n",
"\n",
"np.random.seed(2017)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Try using pyearth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [
5,
20,
31,
40
]
},
"outputs": [],
"source": [
"from scipy.signal import savgol_filter\n",
"import re\n",
"from scipy.stats import linregress\n",
"import warnings\n",
"warnings.simplefilter(action='ignore', category=FutureWarning)\n",
"\n",
"def get_breakpoints(model, min_distance=20):\n",
" # Get breakpoints\n",
" breakpoints = []\n",
" for line in model.summary().split('\\n'):\n",
" # Get unpruned lines\n",
" if 'No' in line and 'None' not in line:\n",
" # Get break points\n",
" m = re.search(\"h\\(x0-(\\d*\\.?\\d+)\\)\", line)\n",
" if m:\n",
" breakpoints.append(float(m.groups()[0]))\n",
" m = re.search(\"h\\((\\d*\\.?\\d+)-x0\\)\", line)\n",
" if m:\n",
" breakpoints.append(float(m.groups()[0]))\n",
" return sorted(list(set(breakpoints)))\n",
" \n",
"def get_segments(breakpoints, x_min, x_max):\n",
" segments = []\n",
" breakpoints = [x_min] + breakpoints + [x_max]\n",
"\n",
" for x1, x2 in zip(breakpoints, breakpoints[1:]):\n",
" segments.append({\n",
" 'x_start': x1,\n",
" 'x_end': x2\n",
" })\n",
" return segments \n",
"\n",
"def get_segment_slopes(segments, x, z):\n",
" for segment in segments:\n",
" mask = ma.masked_where((segment['x_start'] < x) & (x < segment['x_end']),x ).mask\n",
" segment['z_mean'] = np.mean(z[mask])\n",
" segment['z_start'] = np.mean(z[mask][0])\n",
" segment['z_end'] = np.mean(z[mask][-1])\n",
" segment['slope'] = -linregress(x[mask], z[mask]).slope\n",
" return segments\n",
" \n",
"def classify_segments(segments, x,z):\n",
" \n",
" # Most seaward slope must be foreshore\n",
" segments[-1]['type'] = 'foreshore'\n",
" \n",
" # Most landward slope must be land\n",
" segments[0]['type'] = 'land'\n",
" \n",
" # Segments with really high slopes must be structures\n",
" for seg in segments:\n",
" if seg['slope'] > 2.0:\n",
" seg['type'] = 'structure'\n",
" \n",
" # Segments with large change of slope and \n",
" # Segment with max slope should be dune face\n",
"# dune_face_idx = [n for n, seg in enumerate(segments) if seg['slope']==max(x['slope'] for x in segments)][0]\n",
"# segments[dune_face_idx]['type'] = 'dune_face'\n",
" \n",
" # Pick out berms \n",
" for seg in segments:\n",
" if (-0.03 < seg['slope'] < 0.03 # berms should be relatively flat\n",
" and 0 < seg['z_mean'] < 4 # berms should be located between 0-4 m AHD\n",
" ): # berms should be seaward of dune face\n",
" seg['type'] = 'berm'\n",
" \n",
"# slope = None\n",
"# for seg in reversed(segments):\n",
"# if slope is None:\n",
"# continue\n",
"# elif slope - 0.03 < seg['slope'] < slope + 0.03:\n",
"# seg['type'] = 'foreshore'\n",
"# else:\n",
"# break\n",
" \n",
" return segments\n",
"\n",
"def get_piecewise_linear_model(x,z):\n",
" #Fit an Earth model\n",
" model = Earth(penalty=3,thresh=0.0005)\n",
" model.fit(x,z)\n",
" return model\n",
"\n",
"def plot_profile_classification(site_id, profile_type):\n",
" df_profile = df_profiles.query(\"site_id == '{}' and profile_type == '{}'\".format(site_id, profile_type))\n",
" x = np.array(df_profile.index.get_level_values('x').tolist())\n",
" z = np.array(df_profile.z.tolist()) \n",
" \n",
" nan_mask = ma.masked_invalid(z).mask\n",
" x = x[~nan_mask]\n",
" z_unfiltered = z[~nan_mask]\n",
" z = savgol_filter(z_unfiltered, 51, 3)\n",
" \n",
" model = get_piecewise_linear_model(x,z)\n",
" breakpoints = get_breakpoints(model)\n",
" segments = get_segments(breakpoints, x_min=x.min(), x_max=x.max())\n",
" segments = get_segment_slopes(segments, x=x, z=z)\n",
"# segments = merge_similar_segments(segments)\n",
" segments = classify_segments(segments, x=x, z=z)\n",
" \n",
" pyplot.figure()\n",
" pyplot.plot(x,z_unfiltered, color='0.5',marker='.', alpha=.2, ms=10,linestyle=\"None\")\n",
"\n",
" # Plot different segments\n",
" foreshore_segments = [x for x in segments if x.get('type') == 'foreshore']\n",
" for seg in foreshore_segments:\n",
" pyplot.plot([seg['x_start'], seg['x_end']],\n",
" [seg['z_start'], seg['z_end']],\n",
" linewidth=4, \n",
" color='b')\n",
"\n",
" land_segments = [x for x in segments if x.get('type') == 'land']\n",
" for seg in land_segments:\n",
" pyplot.plot([seg['x_start'], seg['x_end']],\n",
" [seg['z_start'], seg['z_end']],\n",
" linewidth=4, \n",
" color='g')\n",
"\n",
" berm_segments = [x for x in segments if x.get('type') == 'berm']\n",
" for seg in berm_segments:\n",
" pyplot.plot([seg['x_start'], seg['x_end']],\n",
" [seg['z_start'], seg['z_end']],\n",
" linewidth=4, \n",
" color='y')\n",
"\n",
" dune_face_segments = [x for x in segments if x.get('type') == 'dune_face']\n",
" for seg in dune_face_segments:\n",
" pyplot.plot([seg['x_start'], seg['x_end']],\n",
" [seg['z_start'], seg['z_end']],\n",
" linewidth=4, \n",
" color='r')\n",
" \n",
" structure_segments = [x for x in segments if x.get('type') == 'structure']\n",
" for seg in structure_segments:\n",
" pyplot.plot([seg['x_start'], seg['x_end']],\n",
" [seg['z_start'], seg['z_end']],\n",
" linewidth=4, \n",
" color='m')\n",
" \n",
" unclassified_segments = [x for x in segments if x.get('type') is None]\n",
" for seg in unclassified_segments:\n",
" pyplot.plot([seg['x_start'], seg['x_end']],\n",
" [seg['z_start'], seg['z_end']],\n",
" linewidth=4, \n",
" color='0.4')\n",
"\n",
" pyplot.xlabel('x (m)')\n",
" pyplot.ylabel('z (m AHD)')\n",
" pyplot.title('{} profile at {}'.format(profile_type, site_id))\n",
" pyplot.show()\n",
"\n",
" import pprint\n",
" pp = pprint.PrettyPrinter(indent=4)\n",
" pp.pprint(segments)\n",
"\n",
"plot_profile_classification('NARRA0018', 'prestorm')\n",
"plot_profile_classification('NARRA0019', 'prestorm')\n",
"plot_profile_classification('CRESn0017', 'poststorm')"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true
},
"source": [
"## Try lmfit"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [
0
],
"hidden": true
},
"outputs": [],
"source": [
"from lmfit import Model, Parameters\n",
"\n",
"def get_data():\n",
" site_id='NARRA0018'\n",
" profile_type='prestorm'\n",
" df_profile = df_profiles.query(\"site_id == '{}' and profile_type == '{}'\".format(site_id, profile_type))\n",
" x = np.array(df_profile.index.get_level_values('x').tolist())\n",
" z = np.array(df_profile.z.tolist()) \n",
"\n",
" nan_mask = ma.masked_invalid(z).mask\n",
" x = x[~nan_mask]\n",
" z = z[~nan_mask]\n",
" return x,z\n",
"\n",
"# def piecewise_linear(x, x0, x1, b, k1, k2, k3):\n",
"# condlist = [x < x0, (x >= x0) & (x < x1), x >= x1]\n",
"# funclist = [lambda x: k1*x + b, lambda x: k1*x + b + k2*(x-x0), lambda x: k1*x + b + k2*(x-x0) + k3*(x - x1)]\n",
"# return np.piecewise(x, condlist, funclist)\n",
"\n",
"# x,z = get_data()\n",
"\n",
"# fmodel = Model(piecewise_linear)\n",
"# params = Parameters()\n",
"# params.add('x0', value=0, vary=True, min=min(x), max=max(x))\n",
"# params.add('x1', value=0, vary=True, min=min(x), max=max(x))\n",
"# params.add('b', value=0, vary=True)\n",
"# params.add('k1', value=0, vary=True, min=-0.01, max=0.01)\n",
"# params.add('k2', value=0, vary=True, min=-0.1, max=-0.5)\n",
"# params.add('k3', value=0, vary=True, min=0.1, max=0.5)\n",
"\n",
"def piecewise_linear(x, x0, x1, x2, b, k1, k2, k3,k4):\n",
" condlist = [x < x0, (x >= x0) & (x < x1), (x >= x1) & (x < x2), x >= x2]\n",
" funclist = [lambda x: k1*x + b, lambda x: k1*x + b + k2*(x-x0), lambda x: k1*x + b + k2*(x-x0) + k3*(x - x1), lambda x: k1*x + b + k2*(x-x0) + k3*(x - x1) +k4*(x-x2)]\n",
" return np.piecewise(x, condlist, funclist)\n",
"\n",
"x,z = get_data()\n",
"\n",
"fmodel = Model(piecewise_linear)\n",
"params = Parameters()\n",
"params.add('x0', value=0, vary=True, min=min(x), max=max(x))\n",
"params.add('x1', value=0, vary=True, min=min(x), max=max(x))\n",
"params.add('x2', value=0, vary=True, min=min(x), max=max(x))\n",
"params.add('b', value=0, vary=True)\n",
"params.add('k1', value=0, vary=True, min=-0.5, max=0.5)\n",
"params.add('k2', value=0, vary=True, min=-0.5, max=0.5)\n",
"params.add('k3', value=0, vary=True, min=-0.5, max=0.5)\n",
"params.add('k4', value=0, vary=True, min=-0.5, max=0.5)\n",
"\n",
"\n",
"result = fmodel.fit(z, params, x=x,method='ampgo')\n",
"\n",
"\n",
"pyplot.figure()\n",
"pyplot.plot(x,z, color='0.5',marker='.', alpha=.2, ms=10,linestyle=\"None\")\n",
"pyplot.plot(x,result.best_fit, color='r')\n",
"pyplot.show()\n",
"print(result.fit_report())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Try spline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [
2
]
},
"outputs": [],
"source": [
"from scipy.signal import savgol_filter\n",
"\n",
"def get_data():\n",
" site_id='NARRA0018'\n",
" profile_type='prestorm'\n",
" df_profile = df_profiles.query(\"site_id == '{}' and profile_type == '{}'\".format(site_id, profile_type))\n",
" x = np.array(df_profile.index.get_level_values('x').tolist())\n",
" z = np.array(df_profile.z.tolist()) \n",
"\n",
" nan_mask = ma.masked_invalid(z).mask\n",
" x = x[~nan_mask]\n",
" z = z[~nan_mask]\n",
" return x,z\n",
"\n",
"x,z = get_data()\n",
"\n",
"z_filtered = savgol_filter(z, 31, 3)\n",
"\n",
"\n",
"pyplot.figure()\n",
"pyplot.plot(x,z, color='0.5',marker='.', alpha=.2, ms=10,linestyle=\"None\")\n",
"pyplot.plot(x,z_filtered, color='r')\n",
"pyplot.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,242 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Profile picker"
]
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true
},
"source": [
"## Setup notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true
},
"outputs": [],
"source": [
"# Enable autoreloading of our modules. \n",
"# Most of the code will be located in the /src/ folder, \n",
"# and then called from the notebook.\n",
"%matplotlib inline\n",
"%reload_ext autoreload\n",
"%autoreload"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true
},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import decimal\n",
"import plotly\n",
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"import plotly.tools as tls\n",
"import plotly.figure_factory as ff\n",
"from plotly import tools\n",
"import plotly.io as pio\n",
"from scipy import stats\n",
"import math\n",
"import matplotlib\n",
"from matplotlib import cm\n",
"import colorlover as cl\n",
"import numpy.ma as ma\n",
"\n",
"from ipywidgets import widgets, Output\n",
"from IPython.display import display, clear_output, Image, HTML\n",
"\n",
"from sklearn.metrics import confusion_matrix\n",
"\n",
"import numpy as np\n",
"from matplotlib import pyplot as plt\n",
"\n",
"from sklearn import linear_model, datasets\n",
"\n",
"from scipy.interpolate import UnivariateSpline\n",
"from scipy.interpolate import interp1d\n",
"from scipy.interpolate import splrep, splev\n",
"from scipy.integrate import simps\n",
"from scipy.stats import linregress\n",
"from scipy.signal import find_peaks\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true
},
"outputs": [],
"source": [
"# Matplot lib default settings\n",
"plt.rcParams[\"figure.figsize\"] = (10,6)\n",
"plt.rcParams['axes.grid']=True\n",
"plt.rcParams['grid.alpha'] = 0.5\n",
"plt.rcParams['grid.color'] = \"grey\"\n",
"plt.rcParams['grid.linestyle'] = \"--\"\n",
"plt.rcParams['axes.grid']=True\n",
"\n",
"# https://stackoverflow.com/a/20709149\n",
"matplotlib.rcParams['text.usetex'] = True\n",
"\n",
"matplotlib.rcParams['text.latex.preamble'] = [\n",
" r'\\usepackage{siunitx}', # i need upright \\micro symbols, but you need...\n",
" r'\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts\n",
" r'\\usepackage{helvet}', # set the normal font here\n",
" r'\\usepackage{amsmath}',\n",
" r'\\usepackage{sansmath}', # load up the sansmath so that math -> helvet\n",
" r'\\sansmath', # <- tricky! -- gotta actually tell tex to use!\n",
"] "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import data\n",
"Let's first import data from our pre-processed interim data folder."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
"df_profile_features_crest_toes = df_from_csv('profile_features_crest_toes.csv', index_col=[0,1])\n",
"\n",
"print('Done!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Manually pick features"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib notebook\n",
"\n",
"sites = df_profiles.index.get_level_values('site_id').unique()\n",
"\n",
"\n",
"fig =plt.figure(figsize=(10, 3))\n",
"\n",
"df_prestorm = df_profiles.xs((sites[0],'prestorm'),level=('site_id','profile_type'))\n",
"df_poststorm = df_profiles.xs((sites[0],'poststorm'),level=('site_id','profile_type'))\n",
"line_prestorm, = plt.plot(df_prestorm.index, df_prestorm.z, label='prestorm')\n",
"line_poststorm, = plt.plot(df_prestorm.index, df_prestorm.z, label='poststorm')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# df_profiles.xs((sites[0],'prestorm'),level=('site_id','profile_type'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,614 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check change in mean slope\n",
"- Check the effect of changes in prestorm and poststorm mean slope.\n",
"- If there is a large berm, the prestorm mean slope (between dune toe and MHW) could be too small, and underpredict wave runup and TWL.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Enable autoreloading of our modules. \n",
"# Most of the code will be located in the /src/ folder, \n",
"# and then called from the notebook.\n",
"%matplotlib inline\n",
"%reload_ext autoreload\n",
"%autoreload"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"\n",
"import plotly\n",
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"import plotly.tools as tools\n",
"import plotly.figure_factory as ff\n",
"import plotly.io as pio\n",
"\n",
"import itertools\n",
"\n",
"import matplotlib\n",
"from matplotlib import cm\n",
"import colorlover as cl\n",
"\n",
"from ipywidgets import widgets, Output\n",
"from IPython.display import display, clear_output, Image, HTML\n",
"import matplotlib.pyplot as plt\n",
"from sklearn.metrics import confusion_matrix"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Matplot lib default settings\n",
"plt.rcParams[\"figure.figsize\"] = (10,6)\n",
"plt.rcParams['axes.grid']=True\n",
"plt.rcParams['grid.alpha'] = 0.5\n",
"plt.rcParams['grid.color'] = \"grey\"\n",
"plt.rcParams['grid.linestyle'] = \"--\"\n",
"plt.rcParams['axes.grid']=True\n",
"\n",
"# https://stackoverflow.com/a/20709149\n",
"matplotlib.rcParams['text.usetex'] = True\n",
"\n",
"matplotlib.rcParams['text.latex.preamble'] = [\n",
" r'\\usepackage{siunitx}', # i need upright \\micro symbols, but you need...\n",
" r'\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts\n",
" r'\\usepackage{helvet}', # set the normal font here\n",
" r'\\usepackage{amsmath}',\n",
" r'\\usepackage{sansmath}', # load up the sansmath so that math -> helvet\n",
" r'\\sansmath', # <- tricky! -- gotta actually tell tex to use!\n",
"] "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import data\n",
"Import our data into pandas Dataframes for the analysis. Data files are `.csv` files which are stored in the `./data/interim/` folder."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_waves = df_from_csv('waves.csv', index_col=[0, 1])\n",
"df_tides = df_from_csv('tides.csv', index_col=[0, 1])\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
"df_sites = df_from_csv('sites.csv', index_col=[0])\n",
"df_profile_features_crest_toes = df_from_csv('profile_features_crest_toes.csv', index_col=[0,1])\n",
"\n",
"# Note that the forecasted data sets should be in the same order for impacts and twls\n",
"impacts = {\n",
" 'forecasted': {\n",
" 'foreshore_slope_sto06': df_from_csv('impacts_forecasted_foreshore_slope_sto06.csv', index_col=[0]),\n",
" 'mean_slope_sto06': df_from_csv('impacts_forecasted_mean_slope_sto06.csv', index_col=[0]),\n",
" },\n",
" 'observed': df_from_csv('impacts_observed.csv', index_col=[0])\n",
" }\n",
"\n",
"\n",
"twls = {\n",
" 'forecasted': {\n",
" 'foreshore_slope_sto06': df_from_csv('twl_foreshore_slope_sto06.csv', index_col=[0, 1]),\n",
" 'mean_slope_sto06':df_from_csv('twl_mean_slope_sto06.csv', index_col=[0, 1]),\n",
" }\n",
"}\n",
"print('Done!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plot prestorm vs poststorm mean slopes\n",
"Prestorm slopes have already been calculated as part of the TWL forecasting, however we'll need to extract the poststorm mean slopes from our profiles at each site."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Prestorm slopes are easy as we have already calculated this as part of the \n",
"df_slopes_prestorm = twls['forecasted']['mean_slope_sto06'].groupby('site_id').head(1).reset_index().set_index(['site_id']).beta.to_frame()\n",
"\n",
"# Get x and z at mhw (z=0.7m) for each site\n",
"z_mhw = 0.7\n",
"mhw_poststorm = []\n",
"for site, df in df_profiles.xs('poststorm', level='profile_type').groupby('site_id'):\n",
" df = df.dropna(subset=['z'])\n",
" df = df.iloc[(df['z']-z_mhw).abs().argsort().head(1)].reset_index()\n",
" df = df.iloc[0]\n",
" mhw_poststorm.append({\n",
" 'site_id': df.site_id,\n",
" 'x_mhw': df.x,\n",
" 'z_mhw': df.z\n",
" })\n",
"# break\n",
"df_mhw_poststorm = pd.DataFrame(mhw_poststorm)\n",
"df_mhw_poststorm = df_mhw_poststorm.set_index('site_id')\n",
"\n",
"# Get x and z at poststorm dune toe for each site\n",
"df_dune_toe_poststorm = df_profile_features_crest_toes.xs('poststorm', level='profile_type')[['dune_toe_x','dune_toe_z']]\n",
"\n",
"# If there is no poststorm dune toe defined, use the dune crest\n",
"df_dune_crest_poststorm = df_profile_features_crest_toes.xs('poststorm', level='profile_type')[['dune_crest_x','dune_crest_z']]\n",
"df_dune_toe_poststorm.dune_toe_x = df_dune_toe_poststorm.dune_toe_x.fillna(df_dune_crest_poststorm.dune_crest_x)\n",
"df_dune_toe_poststorm.dune_toe_z = df_dune_toe_poststorm.dune_toe_z.fillna(df_dune_crest_poststorm.dune_crest_z)\n",
"\n",
"\n",
"# Join df for mhw and dune toe\n",
"df = df_mhw_poststorm.join(df_dune_toe_poststorm)\n",
"df['beta'] = -(df['dune_toe_z'] - df['z_mhw']) / (df['dune_toe_x'] -df['x_mhw'])\n",
"df_slopes_poststorm = df['beta'].to_frame()\n",
"\n",
"# Count how many nans\n",
"print('Number of nans: {}'.format(df_slopes_poststorm.beta.isna().sum()))\n",
"\n",
"# Display dataframe\n",
"print('df_slopes_poststorm:')\n",
"df_slopes_poststorm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's join our post storm slopes, prestorm slopes, observed and forecasted impacts into one data frame to make it easier to plot."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dfs = [df_slopes_poststorm.rename(columns={'beta':'poststorm_beta'}),\n",
" df_slopes_prestorm.rename(columns={'beta':'prestorm_beta'}),\n",
" impacts['observed']['storm_regime'].to_frame().rename(columns={'storm_regime': 'observed_regime'}),\n",
" impacts['forecasted']['mean_slope_sto06']['storm_regime'].to_frame().rename(columns={'storm_regime': 'forecasted_regime'})\n",
" ]\n",
"\n",
"df = pd.concat(dfs, axis='columns')\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also should add the change in beach width between prestorm and post storm profiles"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ele = 0.7\n",
"data = []\n",
"for site_id, df_site in df_profiles.groupby('site_id'):\n",
" \n",
" # Beach width should be measured from dune toe (or crest if doesn't exist) to MHW\n",
" \n",
" dune_toe_x = np.nanmax([\n",
" df_profile_features_crest_toes.loc[(site_id,'prestorm')].dune_crest_x,\n",
" df_profile_features_crest_toes.loc[(site_id,'prestorm')].dune_toe_x\n",
" ])\n",
" \n",
" \n",
" # TODO This probably should take the closest value to ele starting from the seaward end of the profile\n",
" temp = df_site.xs('prestorm',level='profile_type').dropna(subset=['z'])\n",
" prestorm_width = temp.iloc[(temp.z - ele).abs().argsort()[0]].name[1] - dune_toe_x\n",
" \n",
" temp = df_site.xs('poststorm',level='profile_type').dropna(subset=['z'])\n",
" poststorm_width = temp.iloc[(temp.z - ele).abs().argsort()[0]].name[1] - dune_toe_x\n",
" \n",
" width_change = prestorm_width - poststorm_width\n",
" data.append(\n",
" {\n",
" 'site_id': site_id,\n",
" 'width_change': width_change,\n",
" 'prestorm_width': prestorm_width,\n",
" 'poststorm_width': poststorm_width\n",
" })\n",
" \n",
" \n",
" \n",
" \n",
"df_width_change = pd.DataFrame(data)\n",
"df_width_change = df_width_change.set_index(['site_id'])\n",
"\n",
"# Join with the data\n",
"df = df.merge(df_width_change, left_on=['site_id'], right_on=['site_id'])\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true
},
"source": [
"## Plot our data in a confusion matrix\n",
"Superseded"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true
},
"outputs": [],
"source": [
"fig = tools.make_subplots(\n",
" rows=2,\n",
" cols=2,\n",
" specs=[[{}, {}], [{}, {}]],\n",
" subplot_titles=('Swash/Swash', 'Swash/Collision', \n",
" 'Collision/Swash', 'Collision/Collision'),\n",
" shared_xaxes=True, shared_yaxes=True,)\n",
"\n",
"\n",
"# Loop through combinations of observed/forecasted swash/collision\n",
"data = []\n",
"for forecasted_regime, observed_regime in itertools.product(['swash','collision'],repeat=2):\n",
" \n",
" # Get data for this combination \n",
" query = 'forecasted_regime==\"{}\" & observed_regime==\"{}\"'.format(forecasted_regime, observed_regime)\n",
" df_data = df.query(query)\n",
" print(query)\n",
" \n",
" \n",
" # Determine which subplot to plot results in\n",
" if forecasted_regime == 'swash' and observed_regime == 'swash':\n",
" x_col = 1\n",
" y_col = 1\n",
" elif forecasted_regime == 'collision' and observed_regime == 'collision':\n",
" x_col = 2\n",
" y_col = 2\n",
" elif forecasted_regime == 'swash' and observed_regime == 'collision':\n",
" x_col = 2\n",
" y_col = 1\n",
" elif forecasted_regime == 'collision' and observed_regime == 'swash':\n",
" x_col = 1\n",
" y_col = 2\n",
" else:\n",
" print('something went wrong')\n",
" continue\n",
"\n",
" fig.append_trace(\n",
" go.Scatter(\n",
" x=df_data.prestorm_beta,\n",
" y=df_data.poststorm_beta,\n",
" text = df_data.index.tolist(),\n",
" hoverinfo = 'text',\n",
" mode = 'markers',\n",
" line = dict(\n",
" color = ('rgba(22, 22, 22, 0.2)'),\n",
" width = 0.5,)),\n",
" x_col,\n",
" y_col)\n",
"\n",
"# layout = go.Layout(\n",
"# xaxis=dict(domain=[0, 0.45]),\n",
"# yaxis=dict(\n",
"# domain=[0, 0.45],\n",
"# type='log',\n",
"# ),\n",
"# xaxis2=dict(domain=[0.55, 1]),\n",
"# xaxis4=dict(domain=[0.55, 1], anchor='y4'),\n",
"# yaxis3=dict(\n",
"# domain=[0.55, 1],\n",
"# type='log',\n",
"# ),\n",
"# yaxis4=dict(\n",
"# domain=[0.55, 1],\n",
"# anchor='x4',\n",
"# type='log',\n",
"# ))\n",
"\n",
"fig['layout'].update(showlegend=False, title='Specs with Subplot Title',height=800,)\n",
"\n",
"for ax in ['yaxis','yaxis2']:\n",
"# fig['layout'][ax]['type']='log'\n",
" fig['layout'][ax]['range']= [0,0.2]\n",
"\n",
"for ax in ['xaxis', 'xaxis2']:\n",
" fig['layout'][ax]['range']= [0,0.2]\n",
"\n",
"go.FigureWidget(fig)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hidden": true
},
"source": [
"Looking at the above plot:\n",
"- In general, we can see that the prestorm mean slope is flatter than the poststorm mean slope. This can be explained by the presence of prestorm berms, which increase the prestorm mean slope. During the storm, these berms get eroded and decrease the slope.\n",
"- **Collision/Collision**: Where we observe and predict collision, we see steeper prestorm slopes. This is to be expected since larger slopes will generate more runup and higher TWLs.\n",
"- **Swash/Collision**: Where we predict collision but observe swash, we can see that the prestorm mean slopes >0.1 generate high TWLs. \n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot our data in a confusion matrix\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df[cc_mask].loc[df[cc_mask].poststorm_beta+0.05< df[cc_mask].prestorm_beta]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f, ([ax1, ax2], [ax3, ax4],) = plt.subplots(\n",
" 2,\n",
" 2,\n",
" sharey=True,\n",
" sharex=True,\n",
" figsize=(8, 7))\n",
"\n",
"\n",
"ss_mask = (df.observed_regime=='swash') & (df.forecasted_regime=='swash')\n",
"sc_mask = (df.observed_regime=='swash') & (df.forecasted_regime=='collision')\n",
"cs_mask = (df.observed_regime=='collision') & (df.forecasted_regime=='swash')\n",
"cc_mask = (df.observed_regime=='collision') & (df.forecasted_regime=='collision')\n",
"\n",
"# Define colormap for our observations\n",
"cm = plt.cm.get_cmap('plasma')\n",
"\n",
"params = {'edgecolors': '#999999',\n",
" 's': 12,\n",
" 'linewidth': 0.1, \n",
" 'cmap':cm,\n",
" 'vmin':0, \n",
" 'vmax':60\n",
" }\n",
"\n",
"sc=ax1.scatter(df[ss_mask].prestorm_beta, df[ss_mask].poststorm_beta, c=df[ss_mask].width_change,**params)\n",
"ax1.set_title('Swash/Swash')\n",
"ax1.set_ylabel('Observed swash')\n",
"\n",
"ax2.scatter(df[sc_mask].prestorm_beta, df[sc_mask].poststorm_beta, c=df[sc_mask].width_change,**params)\n",
"ax2.set_title('Swash/Collision')\n",
"\n",
"ax3.scatter(df[cs_mask].prestorm_beta, df[cs_mask].poststorm_beta, c=df[cs_mask].width_change,**params)\n",
"ax3.set_title('Collision/Swash')\n",
"ax3.set_ylabel('Observed collision')\n",
"ax3.set_xlabel('Predicted swash')\n",
"\n",
"ax4.scatter(df[cc_mask].prestorm_beta, df[cc_mask].poststorm_beta, c=df[cc_mask].width_change,**params)\n",
"ax4.set_title('Collision/Collision')\n",
"ax4.set_xlabel('Predicted collision')\n",
"\n",
"for ax in [ax1,ax2,ax3,ax4]:\n",
" ax.plot([0,0.2],[0,0.2], 'k--')\n",
" ax.set_xlim([0,0.2])\n",
" ax.set_ylim([0,0.2])\n",
"\n",
" \n",
"# Create a big ax so we can use common axis labels\n",
"# https://stackoverflow.com/a/36542971\n",
"f.add_subplot(111, frameon=False)\n",
"plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)\n",
"plt.grid(False)\n",
"plt.xlabel(\"Prestorm mean slope (-)\", labelpad=25)\n",
"plt.ylabel(\"Poststorm mean slope (-)\", labelpad=25)\n",
" \n",
"# Layout adjustment\n",
"plt.tight_layout()\n",
"plt.subplots_adjust(hspace=0.25, bottom=0.1,right=0.9)\n",
"\n",
"# Add colorbar\n",
"cbar_ax = f.add_axes([0.95, 0.15, 0.05, 0.7])\n",
"cb = f.colorbar(sc, cax=cbar_ax)\n",
"cb.set_label(r'$\\varDelta$ beach width at MHW (m)')\n",
"\n",
"# Save and show figure\n",
"plt.savefig('06-confusion-change-in-slope.png'.format(beach), dpi=600, bbox_inches='tight') \n",
"plt.show()\n",
"plt.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot for single beach"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"beach = 'NARRA'\n",
"\n",
"df_beach = df.loc[df.index.str.contains(beach)]\n",
"\n",
"# Get index\n",
"n = [x for x in range(len(df_beach))][::-1]\n",
"n_sites = [x for x in df_beach.index][::-1]\n",
"\n",
"f, (ax1,ax2,ax3,ax4) = plt.subplots(1,4, sharey=True,figsize=(10, 8))\n",
"\n",
"ax1.plot(df_beach.prestorm_beta,n,label='Prestorm slope',color='#4d9221')\n",
"ax1.plot(df_beach.poststorm_beta,n,label='Poststorm slope',color='#c51b7d')\n",
"ax1.set_title('Mean beach slope')\n",
"ax1.legend(loc='center', bbox_to_anchor=(0.5, -0.15))\n",
"\n",
"# Replace yticks with site_ids\n",
"yticks = ax1.get_yticks().tolist()\n",
"yticks = [n_sites[int(y)] if 0 <= y <= len(n_sites) else y for y in yticks ]\n",
"ax1.set_yticklabels(yticks)\n",
"ax1.set_xlabel(r'Slope (-)')\n",
"\n",
"ax2.plot(df_beach.prestorm_width,n,label='Prestorm width',color='#4d9221')\n",
"ax2.plot(df_beach.poststorm_width,n, label='Poststorm width',color='#c51b7d')\n",
"# ax2.set_xlim([200,300])\n",
"ax2.set_xlabel(r'Beach width (m)')\n",
"ax2.set_title('Beach width\\nat MHW')\n",
"ax2.legend(loc='center', bbox_to_anchor=(0.5, -0.15))\n",
"\n",
"ax3.plot(df_beach.width_change,n,color='#999999')\n",
"ax3.set_xlim([0,75])\n",
"ax3.set_title('Change in MHW\\nbeach width')\n",
"ax3.set_xlabel(r'$\\varDelta$ Beach width (m)')\n",
"\n",
"\n",
"ax4.plot(df_beach.poststorm_beta / df_beach.prestorm_beta,n,color='#999999')\n",
"ax4.set_title('Ratio between pre and\\npost storm mean slopes')\n",
"\n",
"plt.tight_layout()\n",
"f.subplots_adjust(top=0.88)\n",
"f.suptitle(beach)\n",
"\n",
"# Print to figure\n",
"plt.savefig('06-change-in-slope-{}.png'.format(beach), dpi=600, bbox_inches='tight') \n",
"plt.show()\n",
"plt.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_beach"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,767 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Narrabeen Slope Test\n",
"With full topo and bathy combined"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Enable autoreloading of our modules. \n",
"# Most of the code will be located in the /src/ folder, \n",
"# and then called from the notebook.\n",
"%matplotlib inline\n",
"%reload_ext autoreload\n",
"%autoreload"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import decimal\n",
"import plotly\n",
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"import plotly.tools as tls\n",
"import plotly.figure_factory as ff\n",
"from plotly import tools\n",
"import plotly.io as pio\n",
"from scipy import stats\n",
"import math\n",
"import matplotlib\n",
"from matplotlib import cm\n",
"import colorlover as cl\n",
"from tqdm import tqdm_notebook\n",
"from ipywidgets import widgets, Output\n",
"from IPython.display import display, clear_output, Image, HTML\n",
"from scipy import stats\n",
"from sklearn.metrics import confusion_matrix\n",
"import matplotlib.pyplot as plt\n",
"from scipy.interpolate import interp1d\n",
"from pandas.api.types import CategoricalDtype\n",
"from scipy.interpolate import UnivariateSpline\n",
"from shapely.geometry import Point, LineString"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Matplot lib default settings\n",
"plt.rcParams[\"figure.figsize\"] = (10,6)\n",
"plt.rcParams['axes.grid']=True\n",
"plt.rcParams['grid.alpha'] = 0.5\n",
"plt.rcParams['grid.color'] = \"grey\"\n",
"plt.rcParams['grid.linestyle'] = \"--\"\n",
"plt.rcParams['axes.grid']=True\n",
"\n",
"# https://stackoverflow.com/a/20709149\n",
"matplotlib.rcParams['text.usetex'] = True\n",
"\n",
"matplotlib.rcParams['text.latex.preamble'] = [\n",
" r'\\usepackage{siunitx}', # i need upright \\micro symbols, but you need...\n",
" r'\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts\n",
" r'\\usepackage{helvet}', # set the normal font here\n",
" r'\\usepackage{amsmath}',\n",
" r'\\usepackage{sansmath}', # load up the sansmath so that math -> helvet\n",
" r'\\sansmath', # <- tricky! -- gotta actually tell tex to use!\n",
"] "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import .csv data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_filename = '08-narr-topo-bathy-slope-test-full-profiles.csv'\n",
"\n",
"df_profiles = pd.read_csv(data_filename).set_index(['site_id','x'])\n",
"df_profiles = df_profiles[~df_profiles.index.duplicated(keep='first')]\n",
"print('df_profiles:')\n",
"df_profiles.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Manually cut off the prestorm topo \n",
"cuts = {'NARRA0004': {'prestorm_topo_max_x': 330,\n",
" 'poststorm_topo_max_x': 250},\n",
" 'NARRA0008': {'prestorm_topo_max_x': 290,\n",
" 'poststorm_topo_max_x': 250},\n",
" 'NARRA0012': {'prestorm_topo_max_x': 300,\n",
" 'poststorm_topo_max_x': 250},\n",
" 'NARRA0016': {'prestorm_topo_max_x': 300,\n",
" 'poststorm_topo_max_x': 225},\n",
" 'NARRA0021': {'prestorm_topo_max_x': 280,\n",
" 'poststorm_topo_max_x': 225},\n",
" 'NARRA0023': {'prestorm_topo_max_x': 275,\n",
" 'poststorm_topo_max_x': 215},\n",
" 'NARRA0027': {'prestorm_topo_max_x': 260,\n",
" 'poststorm_topo_max_x': 225},\n",
" 'NARRA0031': {'prestorm_topo_max_x': 260,\n",
" 'poststorm_topo_max_x': 225},\n",
" }\n",
"\n",
"for site_id in cuts:\n",
" mask1 = df_profiles.index.get_level_values('site_id') == site_id\n",
" mask2 = df_profiles.index.get_level_values('x') > cuts[site_id]['prestorm_topo_max_x']\n",
" df_profiles.loc[(mask1)&(mask2), 'pre_topo'] = np.nan\n",
" \n",
" mask3 = df_profiles.index.get_level_values('x') > cuts[site_id]['poststorm_topo_max_x']\n",
" df_profiles.loc[(mask1)&(mask3), 'post_topo'] = np.nan\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# for site_id,df_site in df_profiles.groupby('site_id'):\n",
"# f, (ax1) = plt.subplots(1,1, figsize=(6, 3))\n",
"# ax1.set_title(site_id)\n",
" \n",
"# ax1.plot(df_site.index.get_level_values('x'),\n",
"# df_site.pre_topo,\n",
"# label='Pre Topo',\n",
"# color='#2c7bb6')\n",
"# ax1.plot(df_site.index.get_level_values('x'),\n",
"# df_site.pre_bathy,\n",
"# label='Pre Bathy',\n",
"# color='#abd9e9')\n",
"\n",
"# ax1.plot(df_site.index.get_level_values('x'),\n",
"# df_site.post_topo,\n",
"# label='Post Topo',\n",
"# color='#d7191c')\n",
"# ax1.plot(df_site.index.get_level_values('x'),\n",
"# df_site.post_bathy,\n",
"# label='Post Bathy',\n",
"# color='#fdae61')\n",
"\n",
"# ax1.legend()\n",
"# plt.show()\n",
"# plt.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_profiles = df_profiles.dropna(\n",
" subset=['post_topo', 'post_bathy', 'pre_bathy', 'pre_topo'], how='all')\n",
"\n",
"df_profiles = df_profiles.reset_index()\n",
"df_profiles = df_profiles.melt(id_vars=['site_id','x','lat','lon'],\n",
" value_vars=['post_topo','post_bathy','pre_bathy','pre_topo']).rename(columns={'variable':'profile_type', 'value':'z'})\n",
"\n",
"df_profiles = df_profiles.dropna(subset=['z'])\n",
"\n",
"df_profiles.loc[df_profiles.profile_type=='post_topo','profile_type']='poststorm'\n",
"df_profiles.loc[df_profiles.profile_type=='post_bathy','profile_type']='poststorm'\n",
"df_profiles.loc[df_profiles.profile_type=='pre_topo','profile_type']='prestorm'\n",
"df_profiles.loc[df_profiles.profile_type=='pre_bathy','profile_type']='prestorm'\n",
"\n",
"df_profiles = df_profiles.set_index(['site_id', 'profile_type', 'x'])\n",
"df_profiles = df_profiles[~df_profiles.index.duplicated(keep='first')]\n",
"\n",
"df_profiles = df_profiles.sort_index()\n",
"\n",
"print('df_profiles:')\n",
"df_profiles.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Just plots each site's x and z values\n",
"for site_id,df_site in df_profiles.groupby('site_id'):\n",
" f, (ax1) = plt.subplots(1,1, figsize=(6, 3))\n",
" ax1.set_title(site_id)\n",
" \n",
" prestorm=df_site.index.get_level_values('profile_type') == 'prestorm'\n",
" ax1.plot(df_site[prestorm].index.get_level_values('x'),\n",
" df_site[prestorm].z,\n",
" label='Pre Topo',\n",
" color='#2c7bb6')\n",
"\n",
" \n",
" poststorm=df_site.index.get_level_values('profile_type') == 'poststorm'\n",
" ax1.plot(df_site[poststorm].index.get_level_values('x'),\n",
" df_site[poststorm].z,\n",
" label='Post Topo',\n",
" color='#d7191c')\n",
"\n",
"\n",
" ax1.legend()\n",
" plt.show()\n",
" plt.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get dune faces"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": []
},
"outputs": [],
"source": [
"# Manually define dune x coordinates and work out slope\n",
"\n",
"dune_data = [\n",
" {\n",
" 'site_id': 'NARRA0004',\n",
" 'dune_crest_x': 180,\n",
" 'dune_toe_x': 205\n",
" },\n",
" {\n",
" 'site_id': 'NARRA0008',\n",
" 'dune_crest_x': 180,\n",
" 'dune_toe_x': 205\n",
" },\n",
" {\n",
" 'site_id': 'NARRA0012',\n",
" 'dune_crest_x': 195,\n",
" 'dune_toe_x': 205\n",
" },\n",
" {\n",
" 'site_id': 'NARRA0016',\n",
" 'dune_crest_x': 190,\n",
" 'dune_toe_x': 200\n",
" },\n",
" {\n",
" 'site_id': 'NARRA0021',\n",
" 'dune_crest_x': 205,\n",
" 'dune_toe_x': 210\n",
" },\n",
" {\n",
" 'site_id': 'NARRA0023',\n",
" 'dune_crest_x': 205,\n",
" 'dune_toe_x': 215\n",
" },\n",
" {\n",
" 'site_id': 'NARRA0027',\n",
" 'dune_crest_x': 210,\n",
" 'dune_toe_x': 219\n",
" },\n",
" {\n",
" 'site_id': 'NARRA0031',\n",
" 'dune_crest_x': 210,\n",
" 'dune_toe_x': 218\n",
" },\n",
"]\n",
"\n",
"for site_dune in dune_data:\n",
" df_site = df_profiles.xs(site_dune['site_id'], level='site_id').xs('prestorm',level='profile_type')\n",
" \n",
" dune_crest_x = site_dune['dune_crest_x']\n",
" dune_toe_x = site_dune['dune_toe_x']\n",
" dune_crest_z = df_site.iloc[df_site.index.get_loc(site_dune['dune_crest_x'],method='nearest')].z\n",
" dune_toe_z = df_site.iloc[df_site.index.get_loc(site_dune['dune_toe_x'],method='nearest')].z\n",
"\n",
" dune_slope = (dune_crest_z - dune_toe_z)/(dune_crest_x - dune_toe_x)\n",
" \n",
" site_dune['dune_crest_z'] = dune_crest_z\n",
" site_dune['dune_toe_z'] = dune_toe_z\n",
" site_dune['dune_slope'] = dune_slope\n",
" \n",
" \n",
"# Join back into main data\n",
"df_dunes = pd.DataFrame(dune_data).set_index('site_id')\n",
"print('df_dunes:')\n",
"df_dunes.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# # Just plots each site's x and z values\n",
"# for site_id,df_site in df_profiles.xs('prestorm',level='profile_type').groupby('site_id'):\n",
"# f, (ax1) = plt.subplots(1,1, figsize=(6, 3))\n",
"# ax1.set_title(site_id)\n",
"# ax1.plot(df_site.index.get_level_values('x'),\n",
"# df_site.z)\n",
"# ax1.plot([df_dunes.loc[site_id].dune_crest_x, df_dunes.loc[site_id].dune_toe_x],\n",
"# [df_dunes.loc[site_id].dune_crest_z, df_dunes.loc[site_id].dune_toe_z],\n",
"# 'r.-')\n",
"# ax1.set_xlim([150,250])\n",
"# ax1.set_ylim([0,15])\n",
"# plt.show()\n",
"# plt.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get prestorm slope"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"z_ele = 0.7\n",
"debug=False\n",
"\n",
"def find_nearest_idx(array, value):\n",
" array = np.asarray(array)\n",
" idx = (np.abs(array - value)).argmin()\n",
" return idx\n",
"\n",
"prestorm_slope_data =[]\n",
"for site_id, df_site in df_profiles.xs('prestorm',level='profile_type').groupby('site_id'):\n",
" \n",
" # Find index of our z_ele\n",
" idx = np.where(df_site.z.values>=z_ele)[0][-1]\n",
" \n",
" prestorm_end_x = df_site.iloc[idx].name[1]\n",
" prestorm_end_z = df_site.iloc[idx].z\n",
" \n",
" prestorm_start_x = df_dunes.loc[site_id].dune_toe_x\n",
" prestorm_start_z = df_dunes.loc[site_id].dune_toe_z\n",
" \n",
" prestorm_slope = (prestorm_end_z-prestorm_start_z)/(prestorm_end_x-prestorm_start_x)\n",
" \n",
" prestorm_slope_data.append({\n",
" 'site_id': site_id,\n",
" 'prestorm_end_x': prestorm_end_x,\n",
" 'prestorm_end_z': prestorm_end_z,\n",
" 'prestorm_start_x': prestorm_start_x,\n",
" 'prestorm_start_z': prestorm_start_z,\n",
" 'prestorm_slope': prestorm_slope\n",
" })\n",
" \n",
"df_prestorm_slope = pd.DataFrame(prestorm_slope_data).set_index(['site_id'])\n",
"print('df_prestorm_slope:')\n",
"df_prestorm_slope.head()\n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get shelf slope\n",
"At 10 m contour"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": []
},
"outputs": [],
"source": [
"# Elevation to take shelf slope at\n",
"z_ele = -9\n",
"debug=False\n",
"\n",
"def find_nearest_idx(array, value):\n",
" array = np.asarray(array)\n",
" idx = (np.abs(array - value)).argmin()\n",
" return idx\n",
"\n",
"def slope_at_point(x, z, z_ele,debug=False):\n",
" # Smooth profile a bit\n",
" # TODO the smoothing factor will change based on the number of data points\n",
" # Need to fix\n",
" s = UnivariateSpline(x, z, s=50)\n",
" xs = np.linspace(min(x),max(x),1000)\n",
" zs = s(xs)\n",
"\n",
" # Calculate derivates of spline\n",
" dzdx = np.diff(zs)/np.diff(xs)\n",
"\n",
" # Find index of z_ele\n",
" idx = find_nearest_idx(zs, z_ele)\n",
" slope = dzdx[idx]\n",
" shelf_x = xs[idx]\n",
"\n",
"\n",
" \n",
" # For checking how much smoothing is going on\n",
" if debug:\n",
" f, (ax1) = plt.subplots(1,1, figsize=(6, 3))\n",
" ax1.plot(x,z)\n",
" ax1.plot(xs,zs)\n",
" plt.show()\n",
" plt.close()\n",
" \n",
" return slope, shelf_x, z_ele\n",
" \n",
"shelf_data = []\n",
"for site_id, df_site in df_profiles.xs('prestorm',level='profile_type').groupby('site_id'):\n",
" shelf_slope, shelf_x, shelf_z = slope_at_point(df_site.index.get_level_values('x').values,\n",
" df_site.z, \n",
" z_ele, debug=debug)\n",
" shelf_data.append({\n",
" 'site_id': site_id,\n",
" 'shelf_slope': shelf_slope,\n",
" 'shelf_x': shelf_x,\n",
" 'shelf_z': shelf_z\n",
" })\n",
" \n",
"df_shelf = pd.DataFrame(shelf_data).set_index(['site_id'])\n",
"\n",
"df_shelf.loc['NARRA0004','shelf_slope'] = -0.02\n",
"\n",
"print('df_shelf:')\n",
"df_shelf.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Do geometry\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"df_site"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for site_id, df_site in df_profiles.groupby('site_id'):\n",
"\n",
" # Project the dune face outwards\n",
" dune_face_toe = Point(df_dunes.loc[site_id].dune_toe_x,\n",
" df_dunes.loc[site_id].dune_toe_z)\n",
" dune_face_sea = Point(\n",
" df_dunes.loc[site_id].dune_toe_x + 1000,\n",
" # df_dunes.loc[site_id].dune_toe_z +1000 * -1\n",
" df_dunes.loc[site_id].dune_toe_z +\n",
" 1000 * df_dunes.loc[site_id].dune_slope)\n",
" dune_line = LineString([dune_face_toe, dune_face_sea])\n",
"\n",
" # Project the shelf slope landwards\n",
" shelf_point = Point(df_shelf.loc[site_id].shelf_x,\n",
" df_shelf.loc[site_id].shelf_z)\n",
" shelf_land = Point(\n",
" df_shelf.loc[site_id].shelf_x - 1000, df_shelf.loc[site_id].shelf_z -\n",
" 1000 * df_shelf.loc[site_id].shelf_slope)\n",
" shelf_sea = Point(\n",
" df_shelf.loc[site_id].shelf_x + 1000, df_shelf.loc[site_id].shelf_z +\n",
" 1000 * df_shelf.loc[site_id].shelf_slope)\n",
" shelf_line = LineString([shelf_land, shelf_point, shelf_sea])\n",
"\n",
" # Find intersection between to lines\n",
" dune_shelf_int = dune_line.intersection(shelf_line)\n",
" dist_toe_to_int = dune_face_toe.distance(dune_shelf_int)\n",
"\n",
" # Plots\n",
" f, (ax1) = plt.subplots(1, 1, figsize=(12, 4))\n",
"\n",
" # Raw profile prestorm\n",
" ax1.plot(\n",
" df_site.xs('prestorm',\n",
" level='profile_type').index.get_level_values('x'),\n",
" df_site.xs('prestorm', level='profile_type').z,\n",
" label='Prestorm profile')\n",
"\n",
" # Raw profile poststorm\n",
" ax1.plot(\n",
" df_site.xs('poststorm',\n",
" level='profile_type').index.get_level_values('x'),\n",
" df_site.xs('poststorm', level='profile_type').z,\n",
" label='Poststorm profile')\n",
"\n",
" # Dune face\n",
" ax1.plot(\n",
" [df_dunes.loc[site_id].dune_crest_x, df_dunes.loc[site_id].dune_toe_x],\n",
" [df_dunes.loc[site_id].dune_crest_z, df_dunes.loc[site_id].dune_toe_z],\n",
" linestyle=':',\n",
" color='#999999',\n",
" label='Dune face ({:.2f})'.format(-df_dunes.loc[site_id].dune_slope))\n",
"\n",
" # Projected dune face\n",
" ax1.plot(\n",
" dune_line.xy[0],\n",
" dune_line.xy[1],\n",
" linestyle='--',\n",
" color='#999999',\n",
" label='Dune face (projected)')\n",
"\n",
" # Projected shelf slope\n",
" ax1.plot(\n",
" shelf_line.xy[0],\n",
" shelf_line.xy[1],\n",
" linestyle='--',\n",
" color='#999999',\n",
" label='Shelf slope (projected)')\n",
"\n",
" # Intersection\n",
" ax1.scatter(\n",
" dune_shelf_int.xy[0],\n",
" dune_shelf_int.xy[1],\n",
" marker='x',\n",
" color='#999999',\n",
" label='Dune/shelf projected intersection')\n",
"\n",
" # Prestorm slope\n",
" ax1.plot([\n",
" df_prestorm_slope.loc[site_id].prestorm_start_x,\n",
" df_prestorm_slope.loc[site_id].prestorm_end_x\n",
" ], [\n",
" df_prestorm_slope.loc[site_id].prestorm_start_z,\n",
" df_prestorm_slope.loc[site_id].prestorm_end_z\n",
" ],\n",
" color='violet',\n",
" label='Prestorm slope ({:.2f})'.format(\n",
" -df_prestorm_slope.loc[site_id].prestorm_slope))\n",
"\n",
" # # Find best slope based on distance form toe to intersection?\n",
" # best_slope_toe = shelf_line.interpolate(\n",
" # shelf_line.project(intersection) - 4 * dist_toe_to_int)\n",
" # best_slope = (dune_face_toe.xy[1][0] - best_slope_toe.xy[1][0]) / (\n",
" # dune_face_toe.xy[0][0] - best_slope_toe.xy[0][0])\n",
"\n",
" # # Best slope toe\n",
" # ax1.scatter(\n",
" # best_slope_toe.xy[0], best_slope_toe.xy[1], marker='o', color='g')\n",
"\n",
" # # Best slope\n",
" # ax1.plot([dune_face_toe.xy[0], best_slope_toe.xy[0]],\n",
" # [dune_face_toe.xy[1], best_slope_toe.xy[1]],\n",
" # color='g',\n",
" # label='Best slope ({:.3f})'.format(-best_slope))\n",
"\n",
" # Find best slope based on intersection of prestorm slope and surf zone slope\n",
" prestorm_slope_line = LineString([\n",
" Point(\n",
" df_prestorm_slope.loc[site_id].prestorm_start_x,\n",
" df_prestorm_slope.loc[site_id].prestorm_start_z,\n",
" ),\n",
" Point(\n",
" df_prestorm_slope.loc[site_id].prestorm_start_x + 10000,\n",
" df_prestorm_slope.loc[site_id].prestorm_start_z +\n",
" 10000 * df_prestorm_slope.loc[site_id].prestorm_slope)\n",
" ])\n",
"\n",
" # Where prestorm slope projection intersects shelf line\n",
" prestorm_slope_shelf_int = prestorm_slope_line.intersection(shelf_line)\n",
"\n",
" # Distance between dune/shelf intersection and prestorm/shelf intersection\n",
" dist_shelf_prestorm_ints = prestorm_slope_shelf_int.distance(\n",
" dune_shelf_int)\n",
"\n",
" best_slope_pt = shelf_line.interpolate(\n",
" shelf_line.project(dune_shelf_int) + 0.3 * (shelf_line.project(prestorm_slope_shelf_int) -\n",
" shelf_line.project(dune_shelf_int)))\n",
" \n",
" best_slope =(df_prestorm_slope.loc[site_id].prestorm_start_z-best_slope_pt.xy[1][0])/(df_prestorm_slope.loc[site_id].prestorm_start_x-best_slope_pt.xy[0][0])\n",
" \n",
" if not prestorm_slope_shelf_int.is_empty:\n",
" ax1.plot(\n",
" prestorm_slope_shelf_int.xy[0],\n",
" prestorm_slope_shelf_int.xy[1],\n",
" marker='x',\n",
" color='#999999',\n",
" label='Prestorm slope/shelf\\nprojected intersection')\n",
" ax1.plot(\n",
" prestorm_slope_line.xy[0],\n",
" prestorm_slope_line.xy[1],\n",
" color='#999999',\n",
" linestyle='--',\n",
" label='Prestorm slope projected line')\n",
" ax1.plot(\n",
" [df_prestorm_slope.loc[site_id].prestorm_start_x,\n",
" best_slope_pt.xy[0][0]],\n",
" [df_prestorm_slope.loc[site_id].prestorm_start_z,\n",
" best_slope_pt.xy[1][0]],\n",
" color='red',\n",
" linestyle='--',\n",
" label='Best slope ({:.3f})'.format(-best_slope))\n",
" \n",
" # TEMP Target slopes\n",
" target_slopes = {\n",
" 'NARRA0004': 0.076,\n",
" 'NARRA0008': 0.093,\n",
" 'NARRA0012': 0.060,\n",
" 'NARRA0016': 0.11,\n",
" 'NARRA0021': 0.063,\n",
" 'NARRA0023': 0.061,\n",
" 'NARRA0027': 0.060,\n",
" 'NARRA0031': 0.057,\n",
" }\n",
"\n",
" target_direction = {\n",
" 'NARRA0004': \"flatter\",\n",
" 'NARRA0008': \"steeper\",\n",
" 'NARRA0012': \"flatter\",\n",
" 'NARRA0016': \"flatter\",\n",
" 'NARRA0021': \"steeper\",\n",
" 'NARRA0023': \"steeper\",\n",
" 'NARRA0027': \"steeper\",\n",
" 'NARRA0031': \"steeper\",\n",
" }\n",
" ax1.plot([dune_face_toe.xy[0][0], dune_face_toe.xy[0][0] + 1000], [\n",
" dune_face_toe.xy[1][0],\n",
" dune_face_toe.xy[1][0] - 1000 * target_slopes[site_id]\n",
" ],\n",
" color='red',\n",
" label='Target slope\\n({} than {:.3f})'.format(\n",
" target_direction[site_id], target_slopes[site_id]))\n",
"\n",
" ax1.set_xlim([100, 800])\n",
" ax1.set_ylim([-15, 12])\n",
"# ax1.set_xlim([100, 600])\n",
"# ax1.set_ylim([-10, 12])\n",
"\n",
" # ax1.set_xlim([df_dunes.loc[site_id].dune_crest_x - 50,\n",
" # intersection.xy[0][0] + 50])\n",
" # ax1.set_ylim([intersection.xy[1][0] -3,\n",
" # df_dunes.loc[site_id].dune_crest_z + 3])\n",
"\n",
" ax1.set_title(site_id)\n",
" ax1.legend(loc='upper right', prop={'size': 10})\n",
" f.savefig('08-{}.png'.format(site_id), dpi=600)\n",
" plt.show()\n",
" plt.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dune_shelf_int"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -0,0 +1,337 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Run comparison\n",
"Create a comparison between different runs by looking at the different R_high values and storm regimes."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Enable autoreloading of our modules. \n",
"# Most of the code will be located in the /src/ folder, \n",
"# and then called from the notebook.\n",
"%matplotlib inline\n",
"%reload_ext autoreload\n",
"%autoreload"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import decimal\n",
"import plotly\n",
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"import plotly.tools as tls\n",
"import plotly.figure_factory as ff\n",
"from plotly import tools\n",
"import plotly.io as pio\n",
"from scipy import stats\n",
"import math\n",
"import matplotlib\n",
"from matplotlib import cm\n",
"import colorlover as cl\n",
"from tqdm import tqdm_notebook\n",
"from ipywidgets import widgets, Output\n",
"from IPython.display import display, clear_output, Image, HTML\n",
"from scipy import stats\n",
"from sklearn.metrics import confusion_matrix\n",
"import matplotlib.pyplot as plt\n",
"from scipy.interpolate import interp1d\n",
"from pandas.api.types import CategoricalDtype\n",
"from scipy.interpolate import UnivariateSpline\n",
"from shapely.geometry import Point, LineString"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Matplot lib default settings\n",
"plt.rcParams[\"figure.figsize\"] = (10,6)\n",
"plt.rcParams['axes.grid']=True\n",
"plt.rcParams['grid.alpha'] = 0.5\n",
"plt.rcParams['grid.color'] = \"grey\"\n",
"plt.rcParams['grid.linestyle'] = \"--\"\n",
"plt.rcParams['axes.grid']=True\n",
"\n",
"# https://stackoverflow.com/a/20709149\n",
"matplotlib.rcParams['text.usetex'] = True\n",
"\n",
"matplotlib.rcParams['text.latex.preamble'] = [\n",
" r'\\usepackage{siunitx}', # i need upright \\micro symbols, but you need...\n",
" r'\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts\n",
" r'\\usepackage{helvet}', # set the normal font here\n",
" r'\\usepackage{amsmath}',\n",
" r'\\usepackage{sansmath}', # load up the sansmath so that math -> helvet\n",
" r'\\sansmath', # <- tricky! -- gotta actually tell tex to use!\n",
"] "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_waves = df_from_csv('waves.csv', index_col=[0, 1])\n",
"df_tides = df_from_csv('tides.csv', index_col=[0, 1])\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
"df_sites = df_from_csv('sites.csv', index_col=[0])\n",
"df_profile_features_crest_toes = df_from_csv('profile_features_crest_toes.csv', index_col=[0])\n",
"\n",
"# Note that the forecasted data sets should be in the same order for impacts and twls\n",
"impacts = {\n",
" 'forecasted': {\n",
" 'postintertidal_slope_hol86': df_from_csv('impacts_forecasted_postintertidal_slope_hol86.csv', index_col=[0]),\n",
" 'postintertidal_slope_nie91': df_from_csv('impacts_forecasted_postintertidal_slope_nie91.csv', index_col=[0]),\n",
" 'postintertidal_slope_pow18': df_from_csv('impacts_forecasted_postintertidal_slope_pow18.csv', index_col=[0]),\n",
" 'postintertidal_slope_sto06': df_from_csv('impacts_forecasted_postintertidal_slope_sto06.csv', index_col=[0]),\n",
" 'postmean_slope_hol86': df_from_csv('impacts_forecasted_postmean_slope_hol86.csv', index_col=[0]),\n",
" 'postmean_slope_nie91': df_from_csv('impacts_forecasted_postmean_slope_nie91.csv', index_col=[0]),\n",
" 'postmean_slope_pow18': df_from_csv('impacts_forecasted_postmean_slope_pow18.csv', index_col=[0]),\n",
" 'postmean_slope_sto06': df_from_csv('impacts_forecasted_postmean_slope_sto06.csv', index_col=[0]),\n",
" 'preintertidal_slope_hol86': df_from_csv('impacts_forecasted_preintertidal_slope_hol86.csv', index_col=[0]),\n",
" 'preintertidal_slope_nie91': df_from_csv('impacts_forecasted_preintertidal_slope_nie91.csv', index_col=[0]),\n",
" 'preintertidal_slope_pow18': df_from_csv('impacts_forecasted_preintertidal_slope_pow18.csv', index_col=[0]),\n",
" 'preintertidal_slope_sto06': df_from_csv('impacts_forecasted_preintertidal_slope_sto06.csv', index_col=[0]),\n",
" 'premean_slope_hol86': df_from_csv('impacts_forecasted_premean_slope_hol86.csv', index_col=[0]),\n",
" 'premean_slope_nie91': df_from_csv('impacts_forecasted_premean_slope_nie91.csv', index_col=[0]),\n",
" 'premean_slope_pow18': df_from_csv('impacts_forecasted_premean_slope_pow18.csv', index_col=[0]),\n",
" 'premean_slope_sto06': df_from_csv('impacts_forecasted_premean_slope_sto06.csv', index_col=[0]),\n",
" },\n",
" 'observed': df_from_csv('impacts_observed.csv', index_col=[0])\n",
" }\n",
"\n",
"\n",
"twls = {\n",
" 'forecasted': {\n",
" 'postintertidal_slope_hol86.csv': df_from_csv('twl_postintertidal_slope_hol86.csv', index_col=[0,1]),\n",
" 'postintertidal_slope_nie91.csv': df_from_csv('twl_postintertidal_slope_nie91.csv', index_col=[0,1]),\n",
" 'postintertidal_slope_pow18.csv': df_from_csv('twl_postintertidal_slope_pow18.csv', index_col=[0,1]),\n",
" 'postintertidal_slope_sto06.csv': df_from_csv('twl_postintertidal_slope_sto06.csv', index_col=[0,1]),\n",
" 'postmean_slope_hol86.csv': df_from_csv('twl_postmean_slope_hol86.csv', index_col=[0,1]),\n",
" 'postmean_slope_nie91.csv': df_from_csv('twl_postmean_slope_nie91.csv', index_col=[0,1]),\n",
" 'postmean_slope_pow18.csv': df_from_csv('twl_postmean_slope_pow18.csv', index_col=[0,1]),\n",
" 'postmean_slope_sto06.csv': df_from_csv('twl_postmean_slope_sto06.csv', index_col=[0,1]),\n",
" 'preintertidal_slope_hol86.csv': df_from_csv('twl_preintertidal_slope_hol86.csv', index_col=[0,1]),\n",
" 'preintertidal_slope_nie91.csv': df_from_csv('twl_preintertidal_slope_nie91.csv', index_col=[0,1]),\n",
" 'preintertidal_slope_pow18.csv': df_from_csv('twl_preintertidal_slope_pow18.csv', index_col=[0,1]),\n",
" 'preintertidal_slope_sto06.csv': df_from_csv('twl_preintertidal_slope_sto06.csv', index_col=[0,1]),\n",
" 'premean_slope_hol86.csv': df_from_csv('twl_premean_slope_hol86.csv', index_col=[0,1]),\n",
" 'premean_slope_nie91.csv': df_from_csv('twl_premean_slope_nie91.csv', index_col=[0,1]),\n",
" 'premean_slope_pow18.csv': df_from_csv('twl_premean_slope_pow18.csv', index_col=[0,1]),\n",
" 'premean_slope_sto06.csv': df_from_csv('twl_premean_slope_sto06.csv', index_col=[0,1]),\n",
" }\n",
"}\n",
"print('Done!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get prediction accuracy\n",
"Use [scikit-learn](https://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics) model evaluation metrics"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pprint\n",
"pp = pprint.PrettyPrinter(indent=2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sklearn.metrics\n",
"\n",
"# Encode the storm regimes values as categorical intgers so we can compare them\n",
"cat_type = CategoricalDtype(\n",
" categories=[\"swash\", \"collision\", \"overwash\", \"inundation\"], ordered=True)\n",
"correct_regime = impacts['observed'].storm_regime.astype(\n",
" cat_type).cat.codes.values\n",
"\n",
"# Define our forecast model names\n",
"models = [model for model in impacts['forecasted']]\n",
"\n",
"# Define the metric we want to calculate for each forecast model\n",
"metrics = [\n",
" 'accuracy_score', 'balanced_accuracy_score', 'confusion_matrix',\n",
" 'classification_report', 'f1_score', 'fbeta_score', 'precision_score', 'recall_score'\n",
"]\n",
"\n",
"# Store results in a nested dictionary by metric\n",
"performance = {metric: {} for metric in metrics}\n",
"\n",
"for model, metric in itertools.product(models, metrics):\n",
"\n",
" # Get predicted storm regims\n",
" df_pred = impacts['forecasted'][model]\n",
" predicted_regime = df_pred.storm_regime.astype(cat_type).cat.codes.values\n",
"\n",
" if metric == 'accuracy_score':\n",
" m = sklearn.metrics.accuracy_score(correct_regime, predicted_regime)\n",
"\n",
" if metric == 'balanced_accuracy_score':\n",
" m = sklearn.metrics.balanced_accuracy_score(correct_regime,\n",
" predicted_regime)\n",
"\n",
" if metric == 'confusion_matrix':\n",
" m = sklearn.metrics.confusion_matrix(\n",
" correct_regime, predicted_regime, labels=[0, 1, 2, 3])\n",
" \n",
" if metric == 'f1_score':\n",
" m = sklearn.metrics.f1_score(correct_regime, predicted_regime, average='weighted')\n",
" \n",
" if metric == 'fbeta_score':\n",
" m = sklearn.metrics.fbeta_score(correct_regime, predicted_regime, average='weighted', beta=1)\n",
" \n",
" if metric == 'precision_score':\n",
" m = sklearn.metrics.precision_score(correct_regime, predicted_regime, average='weighted')\n",
" \n",
" if metric == 'recall_score':\n",
" m = sklearn.metrics.recall_score(correct_regime, predicted_regime, average='weighted')\n",
"# m=1\n",
" \n",
" if metric == 'classification_report':\n",
"# m = sklearn.metrics.classification_report(\n",
"# correct_regime,\n",
"# predicted_regime,\n",
"# labels=[0, 1, 2, 3],\n",
"# target_names=['swash', 'collision', 'overwash', 'inundation'])\n",
"# print(m)\n",
" continue\n",
"\n",
" # Store metric in results dictionary\n",
" performance[metric][model] = m\n",
"\n",
"pp.pprint(performance)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"predicted_regime"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Scatter plot matirx\n",
" - Use [Altair](https://altair-viz.github.io/getting_started/installation.html) for interactivity?\n",
" - Or maybe [Holoviews](https://towardsdatascience.com/pyviz-simplifying-the-data-visualisation-process-in-python-1b6d2cb728f1)?"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -0,0 +1,186 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
"\n",
"from dtaidistance import dtw\n",
"from dtaidistance import dtw_visualisation as dtwvis"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import data\n",
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
"\n",
"print('Done!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use dtaidistance package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"p1 = df_profiles.dropna(subset=['z']).xs(['AVOCAn0003','prestorm'],level=['site_id','profile_type']).z.values\n",
"p2 = df_profiles.dropna(subset=['z']).xs(['AVOCAn0004','prestorm'],level=['site_id','profile_type']).z.values\n",
"path = dtw.warping_path(p1,p2)\n",
"dtwvis.plot_warping(p1,p2,path)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Use kshape package"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"profiles = df_profiles.dropna(subset=['z'])\\\n",
" .xs(['prestorm'],level=['profile_type'])\\\n",
" .groupby('site_id').z\\\n",
" .apply(list).tolist()\n",
"\n",
"\n",
"# profiles = [x[-50:] for x in profiles]\n",
"# print(min(len(x) for x in profiles))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from kshape.core import kshape, zscore\n",
"\n",
"time_series = [[1,2,3,4], [0,1,2,3], [0,1,2,3], [1,2,2,3]]\n",
"cluster_num = 4\n",
"clusters = kshape(zscore(profiles, axis=1), cluster_num)\n",
"# print(clusters)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cluster_no = 0\n",
"\n",
"# Plot shape of all clusters\n",
"plt.figure(0)\n",
"for n,cluster in enumerate(clusters):\n",
" plt.plot(cluster[0],label=n)\n",
"plt.legend()\n",
"\n",
"plt.figure(1)\n",
"# Plot all profiles in partiuclar cluster\n",
"for profile_no in clusters[cluster_no][1]:\n",
" plt.plot(profiles[profile_no])\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"a = [1,2,3,4,5,6]\n",
"a[-1:]"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -0,0 +1,919 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Investigate "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup notebook\n",
"Import our required packages and set default plotting options."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Enable autoreloading of our modules. \n",
"# Most of the code will be located in the /src/ folder, \n",
"# and then called from the notebook.\n",
"%matplotlib inline\n",
"%reload_ext autoreload\n",
"%autoreload"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.core.debugger import set_trace\n",
"\n",
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import decimal\n",
"import plotly\n",
"import plotly.graph_objs as go\n",
"import plotly.plotly as py\n",
"import plotly.tools as tls\n",
"import plotly.figure_factory as ff\n",
"from plotly import tools\n",
"import plotly.io as pio\n",
"from scipy import stats\n",
"import math\n",
"import matplotlib\n",
"from matplotlib import cm\n",
"import colorlover as cl\n",
"from tqdm import tqdm_notebook\n",
"from ipywidgets import widgets, Output\n",
"from IPython.display import display, clear_output, Image, HTML\n",
"from scipy import stats\n",
"from sklearn.metrics import confusion_matrix\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib.ticker import MultipleLocator\n",
"from matplotlib.lines import Line2D\n",
"from cycler import cycler\n",
"from scipy.interpolate import interp1d\n",
"from pandas.api.types import CategoricalDtype\n",
"import seaborn as sns\n",
"sns.set(style=\"white\")\n",
"from scipy import interpolate\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Matplot lib default settings\n",
"plt.rcParams[\"figure.figsize\"] = (10,6)\n",
"plt.rcParams['axes.grid']=True\n",
"plt.rcParams['grid.alpha'] = 0.5\n",
"plt.rcParams['grid.color'] = \"grey\"\n",
"plt.rcParams['grid.linestyle'] = \"--\"\n",
"plt.rcParams['axes.grid']=True\n",
"\n",
"# https://stackoverflow.com/a/20709149\n",
"# matplotlib.rcParams['text.usetex'] = True\n",
"\n",
"matplotlib.rcParams['text.latex.preamble'] = [\n",
" r'\\usepackage{siunitx}', # i need upright \\micro symbols, but you need...\n",
" r'\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts\n",
" r'\\usepackage{helvet}', # set the normal font here\n",
" r'\\usepackage{amsmath}',\n",
" r'\\usepackage{sansmath}', # load up the sansmath so that math -> helvet\n",
" r'\\sansmath', # <- tricky! -- gotta actually tell tex to use!\n",
"] "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import data\n",
"Import our data from the `./data/interim/` folder and load it into pandas dataframes. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_waves = df_from_csv('waves.csv', index_col=[0, 1])\n",
"df_tides = df_from_csv('tides.csv', index_col=[0, 1])\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0, 1, 2])\n",
"df_sites = df_from_csv('sites.csv', index_col=[0])\n",
"df_sites_waves = df_from_csv('sites_waves.csv', index_col=[0])\n",
"df_profile_features_crest_toes = df_from_csv('profile_features_crest_toes.csv', index_col=[0,1])\n",
"\n",
"# Note that the forecasted data sets should be in the same order for impacts and twls\n",
"impacts = {\n",
" 'forecasted': {\n",
" 'postintertidal_slope_sto06': df_from_csv('impacts_forecasted_postintertidal_slope_sto06.csv', index_col=[0]),\n",
" 'postmean_slope_sto06': df_from_csv('impacts_forecasted_postmean_slope_sto06.csv', index_col=[0]),\n",
" 'preintertidal_slope_sto06': df_from_csv('impacts_forecasted_preintertidal_slope_sto06.csv', index_col=[0]),\n",
" 'premean_slope_sto06': df_from_csv('impacts_forecasted_premean_slope_sto06.csv', index_col=[0]),\n",
" },\n",
" 'observed': df_from_csv('impacts_observed.csv', index_col=[0])\n",
" }\n",
"\n",
"twls = {\n",
" 'forecasted': {\n",
" 'postintertidal_slope_sto06': df_from_csv('twl_postintertidal_slope_sto06.csv', index_col=[0,1]),\n",
" 'postmean_slope_sto06': df_from_csv('twl_postmean_slope_sto06.csv', index_col=[0,1]),\n",
" 'preintertidal_slope_sto06': df_from_csv('twl_preintertidal_slope_sto06.csv', index_col=[0,1]),\n",
" 'premean_slope_sto06': df_from_csv('twl_premean_slope_sto06.csv', index_col=[0,1]),\n",
" }\n",
"}\n",
"print('Done!')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Gather data into one dataframe\n",
"For plotting, gather all our data into one dataframe."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Which forecasted impacts dataframe should we use to assess prediction performance?\n",
"df_selected_forecast = impacts['forecasted']['postintertidal_slope_sto06']\n",
"\n",
"# Create df with all our data\n",
"df = impacts['observed'].merge(\n",
" df_sites_waves, left_index=True, right_index=True)\n",
"\n",
"# Join observed/forecasted regimes\n",
"df_forecasted = df_selected_forecast.rename(\n",
" {'storm_regime': 'forecasted_regime'\n",
" }, axis='columns').forecasted_regime\n",
"df = pd.concat([df, df_forecasted], axis=1)\n",
"\n",
"# Create new accuracy column which categorises each prediction\n",
"df.loc[(df.storm_regime == 'swash') & (df.forecasted_regime == 'swash'), 'accuracy'] = 'correct swash'\n",
"df.loc[(df.storm_regime == 'collision') & (df.forecasted_regime == 'collision'), 'accuracy'] = 'correct collision'\n",
"df.loc[(df.storm_regime == 'swash') & (df.forecasted_regime == 'collision'), 'accuracy'] = 'overpredicted swash'\n",
"df.loc[(df.storm_regime == 'collision') & (df.forecasted_regime == 'swash'), 'accuracy'] = 'underpredicted collision'\n",
"\n",
"print('df columns:\\n===')\n",
"for col in sorted(df.columns):\n",
" print(col)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create plots"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Variable pairplot, by observed storm impact\n",
"Create pairplot of selected variables and look for relationships between each. Colors represent the different observed storm impact regimes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"g = sns.pairplot(\n",
" data=df,\n",
" hue='storm_regime',\n",
" dropna=True,\n",
" palette={\n",
" 'swash': 'blue',\n",
" 'collision': 'orange',\n",
" 'overwash': 'red'\n",
" },\n",
" plot_kws=dict(s=20, edgecolor=\"white\", linewidth=0.1, alpha=0.1),\n",
" vars=['beta_prestorm_mean',\n",
" 'beta_poststorm_mean',\n",
" 'beta_diff_mean',\n",
" 'swash_pct_change',\n",
" 'width_msl_change_m',\n",
" 'width_msl_change_pct',\n",
" 'Exscum'])\n",
"g.savefig('11_pairplot_observed_impacts.png')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Variable pairplot, by observed/prediction class\n",
"Create pairplot of selected variables and look for relationships between each. Colors represent the different observed/prediction classes."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"g = sns.pairplot(\n",
" data=df,\n",
" hue='accuracy',\n",
" dropna=True,\n",
" palette={\n",
" 'correct swash': 'blue',\n",
" 'correct collision': 'green',\n",
" 'overpredicted swash': 'orange',\n",
" 'underpredicted collision': 'red',\n",
" },\n",
" plot_kws=dict(s=20, edgecolor=\"white\", linewidth=0.1, alpha=0.1),\n",
" vars=['beta_prestorm_mean',\n",
" 'beta_poststorm_mean',\n",
" 'beta_diff_mean',\n",
" 'swash_pct_change',\n",
" 'width_msl_change_m',\n",
" 'width_msl_change_pct',\n",
" 'Exscum'])\n",
"g.savefig('11_pairplot_accuracy_classes.png')\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Pre/post storm slope by observed/predicted class"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# First create a melted dataframe since our coulmn's aren't exactly as they should be for plotting\n",
"df_temp = df.copy()\n",
"df_temp = df_temp.reset_index()\n",
"\n",
"df_melt = pd.melt(\n",
" df_temp,\n",
" id_vars=['site_id', 'accuracy'],\n",
" value_vars=['beta_prestorm_mean', 'beta_poststorm_mean'],\n",
" var_name='profile_type',\n",
" value_name='beta_mean')\n",
"\n",
"df_melt.loc[df_melt.profile_type == 'beta_prestorm_mean','profile_type'] = 'prestorm'\n",
"df_melt.loc[df_melt.profile_type == 'beta_poststorm_mean','profile_type'] = 'poststorm'\n",
"df_melt.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f, ax = plt.subplots(figsize=(6,5))\n",
"\n",
"cats = ['correct swash', 'overpredicted swash','underpredicted collision','correct collision']\n",
"\n",
"# Plot the orbital period with horizontal boxes\n",
"sns.boxplot(\n",
" data=df_melt,\n",
" x=\"accuracy\",\n",
" y=\"beta_mean\",\n",
" hue=\"profile_type\",\n",
" order=cats\n",
")\n",
"\n",
"group_labels = [x.replace(' ','\\n') for x in cats]\n",
"ax.set_xticklabels(group_labels)\n",
"\n",
"# Setup ticks and grid\n",
"ax.xaxis.grid(True)\n",
"major_ticks = np.arange(-1, 1, 0.05)\n",
"minor_ticks = np.arange(-1, 1, 0.01)\n",
"ax.set_yticks(major_ticks)\n",
"ax.set_yticks(minor_ticks, minor=True)\n",
"ax.grid(which='both')\n",
"ax.grid(which='minor', alpha=0.3,linestyle='--')\n",
"ax.grid(which='major', alpha=0.8,linestyle='-')\n",
"\n",
"ax.set_ylim([-0.02,0.3])\n",
"\n",
"f.savefig('11_prepost_slopes_accuracy_classes.png',dpi=600)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Change in slope by observed/predicted class"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f, ax = plt.subplots(figsize=(6,5))\n",
"\n",
"cats = ['correct swash', 'overpredicted swash','underpredicted collision','correct collision']\n",
"\n",
"# Plot the orbital period with horizontal boxes\n",
"sns.boxplot(\n",
" data=df,\n",
" x=\"accuracy\",\n",
" y=\"beta_diff_mean\",\n",
" order=cats\n",
")\n",
"\n",
"group_labels = [x.replace(' ','\\n') for x in cats]\n",
"ax.set_xticklabels(group_labels)\n",
"\n",
"# Setup ticks and grid\n",
"ax.xaxis.grid(True)\n",
"major_ticks = np.arange(-1, 1, 0.05)\n",
"minor_ticks = np.arange(-1, 1, 0.01)\n",
"ax.set_yticks(major_ticks)\n",
"ax.set_yticks(minor_ticks, minor=True)\n",
"ax.grid(which='both')\n",
"ax.grid(which='minor', alpha=0.3,linestyle='--')\n",
"ax.grid(which='major', alpha=0.8,linestyle='-')\n",
"\n",
"ax.set_ylim([-0.2,0.2])\n",
"\n",
"f.savefig('11_change_in_slopes_accuracy_classes.png',dpi=600)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Swash zone volume change histogram"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"How much does the beach width change variation can we expect in the swash regime?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"f, ax = plt.subplots(figsize=(5,4))\n",
"\n",
"sns.distplot(df.loc[df.storm_regime=='swash'].width_msl_change_pct.dropna(), \n",
" kde=False);\n",
"\n",
"ax.set_title('Distribution of beach width change for swash regime')\n",
"ax.set_xlabel('$\\Delta$ beach width (%)')\n",
"ax.set_ylabel('Count')\n",
"\n",
"f.savefig('11_change_in_beach_width.png',dpi=600)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Check prestorm and post storm width"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ax.get_xaxis().get_major_ticks()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_col = \"width_msl_prestorm\"\n",
"y_col = \"width_msl_poststorm\"\n",
"\n",
"with sns.axes_style(\"white\"):\n",
" g = sns.jointplot(x=x_col,\n",
" y=y_col,\n",
" data=df.dropna(subset=[x_col, y_col]),\n",
" kind=\"hex\",\n",
" ylim=(0, 150),\n",
" xlim=(0, 150))\n",
"\n",
" x0, x1 = g.ax_joint.get_xlim()\n",
" y0, y1 = g.ax_joint.get_ylim()\n",
" lims = [max(x0, y0), min(x1, y1)]\n",
" g.ax_joint.plot(lims, lims, ':k') \n",
" "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Find correlations between variables"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create correlogram"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": []
},
"outputs": [],
"source": [
"from matplotlib.patches import Ellipse\n",
"def corrplot(data, pvalues, labels):\n",
" \"\"\"Creates a correlation plot of the passed data.\n",
" The function returns the plot which can then be shown with\n",
" plot.show(), saved to a file with plot.savefig(), or manipulated\n",
" in any other standard matplotlib way.\n",
" data is the correlation matrix, a 2-D numpy array containing\n",
" the pairwise correlations between variables;\n",
" pvalues is a matrix containing the pvalue for each corresponding\n",
" correlation value; if none it is assumed to be the zero matrix\n",
" labels is an array containing the variable names\n",
" https://github.com/louridas/corrplot/blob/master/corrplot.py\n",
" \"\"\"\n",
"\n",
" plt.figure(1)\n",
"\n",
" column_labels = labels\n",
" row_labels = labels\n",
" \n",
" f = plt.figure(figsize=(8,8))\n",
" ax = plt.subplot(1, 1, 1, aspect='equal')\n",
"\n",
" width, height = data.shape\n",
" num_cols, num_rows = width, height\n",
"\n",
" if pvalues is None:\n",
" pvalues = np.zeros([num_rows, num_cols])\n",
" \n",
" shrink = 0.9\n",
"\n",
" poscm = cm.get_cmap('Blues')\n",
" negcm = cm.get_cmap('Oranges')\n",
"\n",
" for x in range(width):\n",
" for y in range(height):\n",
" d = data[x, y]\n",
" c = pvalues[x, y]\n",
" rotate = -45 if d > 0 else +45\n",
" clrmap = poscm if d >= 0 else negcm\n",
" d_abs = np.abs(d)\n",
" ellipse = Ellipse((x, y),\n",
" width=1 * shrink,\n",
" height=(shrink - d_abs*shrink),\n",
" angle=rotate)\n",
" ellipse.set_edgecolor('black')\n",
" ellipse.set_facecolor(clrmap(d_abs))\n",
" if c > 0.05:\n",
" ellipse.set_linestyle('dotted')\n",
" ellipse.set_alpha(0.5)\n",
" ax.add_artist(ellipse)\n",
"\n",
" ax.set_xlim(-1, num_cols)\n",
" ax.set_ylim(-1, num_rows)\n",
" \n",
" ax.xaxis.tick_top()\n",
" xtickslocs = np.arange(len(row_labels))\n",
" ax.set_xticks(xtickslocs)\n",
" ax.set_xticklabels(row_labels, rotation=30, fontsize='small', ha='left')\n",
"\n",
" ax.invert_yaxis()\n",
" ytickslocs = np.arange(len(row_labels))\n",
" ax.set_yticks(ytickslocs)\n",
" ax.set_yticklabels(column_labels, fontsize='small')\n",
"\n",
" return plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calculate correlation coefficient and p-values\n",
"# https://stackoverflow.com/a/24469099\n",
"corr = df.corr(method ='pearson') \n",
"n=len(corr.columns)\n",
"t=corr*np.sqrt((n-2)/(1-corr*corr))\n",
"pvals = stats.t.cdf(t, n-2)\n",
"\n",
"plot = corrplot(corr.values, pvals, corr.columns.tolist())\n",
"plot.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create regression plot between two variables"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from scipy import stats\n",
"\n",
"# x_col = 'beta_prestorm_intertidal'\n",
"# y_col = \"beta_diff_intertidal\"\n",
"# data = df.loc[df.storm_regime=='swash']\n",
"\n",
"# y_col = 'total_vol_change'\n",
"# x_col = \"Pxscum\"\n",
"# data = df\n",
"\n",
"y_col = 'prestorm_cum_exposed_vol'\n",
"x_col = \"Exscum\"\n",
"c_col = 'total_vol_change'\n",
"data = df\n",
"\n",
"slope, intercept, r_value, p_value, std_err = stats.linregress(\n",
" data.dropna()[x_col].values,\n",
" data.dropna()[y_col].values)\n",
"\n",
"fig = plt.figure(\n",
" figsize=(6, 4), dpi=150, facecolor='w', edgecolor='k')\n",
"ax = fig.add_subplot(111)\n",
"\n",
"scatter = ax.scatter(\n",
" x=data.dropna()[x_col].values,\n",
" y=data.dropna()[y_col].values,\n",
" c=data.dropna()[c_col].values,\n",
" s=1, \n",
" vmin=-150, vmax=0,\n",
")\n",
"\n",
"ax.set_xlabel(x_col)\n",
"ax.set_ylabel(y_col)\n",
"ax.set_ylim(0,20000)\n",
"\n",
"cbar = plt.colorbar(scatter)\n",
"cbar.set_label(c_col)\n",
"\n",
"ax.grid(True, linestyle=\"--\", alpha=0.2, color='grey', linewidth=1)\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Calculate berm shape index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_profiles\n",
"df_profile_features_crest_toes\n",
"\n",
"berm_shape = []\n",
"grouped = df_profiles.dropna(subset=['z']).xs('prestorm',level='profile_type').groupby('site_id')\n",
"for site_id, df_site in tqdm(grouped):\n",
" features = df_profile_features_crest_toes.loc[(site_id,'prestorm')]\n",
" \n",
" # Get x-coordinate at z=0\n",
" x_last = df_site.iloc[-1].name[1]\n",
" z_last = 0\n",
" \n",
" # Get coordinates of dune toe\n",
" x_first = features.dune_toe_x\n",
" z_first = features.dune_toe_z\n",
" \n",
" # If there is no dune toe, get dune crest\n",
" if np.isnan(x_first):\n",
" x_first = features.dune_crest_x\n",
" z_first = features.dune_crest_z\n",
" \n",
" # If no dune crest, use nan\n",
" if np.isnan(x_first):\n",
" berm_shape.append({'site_id': site_id,\n",
" 'prestorm_berm_curvature': np.nan})\n",
" continue\n",
"\n",
" # Fit straight line between start and end points\n",
" segment = (df_site.loc[(df_site.index.get_level_values('x')>=x_first)&\n",
" (df_site.index.get_level_values('x')<=x_last)])\n",
" x_segment = segment.index.get_level_values('x')\n",
" z_segment = segment.z\n",
" f = interpolate.interp1d([x_first,x_last],[z_first,z_last])\n",
" z_straight = f(x_segment)\n",
"\n",
" area = np.trapz(y=z_straight-z_segment, x=x_segment)\n",
" length = x_last-x_first\n",
" \n",
" normalized_curvature = area\n",
"# normalized_curvature = area / length\n",
" berm_shape.append({'site_id': site_id,\n",
" 'prestorm_berm_curvature': normalized_curvature})\n",
"\n",
"# Convert to dataframe \n",
"df_berm_shape = pd.DataFrame(berm_shape)\n",
"df_berm_shape = df_berm_shape.set_index('site_id')\n",
"\n",
"# Join onto our big dataframe\n",
"df = df.drop(columns=['prestorm_berm_curvature'], errors='ignore')\n",
"df = pd.concat([df, df_berm_shape], axis=1)\n",
"\n",
"df_berm_shape.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Check wave timeseries\n",
"How much does wave height vary alongshore between sites?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from dateutil.parser import parse\n",
"sites = ['NARRA0001', 'NARRA0012', 'NARRA0024']\n",
"\n",
"fig = plt.figure(\n",
" figsize=(6, 4), dpi=150, facecolor='w', edgecolor='k')\n",
"ax = fig.add_subplot(111)\n",
"\n",
"for site_id in sites:\n",
" print(site_id)\n",
" x = [parse(t) for t in df_waves.xs(site_id,level='site_id').index]\n",
" y = df_waves.xs(site_id,level='site_id').Hs\n",
" ax.plot(x,y)\n",
" \n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Cumulative sum of available prestorm volume?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# At each site, determine relationship between height and available volume\n",
"data = []\n",
"site_ids = df_sites.index.values\n",
"for site_id in site_ids:\n",
" df_profile = df_profiles.xs([site_id, 'prestorm'],\n",
" level=['site_id',\n",
" 'profile_type']).dropna(subset=['z'])\n",
" x_profile = df_profile.index.get_level_values('x').values\n",
" z_profile = df_profile.z.values\n",
" \n",
" z_vals = np.arange(min(df_profile.z),max(df_profile.z),0.01)\n",
" \n",
" for z in z_vals:\n",
" i_start = np.where((z_profile > z))[0][-1]\n",
" x_start = x_profile[i_start]\n",
" x_end = x_profile[-1]\n",
" mask = (x_start <= x_profile) & (x_profile <= x_end)\n",
" vol = np.trapz(z_profile[mask], x=x_profile[mask])\n",
" data.append({'site_id': site_id,'z':z,'prestorm_vol':vol})\n",
" \n",
"df_prestorm_vols_by_z = pd.DataFrame(data)\n",
"df_prestorm_vols_by_z = df_prestorm_vols_by_z.set_index(['site_id','z'])\n",
"df_prestorm_vols_by_z.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_twl = twls['forecasted']['preintertidal_slope_sto06']\n",
"df_twl['z'] = df_twl.R_high.round(2)\n",
"\n",
"df_twl = df_twl.join(df_prestorm_vols_by_z, on=['site_id','z'])\n",
"df_twl = df_twl.drop(columns=['z'])\n",
"\n",
"df_site_cum_exposed_vols = df_twl.groupby('site_id').prestorm_vol.sum().to_frame()\n",
"df_site_cum_exposed_vols = df_site_cum_exposed_vols.rename({'prestorm_vol':'prestorm_cum_exposed_vol'},axis=1)\n",
"\n",
"# # Join onto main dataframe\n",
"df = df.drop(columns=['prestorm_cum_exposed_vol'], errors='ignore')\n",
"df = pd.concat([df, df_site_cum_exposed_vols], axis=1)\n",
"\n",
"df_site_cum_exposed_vols.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PCA?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn import decomposition\n",
"from sklearn.preprocessing import StandardScaler\n",
"\n",
"target_col = 'swash_pct_change'\n",
"training_cols = ['beta_prestorm_mean','beta_prestorm_intertidal','prestorm_dune_vol','prestorm_swash_vol','width_msl_prestorm','Pxscum','prestorm_berm_curvature','prestorm_cum_exposed_vol']\n",
"\n",
"df_pca = df[training_cols+[target_col]].dropna()\n",
"df_pca_data_only = df_pca.drop(target_col,axis=1)\n",
"\n",
"# input data\n",
"X = df_pca_data_only.values\n",
"X = StandardScaler().fit_transform(X)\n",
"\n",
"# target\n",
"y = df_pca[target_col]\n",
"\n",
"# pca\n",
"pca = decomposition.PCA(n_components=2)\n",
"pca.fit(X)\n",
"\n",
"X = pca.transform(X)\n",
"\n",
"\n",
"fig = plt.figure(\n",
" figsize=(6, 4), dpi=150, facecolor='w', edgecolor='k')\n",
"ax = fig.add_subplot(111)\n",
"\n",
"scatter = ax.scatter(\n",
" x=X[:,0],\n",
" y=X[:,1],\n",
" c=y,\n",
" s=0.5, \n",
" vmin=-1, vmax=0,\n",
")\n",
"\n",
"# ax.set_xlabel(x_col)\n",
"# ax.set_ylabel(y_col)\n",
"# ax.set_ylim(0,20000)\n",
"\n",
"cbar = plt.colorbar(scatter)\n",
"# cbar.set_label(c_col)\n",
"\n",
"# ax.grid(True, linestyle=\"--\", alpha=0.2, color='grey', linewidth=1)\n",
"\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_pca_dims = pd.DataFrame(pca.components_, columns=list(df_pca_data_only.columns))\n",
"\n",
"df_pca_dims.iloc[0]\n",
"# pca.explained_variance_ratio_"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "223.594px"
},
"toc_section_display": true,
"toc_window_display": true
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,589 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"import shapely.geometry as sgeom\n",
"from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER\n",
"import cartopy.feature \n",
"import cartopy.crs as ccrs\n",
"\n",
"import matplotlib.lines as mlines"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Matplot lib default settings\n",
"plt.rcParams[\"figure.figsize\"] = (10, 6)\n",
"plt.rcParams['axes.grid'] = True\n",
"plt.rcParams['grid.alpha'] = 0.3\n",
"plt.rcParams['grid.color'] = \"grey\"\n",
"plt.rcParams['grid.linestyle'] = \"--\"\n",
"plt.rcParams['grid.linewidth'] = 0.5\n",
"plt.rcParams['axes.grid'] = True\n",
"\n",
"# # https://stackoverflow.com/a/20709149\n",
"matplotlib.rcParams['text.usetex'] = True\n",
"matplotlib.rcParams['font.family'] = 'sans-serif'\n",
"\n",
"matplotlib.rcParams['text.latex.preamble'] = [\n",
" r'\\usepackage{siunitx}', # i need upright \\micro symbols, but you need...\n",
" r'\\sisetup{detect-all}', # ...this to force siunitx to actually use your fonts\n",
" r'\\usepackage[default]{sourcesanspro}',\n",
" r'\\usepackage{amsmath}',\n",
" r'\\usepackage{sansmath}', # load up the sansmath so that math -> helvet\n",
" r'\\sansmath', # <- tricky! -- gotta actually tell tex to use!\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def blank_axes(ax):\n",
" \"\"\"\n",
" blank_axes: blank the extraneous spines and tick marks for an axes\n",
"\n",
" Input:\n",
" ax: a matplotlib Axes object\n",
"\n",
" Output: None\n",
" \"\"\"\n",
"\n",
"\n",
" ax.spines['right'].set_visible(False)\n",
" ax.spines['top'].set_visible(False)\n",
" ax.spines['bottom'].set_visible(False)\n",
" ax.spines['left'].set_visible(False)\n",
" ax.yaxis.set_ticks_position('none')\n",
" ax.xaxis.set_ticks_position('none')\n",
" ax.tick_params(labelbottom='off', labeltop='off', labelleft='off', labelright='off' ,\\\n",
" bottom='off', top='off', left='off', right='off' )\n",
"#end blank_axes"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [
66,
268,
296
]
},
"outputs": [],
"source": [
"# Define figure and axes\n",
"fig, ax1 = plt.subplots(figsize=(5, 5),\n",
" subplot_kw=dict(projection=ccrs.PlateCarree()))\n",
"\n",
"# Inset axes showing overall Australia plot\n",
"ax2 = fig.add_axes([0.14, 0.58, 0.20, 0.15], projection=ccrs.PlateCarree())\n",
"\n",
"# Define extents to our axes\n",
"ax1_extent = [146, 154, -35, -30]\n",
"ax2_extent = [110, 157, -42, -7]\n",
"ax1.set_extent(ax1_extent)\n",
"ax2.set_extent(ax2_extent)\n",
"\n",
"# Add gridlines to ax1\n",
"gl = ax1.gridlines(draw_labels=True, linestyle='--', zorder=2, alpha=0.5)\n",
"gl.xlabels_top = gl.ylabels_right = False\n",
"gl.xformatter = LONGITUDE_FORMATTER\n",
"gl.yformatter = LATITUDE_FORMATTER\n",
"\n",
"# Define features we want to plot\n",
"feat_rivers = cartopy.feature.NaturalEarthFeature(\n",
" 'physical',\n",
" 'rivers_lake_centerlines',\n",
" '10m',\n",
" edgecolor=cartopy.feature.COLORS['water'],\n",
" facecolor='none')\n",
"\n",
"feat_oceans = cartopy.feature.NaturalEarthFeature(\n",
" 'physical', 'ocean', '10m', facecolor=cartopy.feature.COLORS['water'])\n",
"\n",
"feat_borders = cartopy.feature.NaturalEarthFeature(\n",
" 'cultural',\n",
" 'admin_1_states_provinces',\n",
" '10m',\n",
" edgecolor='black',\n",
" facecolor=cartopy.feature.COLORS['land'],\n",
" linewidth=0.5)\n",
"\n",
"# Add features to our plots\n",
"ax1.add_feature(feat_rivers)\n",
"ax1.add_feature(feat_oceans)\n",
"ax1.add_feature(feat_borders)\n",
"ax2.add_feature(feat_oceans)\n",
"ax2.add_feature(feat_borders)\n",
"\n",
"# Plot location box on ax2\n",
"ax1_extent_box = sgeom.box(ax1_extent[0], ax1_extent[2], ax1_extent[1],\n",
" ax1_extent[3])\n",
"ax2.add_geometries([ax1_extent_box],\n",
" ccrs.PlateCarree(),\n",
" color='none',\n",
" edgecolor='r',\n",
" linewidth=2)\n",
"\n",
"# Define marker properties\n",
"marker_edge_width = 1.3\n",
"marker_edge_color = '#ffffff'\n",
"wave_buoy_color = 'red'\n",
"wave_buoy_marker = 'o'\n",
"tide_gauge_color = 'blue'\n",
"tide_gauge_marker = 's'\n",
"beach_color = 'green'\n",
"beach_marker = '^'\n",
"\n",
"# Plot beaches\n",
"# df_sites.groupby('beach').mean()[['lat','lon']].to_dict('index')\n",
"beaches = {\n",
" 'AVOCAn': {\n",
" 'lat': -33.460695367777774,\n",
" 'lon': 151.43853769000003\n",
" },\n",
" 'AVOCAs': {\n",
" 'lat': -33.467647595,\n",
" 'lon': 151.43574445875\n",
" },\n",
" 'BILG': {\n",
" 'lat': -33.645234478,\n",
" 'lon': 151.328779182\n",
" },\n",
" 'BLUEYS': {\n",
" 'lat': -32.35377103,\n",
" 'lon': 152.53584677666666\n",
" },\n",
" 'BOAT': {\n",
" 'lat': -32.43502469599999,\n",
" 'lon': 152.530818656\n",
" },\n",
" 'BOOM': {\n",
" 'lat': -32.34039573142857,\n",
" 'lon': 152.54337415\n",
" },\n",
" 'CATHIE': {\n",
" 'lat': -31.57630510275862,\n",
" 'lon': 152.8433463127586\n",
" },\n",
" 'CRESn': {\n",
" 'lat': -31.12568202392001,\n",
" 'lon': 153.00734157120007\n",
" },\n",
" 'CRESs': {\n",
" 'lat': -31.180938470000008,\n",
" 'lon': 152.97574073\n",
" },\n",
" 'DEEWHYn': {\n",
" 'lat': -33.745759471666666,\n",
" 'lon': 151.3055993875\n",
" },\n",
" 'DEEWHYs': {\n",
" 'lat': -33.751954194999996,\n",
" 'lon': 151.29818175499997\n",
" },\n",
" 'DIAMONDn': {\n",
" 'lat': -32.026216662195125,\n",
" 'lon': 152.55036803634147\n",
" },\n",
" 'DIAMONDs': {\n",
" 'lat': -32.046040624285716,\n",
" 'lon': 152.54134085\n",
" },\n",
" 'DUNBn': {\n",
" 'lat': -31.674815349864858,\n",
" 'lon': 152.81198585391894\n",
" },\n",
" 'DUNBs': {\n",
" 'lat': -31.710181410909083,\n",
" 'lon': 152.79323301090912\n",
" },\n",
" 'ELIZA': {\n",
" 'lat': -32.3298006057143,\n",
" 'lon': 152.53714101142856\n",
" },\n",
" 'ENTRA': {\n",
" 'lat': -33.31609181329114,\n",
" 'lon': 151.5278903848101\n",
" },\n",
" 'FOST': {\n",
" 'lat': -32.17670982666667,\n",
" 'lon': 152.51195243333333\n",
" },\n",
" 'GRANTSn': {\n",
" 'lat': -31.613473751666664,\n",
" 'lon': 152.8381070795833\n",
" },\n",
" 'GRANTSs': {\n",
" 'lat': -31.63005646785714,\n",
" 'lon': 152.83392283714286\n",
" },\n",
" 'HARGn': {\n",
" 'lat': -33.25858048428571,\n",
" 'lon': 151.56334493285718\n",
" },\n",
" 'HARGs': {\n",
" 'lat': -33.26487224142857,\n",
" 'lon': 151.5624840085714\n",
" },\n",
" 'HARR': {\n",
" 'lat': -31.859077996607144,\n",
" 'lon': 152.72314068214285\n",
" },\n",
" 'LHOUSE': {\n",
" 'lat': -32.443838815384616,\n",
" 'lon': 152.52969125769232\n",
" },\n",
" 'LHOUSEn': {\n",
" 'lat': -31.506830332043016,\n",
" 'lon': 152.900197138172\n",
" },\n",
" 'LHOUSEs': {\n",
" 'lat': -31.55095255875001,\n",
" 'lon': 152.85847451375002\n",
" },\n",
" 'MACM': {\n",
" 'lat': -33.494884234375,\n",
" 'lon': 151.42840894187498\n",
" },\n",
" 'MANNING': {\n",
" 'lat': -31.922794031338576,\n",
" 'lon': 152.63626414188988\n",
" },\n",
" 'MONA': {\n",
" 'lat': -33.68342594,\n",
" 'lon': 151.31180166238096\n",
" },\n",
" 'NAMB': {\n",
" 'lat': -30.702570222054792,\n",
" 'lon': 152.99174024657532\n",
" },\n",
" 'NARRA': {\n",
" 'lat': -33.71824857833333,\n",
" 'lon': 151.30161430805555\n",
" },\n",
" 'NINEMn': {\n",
" 'lat': -32.098527227407416,\n",
" 'lon': 152.5245430024074\n",
" },\n",
" 'NINEMs': {\n",
" 'lat': -32.146616644,\n",
" 'lon': 152.50721414266667\n",
" },\n",
" 'NSHORE_n': {\n",
" 'lat': -31.35297012609755,\n",
" 'lon': 152.94414099536587\n",
" },\n",
" 'NSHORE_s': {\n",
" 'lat': -31.4042148925,\n",
" 'lon': 152.91674769522717\n",
" },\n",
" 'OLDBAR': {\n",
" 'lat': -31.981825014722215,\n",
" 'lon': 152.58157028555553\n",
" },\n",
" 'ONEMILE': {\n",
" 'lat': -32.19014868,\n",
" 'lon': 152.53698099153846\n",
" },\n",
" 'PEARLn': {\n",
" 'lat': -33.5394179,\n",
" 'lon': 151.310494964\n",
" },\n",
" 'PEARLs': {\n",
" 'lat': -33.543258066,\n",
" 'lon': 151.30794061\n",
" },\n",
" 'SCOT': {\n",
" 'lat': -30.740275808333333,\n",
" 'lon': 152.99018976333335\n",
" },\n",
" 'STOCNn': {\n",
" 'lat': -32.78820750815384,\n",
" 'lon': 152.0395944421538\n",
" },\n",
" 'STOCNs': {\n",
" 'lat': -32.833099094162684,\n",
" 'lon': 151.9039352245933\n",
" },\n",
" 'STOCS': {\n",
" 'lat': -32.8965449047826,\n",
" 'lon': 151.79411199869566\n",
" },\n",
" 'STUART': {\n",
" 'lat': -30.835545341910105,\n",
" 'lon': 153.00643798999994\n",
" },\n",
" 'SWRO': {\n",
" 'lat': -30.885526112307694,\n",
" 'lon': 153.05837861230768\n",
" },\n",
" 'TREACH': {\n",
" 'lat': -32.454167825000006,\n",
" 'lon': 152.508508009375\n",
" },\n",
" 'WAMBE': {\n",
" 'lat': -33.43660858444444,\n",
" 'lon': 151.445516972963\n",
" }\n",
"}\n",
"\n",
"for beach in beaches:\n",
" ax1.plot(beaches[beach]['lon'],\n",
" beaches[beach]['lat'],\n",
" color=beach_color,\n",
" marker=beach_marker,\n",
" markeredgewidth=marker_edge_width-0.5,\n",
" markeredgecolor='#000000',\n",
" transform=ccrs.Geodetic())\n",
"\n",
"\n",
"# Add wave buoys\n",
"wave_buoys = [\n",
" {\n",
" 'name': 'Sydney',\n",
" 'lat': -33.77166667,\n",
" 'lon': 151.40861111\n",
" },\n",
" {\n",
" 'name': 'Crowdy Head',\n",
" 'lat': -31.81388889,\n",
" 'lon': 152.85611111\n",
" },\n",
" {\n",
" 'name': 'Coffs Harbour',\n",
" 'lat': -30.36250000,\n",
" 'lon': 153.26916667\n",
" },\n",
"]\n",
"\n",
"for wave_buoy in wave_buoys:\n",
" ax1.plot(wave_buoy['lon'],\n",
" wave_buoy['lat'],\n",
" color=wave_buoy_color,\n",
" marker=wave_buoy_marker,\n",
" markeredgewidth=marker_edge_width,\n",
" markeredgecolor=marker_edge_color,\n",
" transform=ccrs.Geodetic())\n",
"\n",
"# Add tide gauges\n",
"tide_gauges = [\n",
" {\n",
" 'name': 'HMAS Penguin',\n",
" 'lat': -33.82546,\n",
" 'lon': 151.25853\n",
" },\n",
" {\n",
" 'name': 'Patonga',\n",
" 'lat': -33.55098,\n",
" 'lon': 151.27461\n",
" },\n",
" {\n",
" 'name': 'Shoal Bay',\n",
" 'lat': -32.71967,\n",
" 'lon': 152.17565\n",
" },\n",
" {\n",
" 'name': 'Forster',\n",
" 'lat': -32.17398,\n",
" 'lon': 152.50820\n",
" },\n",
" {\n",
" 'name': 'Crowdy Head',\n",
" 'lat': -31.83870,\n",
" 'lon': 152.75001\n",
" },\n",
" {\n",
" 'name': 'Port Macquarie',\n",
" 'lat': -31.42682,\n",
" 'lon': 152.91112\n",
" },\n",
" {\n",
" 'name': 'Coffs Harbour',\n",
" 'lat': -30.30286,\n",
" 'lon': 153.14614\n",
" },\n",
"]\n",
"\n",
"for tide_gauge in tide_gauges:\n",
" ax1.plot(tide_gauge['lon'],\n",
" tide_gauge['lat'],\n",
" color=tide_gauge_color,\n",
" marker=tide_gauge_marker,\n",
" markeredgewidth=marker_edge_width,\n",
" markeredgecolor=marker_edge_color,\n",
" transform=ccrs.Geodetic())\n",
"\n",
"\n",
"\n",
"# Prepare legend\n",
"legend_buoy = mlines.Line2D([], [],\n",
" color=wave_buoy_color,\n",
" marker=wave_buoy_marker,\n",
" markersize=5,\n",
" linestyle=\"None\",\n",
" markeredgewidth=marker_edge_width,\n",
" markeredgecolor=marker_edge_color,\n",
" label='Wave buoys')\n",
"\n",
"legend_gauge = mlines.Line2D([], [],\n",
" color=tide_gauge_color,\n",
" marker=tide_gauge_marker,\n",
" markersize=5,\n",
" linestyle=\"None\",\n",
" markeredgewidth=marker_edge_width,\n",
" markeredgecolor=marker_edge_color,\n",
" label='Tide gauges')\n",
"\n",
"legend_beaches = mlines.Line2D([], [],\n",
" color=beach_color,\n",
" marker=beach_marker,\n",
" markersize=5,\n",
" linestyle=\"None\",\n",
" markeredgewidth=marker_edge_width-0.5,\n",
" markeredgecolor='#000000',\n",
" label='Beaches included')\n",
"\n",
"handles = [legend_buoy, legend_gauge, legend_beaches]\n",
"names = ['Wave buoys', 'Tide gauges', 'Surveyed\\nbeaches']\n",
"\n",
"# create legend\n",
"ax1.legend(handles, names, title=r'\\underline{Legend}', loc='lower left')\n",
"\n",
"# Add landmarks\n",
"ax1.text(151.204325-0.1, -33.869810, r'\\textsc{Sydney}', transform=ccrs.Geodetic(),ha='right',zorder=4)\n",
"ax1.text(151.784937-0.1, -32.928103, r'\\textsc{Newcastle}', transform=ccrs.Geodetic(),ha='right',zorder=4)\n",
"ax1.text(152.909329-0.1, -31.440207, r'\\textsc{Port Macquarie}', transform=ccrs.Geodetic(),ha='right',zorder=4)\n",
"ax1.text(153.111704-0.1, -30.300466, r'\\textsc{Coffs Harbour}', transform=ccrs.Geodetic(),ha='right',zorder=4)\n",
"ax1.text(150.891708-0.1, -34.433129, r'\\textsc{Wollongong}', transform=ccrs.Geodetic(),ha='right',zorder=4)\n",
"\n",
"ax1.plot(151.204325, -33.869810, transform=ccrs.Geodetic(),zorder=3,color='k',marker='.')\n",
"ax1.plot(151.784937, -32.928103, transform=ccrs.Geodetic(),zorder=3,color='k',marker='.')\n",
"ax1.plot(152.909329, -31.440207, transform=ccrs.Geodetic(),zorder=3,color='k',marker='.')\n",
"ax1.plot(153.111704, -30.300466, transform=ccrs.Geodetic(),zorder=3,color='k',marker='.')\n",
"ax1.plot(150.891708, -34.433129,transform=ccrs.Geodetic(),zorder=3,color='k',marker='.')\n",
"\n",
"\n",
"ax2.text(133.729975, -25.173095, r'\\textsc{Australia}', transform=ccrs.Geodetic(),ha='center',zorder=4,va='bottom', fontsize=6, bbox=dict(facecolor=cartopy.feature.COLORS['land'],pad=0.1,linewidth=0, alpha=0.9))\n",
"\n",
"# # Add inset for Narrabeen\n",
"# ax3 = fig.add_axes([0.7, 0.28, 0.2, 0.3], projection=ccrs.PlateCarree())\n",
"# ax3_extent = [151.296915, 151.316252, -33.739274, -33.702466]\n",
"# # ax3_extent = [151.296915, 151.32, -33.739274, -33.68]\n",
"# ax3.set_extent(ax3_extent)\n",
"# # ax3.add_feature(feat_oceans)\n",
"# # ax3.add_feature(feat_borders)\n",
"\n",
"\n",
"fig.savefig('07_c&p_locality.png',dpi=600,bbox_inches = \"tight\", pad_inches=0.01)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# # Try using overpass api\n",
"# # Hard because coastline is given as line string, not shapefile.\n",
"\n",
"# import overpass\n",
"# api = overpass.API()\n",
"# response = api.get('way[\"natural\"=\"coastline\"](-34, 151.0, -33, 152);out geom;')\n",
"# coords = [x['geometry']['coordinates'] for x in response['features']]\n",
"\n",
"\n",
"# for line in coords:\n",
"# lats = [x[1] for x in line]\n",
"# lons = [x[0] for x in line]\n",
"# ax3.plot(lons,lats, transform=ccrs.Geodetic())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

File diff suppressed because one or more lines are too long

@ -0,0 +1,121 @@
{
"type": "FeatureCollection",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "area": 7.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.312088315737213, -33.731759753314719 ], [ 151.285874532141236, -33.751609891372972 ], [ 151.297531748333455, -33.762252811053656 ], [ 151.323745531929404, -33.742405136585639 ], [ 151.312088315737213, -33.731759753314719 ] ] ] } },
{ "type": "Feature", "properties": { "area": 15.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.713316517914194, -34.995462365421304 ], [ 150.659281664445359, -35.030600787434174 ], [ 150.670674540619729, -35.042349525480454 ], [ 150.724709394088478, -35.007216152925253 ], [ 150.713316517914194, -34.995462365421304 ] ] ] } },
{ "type": "Feature", "properties": { "area": 70.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.82981739277065, -35.018834239509481 ], [ 150.784681201002428, -34.897414824136412 ], [ 150.749617385613391, -34.906176096351778 ], [ 150.794753577381641, -35.027582539642225 ], [ 150.82981739277065, -35.018834239509481 ] ] ] } },
{ "type": "Feature", "properties": { "area": 89.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.782495693468775, -34.759702105265937 ], [ 150.72399620090647, -34.893522285583018 ], [ 150.763036455392097, -34.905012361594544 ], [ 150.821535947954374, -34.771210869337644 ], [ 150.782495693468775, -34.759702105265937 ] ] ] } },
{ "type": "Feature", "properties": { "area": 6.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.754206923578749, -32.956209566436968 ], [ 151.744701746269357, -32.94977700104937 ], [ 151.718177158233004, -32.977371201523567 ], [ 151.727682335542426, -32.983801757994669 ], [ 151.754206923578749, -32.956209566436968 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.793569233070116, -32.93097358298138 ], [ 151.807064777797081, -32.918386849090048 ], [ 151.799100500026384, -32.912369673799752 ], [ 151.785604955299391, -32.924957263513647 ], [ 151.793569233070116, -32.93097358298138 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.331729438717161, -35.602436909218632 ], [ 150.317524165859396, -35.610124264056566 ], [ 150.323184684185208, -35.617037952137039 ], [ 150.337389957042944, -35.609351261642296 ], [ 150.331729438717161, -35.602436909218632 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.312737289062994, -33.673730230020134 ], [ 151.303256152301003, -33.689094759163098 ], [ 151.311864609684051, -33.692772702173606 ], [ 151.321345746445985, -33.677408830427957 ], [ 151.312737289062994, -33.673730230020134 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.302340369031612, -33.697192592485045 ], [ 151.290758794763605, -33.724705632327918 ], [ 151.302824314848607, -33.728219493623143 ], [ 151.314405889116614, -33.70070757978894 ], [ 151.302340369031612, -33.697192592485045 ] ] ] } },
{ "type": "Feature", "properties": { "area": 6.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.288799030402345, -33.72209486483851 ], [ 151.305146039351598, -33.746796602660645 ], [ 151.317975972497834, -33.74092525514758 ], [ 151.301628963548637, -33.716221826848752 ], [ 151.288799030402345, -33.72209486483851 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.320261262580914, -33.645116643437291 ], [ 151.3177204166509, -33.661984494473529 ], [ 151.328458288803034, -33.663105117045426 ], [ 151.330999134733048, -33.646237485670866 ], [ 151.320261262580914, -33.645116643437291 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.074261832544352, -34.162722562976754 ], [ 151.057630601818232, -34.172219525791412 ], [ 151.063182321393157, -34.178874650241639 ], [ 151.079813552119219, -34.169378436289875 ], [ 151.074261832544352, -34.162722562976754 ] ] ] } },
{ "type": "Feature", "properties": { "area": 3.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.43210802028446, -33.484173036709436 ], [ 151.416905970657183, -33.499875874069183 ], [ 151.426668105505371, -33.506448003920248 ], [ 151.441870155132705, -33.490746358598834 ], [ 151.43210802028446, -33.484173036709436 ] ] ] } },
{ "type": "Feature", "properties": { "area": 3.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.174763918244281, -32.733121204831683 ], [ 152.16264721578915, -32.747986274536238 ], [ 152.173306583138185, -32.754132692436642 ], [ 152.185423285593288, -32.739268648247318 ], [ 152.174763918244281, -32.733121204831683 ] ] ] } },
{ "type": "Feature", "properties": { "area": 97.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.413338437951694, -27.108708653600289 ], [ 153.413148249484067, -27.329433322644011 ], [ 153.44471518705285, -27.32945481062492 ], [ 153.444905375520477, -27.108730184201317 ], [ 153.413338437951694, -27.108708653600289 ] ] ] } },
{ "type": "Feature", "properties": { "area": 12.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.460770202983269, -27.033389132085823 ], [ 153.433268224716443, -27.115380612976537 ], [ 153.443400448935051, -27.118074144165949 ], [ 153.47090242720185, -27.036084634360744 ], [ 153.460770202983269, -27.033389132085823 ] ] ] } },
{ "type": "Feature", "properties": { "area": 68.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.530316494803571, -27.429417447915331 ], [ 153.443870597177948, -27.671920174676099 ], [ 153.462182581481869, -27.677045593127747 ], [ 153.548628479107521, -27.434554197017 ], [ 153.530316494803571, -27.429417447915331 ] ] ] } },
{ "type": "Feature", "properties": { "area": 4.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.835221877751763, -34.723150825111716 ], [ 150.825540622749344, -34.745468211607609 ], [ 150.837476596295346, -34.748964552481603 ], [ 150.847157851297766, -34.726648110362753 ], [ 150.835221877751763, -34.723150825111716 ] ] ] } },
{ "type": "Feature", "properties": { "area": 10.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.400307922491692, -35.511343157567133 ], [ 150.374180854699148, -35.536034882572153 ], [ 150.390807215784804, -35.54768563228631 ], [ 150.416934283577348, -35.522997492858792 ], [ 150.400307922491692, -35.511343157567133 ] ] ] } },
{ "type": "Feature", "properties": { "area": 34.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.660304226198974, -35.148589383322879 ], [ 150.548965076403078, -35.18970767243038 ], [ 150.558394400612002, -35.206763227668674 ], [ 150.669733550407926, -35.165653567006572 ], [ 150.660304226198974, -35.148589383322879 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.299008238748627, -33.760853263475894 ], [ 151.285727242147232, -33.773907940484506 ], [ 151.293904190680962, -33.779656046795111 ], [ 151.307185187282386, -33.766602245600147 ], [ 151.299008238748627, -33.760853263475894 ] ] ] } },
{ "type": "Feature", "properties": { "area": 13.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.467589427210243, -33.3981576366116 ], [ 151.430515110935801, -33.440988361088309 ], [ 151.444222661980405, -33.449251949841653 ], [ 151.481296978254846, -33.406425303049978 ], [ 151.467589427210243, -33.3981576366116 ] ] ] } },
{ "type": "Feature", "properties": { "area": 10.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.492481980756565, -33.388830711766673 ], [ 151.514931887618161, -33.353711788212586 ], [ 151.499082629565265, -33.346643907113013 ], [ 151.47663272270367, -33.381765683263637 ], [ 151.492481980756565, -33.388830711766673 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.432060293458051, -33.450903174846722 ], [ 151.425837629068894, -33.473643483227704 ], [ 151.442416703322664, -33.476800427186625 ], [ 151.44863936771182, -33.454060947085466 ], [ 151.432060293458051, -33.450903174846722 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.128454335981218, -32.756434077446798 ], [ 152.107032328151519, -32.77771235105596 ], [ 152.117664040466764, -32.785279327103886 ], [ 152.139086048296463, -32.764002862657406 ], [ 152.128454335981218, -32.756434077446798 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.992858478477103, -34.222065914566308 ], [ 150.980484391950597, -34.233613466489345 ], [ 150.987672888643345, -34.238878808862523 ], [ 151.00004697516988, -34.227331978977027 ], [ 150.992858478477103, -34.222065914566308 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.868139213834638, -34.578859438343358 ], [ 150.870466995898141, -34.594297279017439 ], [ 150.881138687822556, -34.59320675445516 ], [ 150.878810905759053, -34.577768711165369 ], [ 150.868139213834638, -34.578859438343358 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.23774933826914, -35.696663359987745 ], [ 150.206496383273588, -35.703563551310324 ], [ 150.209761317646951, -35.713314777259207 ], [ 150.241014272642474, -35.706415429932989 ], [ 150.23774933826914, -35.696663359987745 ] ] ] } },
{ "type": "Feature", "properties": { "area": 10.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.919208551841905, -34.367451752847487 ], [ 150.890723123788263, -34.408216967905773 ], [ 150.904065662130591, -34.414564469699961 ], [ 150.932551090184205, -34.37380234652025 ], [ 150.919208551841905, -34.367451752847487 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.177953326371522, -34.027823044343982 ], [ 151.151637938977444, -34.042789945329602 ], [ 151.159042252526689, -34.051728939184819 ], [ 151.185357639920795, -34.036763615632275 ], [ 151.177953326371522, -34.027823044343982 ] ] ] } },
{ "type": "Feature", "properties": { "area": 3.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.852783610351395, -34.648996763747945 ], [ 150.848035020178543, -34.667436635608318 ], [ 150.858816091310928, -34.66931486892355 ], [ 150.863564681483751, -34.650875415032282 ], [ 150.852783610351395, -34.648996763747945 ] ] ] } },
{ "type": "Feature", "properties": { "area": 10.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.866290906816261, -34.64824397510219 ], [ 150.865998205884608, -34.609622998491943 ], [ 150.848731050674445, -34.609711624926199 ], [ 150.849023751606126, -34.64833256028971 ], [ 150.866290906816261, -34.64824397510219 ] ] ] } },
{ "type": "Feature", "properties": { "area": 16.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.537171398065539, -35.240899147147758 ], [ 150.469500903700748, -35.28600858861622 ], [ 150.479084565356999, -35.295590132350817 ], [ 150.546755059721789, -35.250486026965199 ], [ 150.537171398065539, -35.240899147147758 ] ] ] } },
{ "type": "Feature", "properties": { "area": 6.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.544073559347197, -35.203528793443816 ], [ 150.5207862784969, -35.231560653473863 ], [ 150.53177040586354, -35.237649731904568 ], [ 150.555057686713837, -35.209619975265987 ], [ 150.544073559347197, -35.203528793443816 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.475747870590709, -35.318568368450585 ], [ 150.466368168372952, -35.342059891646727 ], [ 150.479935678068614, -35.345664900983671 ], [ 150.489315380286371, -35.322174425692566 ], [ 150.475747870590709, -35.318568368450585 ] ] ] } },
{ "type": "Feature", "properties": { "area": 6.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.472540710877098, -35.286223324588846 ], [ 150.46403930846202, -35.319442286186323 ], [ 150.476042474872258, -35.321487798134278 ], [ 150.484543877287336, -35.288269676516023 ], [ 150.472540710877098, -35.286223324588846 ] ] ] } },
{ "type": "Feature", "properties": { "area": 4.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.451576703458244, -35.398277879408674 ], [ 150.474529807351246, -35.376220494514904 ], [ 150.4662383322067, -35.370484843164647 ], [ 150.44328522831367, -35.392543796192463 ], [ 150.451576703458244, -35.398277879408674 ] ] ] } },
{ "type": "Feature", "properties": { "area": 3.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.389159156614198, -35.457510983492647 ], [ 150.384667278027962, -35.477729819465921 ], [ 150.395675315948381, -35.479351796783376 ], [ 150.400167194534589, -35.459133368650519 ], [ 150.389159156614198, -35.457510983492647 ] ] ] } },
{ "type": "Feature", "properties": { "area": 11.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.43379877699914, -35.401488318549482 ], [ 150.400353254564749, -35.441127277830027 ], [ 150.413079197965175, -35.448255830299622 ], [ 150.446524720399566, -35.408620379762034 ], [ 150.43379877699914, -35.401488318549482 ] ] ] } },
{ "type": "Feature", "properties": { "area": 21.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.917548523435613, -34.304819382693033 ], [ 150.908247834528225, -34.37026769055209 ], [ 150.929527427076238, -34.372328700075208 ], [ 150.938828115983625, -34.306882001120272 ], [ 150.917548523435613, -34.304819382693033 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.90284805988415, -34.417857451184368 ], [ 150.892508822208896, -34.448457728019264 ], [ 150.90321746672609, -34.450918632285394 ], [ 150.913556704401316, -34.420319256687456 ], [ 150.90284805988415, -34.417857451184368 ] ] ] } },
{ "type": "Feature", "properties": { "area": 44.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.889071031435236, -34.480176690135039 ], [ 150.844543135993348, -34.570952129712154 ], [ 150.872632674398659, -34.580299038007595 ], [ 150.917160569840547, -34.489533792590507 ], [ 150.889071031435236, -34.480176690135039 ] ] ] } },
{ "type": "Feature", "properties": { "area": 80.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.555799979535323, -31.986388186784922 ], [ 152.486296037493844, -32.171328985919544 ], [ 152.513157941717736, -32.178569153204869 ], [ 152.582661883759243, -31.993643018355709 ], [ 152.555799979535323, -31.986388186784922 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.53037060570324, -32.181497416722777 ], [ 152.533153539421079, -32.200026500473513 ], [ 152.543707221023539, -32.198891388772367 ], [ 152.5409242873057, -32.180362073916889 ], [ 152.53037060570324, -32.181497416722777 ] ] ] } },
{ "type": "Feature", "properties": { "area": 31.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.539144069727456, -32.434911077595139 ], [ 152.398835306988559, -32.481403036214417 ], [ 152.405051144980035, -32.494754363619386 ], [ 152.545359907718904, -32.448269298797904 ], [ 152.539144069727456, -32.434911077595139 ] ] ] } },
{ "type": "Feature", "properties": { "area": 42.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.92605818535435, -31.464963546930857 ], [ 152.824182625057375, -31.582971262219715 ], [ 152.840309317593665, -31.59308042968663 ], [ 152.942184877890611, -31.475085495469632 ], [ 152.92605818535435, -31.464963546930857 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.283496501484308, -33.884964022501869 ], [ 151.267561779878832, -33.891536572603947 ], [ 151.272372881127467, -33.899573806040685 ], [ 151.288307602732914, -33.89300187529237 ], [ 151.283496501484308, -33.884964022501869 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.51010258022464, -32.426042676288631 ], [ 152.523549798614482, -32.438118247410102 ], [ 152.531870264858441, -32.431517809741749 ], [ 152.518423046468541, -32.41944135473048 ], [ 152.51010258022464, -32.426042676288631 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.076343551681987, -30.895426732993084 ], [ 153.076669333571289, -30.910919963588146 ], [ 153.086732912811584, -30.910764182723778 ], [ 153.086407130922254, -30.895270926912666 ], [ 153.076343551681987, -30.895426732993084 ] ] ] } },
{ "type": "Feature", "properties": { "area": 7.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.956880530902055, -31.282790655403996 ], [ 152.961857409043546, -31.317475697513601 ], [ 152.976551137513439, -31.315936652109194 ], [ 152.971574259371948, -31.281251043429016 ], [ 152.956880530902055, -31.282790655403996 ] ] ] } },
{ "type": "Feature", "properties": { "area": 14.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.967143255501924, -31.190130135878658 ], [ 152.95044085987476, -31.251783625329757 ], [ 152.965454344596196, -31.254757096527101 ], [ 152.982156740223331, -31.193105547152246 ], [ 152.967143255501924, -31.190130135878658 ] ] ] } },
{ "type": "Feature", "properties": { "area": 34.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.958174815931926, -31.313073747471105 ], [ 152.898225469273257, -31.421512768429412 ], [ 152.916078780804099, -31.42870413260334 ], [ 152.976028127462826, -31.320273414519619 ], [ 152.958174815931926, -31.313073747471105 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.291411655635102, -29.777390920898217 ], [ 153.279270692719336, -29.808634976360967 ], [ 153.290739128839391, -29.811990653624473 ], [ 153.302880091755156, -29.780747646070473 ], [ 153.291411655635102, -29.777390920898217 ] ] ] } },
{ "type": "Feature", "properties": { "area": 9.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.002670690005942, -30.596746771019944 ], [ 153.008240612634779, -30.643680962889054 ], [ 153.021683079498132, -30.642499824428402 ], [ 153.016113156869267, -30.595565059769843 ], [ 153.002670690005942, -30.596746771019944 ] ] ] } },
{ "type": "Feature", "properties": { "area": 42.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.035452968025766, -31.068837766851505 ], [ 152.960647737790424, -31.183002382806269 ], [ 152.980242822040964, -31.192404932935823 ], [ 153.055048052276334, -31.078251638594566 ], [ 153.035452968025766, -31.068837766851505 ] ] ] } },
{ "type": "Feature", "properties": { "area": 23.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.620559111548914, -28.634957852435601 ], [ 153.602392492208764, -28.709684798174788 ], [ 153.623586201543361, -28.713649532703943 ], [ 153.641752820883511, -28.638925415908989 ], [ 153.620559111548914, -28.634957852435601 ] ] ] } },
{ "type": "Feature", "properties": { "area": 11.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.059140948468951, -36.455373508281859 ], [ 150.043755719573483, -36.498451480300211 ], [ 150.059834424865443, -36.50216328336176 ], [ 150.075219653760882, -36.459087375298118 ], [ 150.059140948468951, -36.455373508281859 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.058733516160913, -36.416110908675719 ], [ 150.070363379980819, -36.428793446985765 ], [ 150.079189782968655, -36.42355313070491 ], [ 150.067559919148749, -36.410869736483811 ], [ 150.058733516160913, -36.416110908675719 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.526730241278472, -32.357216650715174 ], [ 152.53745246923836, -32.36245977902913 ], [ 152.556117454533648, -32.335221266052457 ], [ 152.545395226573788, -32.329976558887907 ], [ 152.526730241278472, -32.357216650715174 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.525607334974211, -32.373071857191974 ], [ 152.509496939263869, -32.402532938564228 ], [ 152.520287857935244, -32.406739958767311 ], [ 152.536398253645586, -32.377280249873458 ], [ 152.525607334974211, -32.373071857191974 ] ] ] } },
{ "type": "Feature", "properties": { "area": 26.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.546255812381759, -32.224807690683399 ], [ 152.506809074804153, -32.311036727505233 ], [ 152.524875227170412, -32.316942711017639 ], [ 152.564321964748046, -32.230719289367975 ], [ 152.546255812381759, -32.224807690683399 ] ] ] } },
{ "type": "Feature", "properties": { "area": 21.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.688641145786477, -31.869860751726847 ], [ 152.598239461321839, -31.946508238385423 ], [ 152.607858251424858, -31.954679852445107 ], [ 152.698259935889467, -31.878039175882968 ], [ 152.688641145786477, -31.869860751726847 ] ] ] } },
{ "type": "Feature", "properties": { "area": 7.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.365029412539741, -29.432636998586727 ], [ 153.348901389133403, -29.469105332821144 ], [ 153.361378396834908, -29.473288479835848 ], [ 153.377506420241247, -29.436821649350204 ], [ 153.365029412539741, -29.432636998586727 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.694519103595951, -35.066258225038425 ], [ 150.685571715218913, -35.080943375821327 ], [ 150.694486093373769, -35.084580908178324 ], [ 150.703433481750835, -35.06989641208434 ], [ 150.694519103595951, -35.066258225038425 ] ] ] } },
{ "type": "Feature", "properties": { "area": 4.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.02790527656353, -30.498239435406575 ], [ 153.02269325296129, -30.526808822712351 ], [ 153.032375488760806, -30.528119643279723 ], [ 153.037587512363046, -30.499550641238759 ], [ 153.02790527656353, -30.498239435406575 ] ] ] } },
{ "type": "Feature", "properties": { "area": 15.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.557549872444213, -28.593052922738785 ], [ 153.606537025181154, -28.648923265351776 ], [ 153.61853611694562, -28.64081834007602 ], [ 153.569548964208707, -28.584943684106371 ], [ 153.557549872444213, -28.593052922738785 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.220334942658525, -35.807510329173525 ], [ 150.222822268469201, -35.821228866610518 ], [ 150.23378200010049, -35.819922263351017 ], [ 150.231294674289842, -35.80620350014803 ], [ 150.220334942658525, -35.807510329173525 ] ] ] } },
{ "type": "Feature", "properties": { "area": 14.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.174137297509276, -35.823516378914633 ], [ 150.164961041884709, -35.860779282120802 ], [ 150.18919494538045, -35.864699843517201 ], [ 150.198371201005017, -35.827438782641579 ], [ 150.174137297509276, -35.823516378914633 ] ] ] } },
{ "type": "Feature", "properties": { "area": 16.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.165777759973736, -35.851035862090335 ], [ 150.136320261082119, -35.903445763990206 ], [ 150.153398594755259, -35.909745629907285 ], [ 150.182856093646876, -35.857339897677299 ], [ 150.165777759973736, -35.851035862090335 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.100969921923877, -30.351490298601746 ], [ 153.094184020450314, -30.379144909540003 ], [ 153.10844080816068, -30.381748871852658 ], [ 153.115226709634214, -30.354094997407792 ], [ 153.100969921923877, -30.351490298601746 ] ] ] } },
{ "type": "Feature", "properties": { "area": 8.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 149.96071729378852, -37.245131286879975 ], [ 149.932686679588727, -37.281901182844848 ], [ 149.944112056833433, -37.287416382600348 ], [ 149.972142671033225, -37.250649180212328 ], [ 149.96071729378852, -37.245131286879975 ] ] ] } },
{ "type": "Feature", "properties": { "area": 68.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.393296291402436, -32.471689777403078 ], [ 152.263166316201023, -32.582622747197064 ], [ 152.284331661566995, -32.600259831098413 ], [ 152.414461636768436, -32.489348657441234 ], [ 152.393296291402436, -32.471689777403078 ] ] ] } },
{ "type": "Feature", "properties": { "area": 10.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.566955606277105, -28.31350633644356 ], [ 153.566994043912956, -28.364403154087459 ], [ 153.581598175587715, -28.364394612160908 ], [ 153.581559737951864, -28.313497790423689 ], [ 153.566955606277105, -28.31350633644356 ] ] ] } },
{ "type": "Feature", "properties": { "area": 3.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.323944811235833, -35.629359198715811 ], [ 150.301016341957137, -35.632969353719176 ], [ 150.303469086492498, -35.643259322803935 ], [ 150.326397555771166, -35.639649632584238 ], [ 150.323944811235833, -35.629359198715811 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.301788601143869, -35.633672046988373 ], [ 150.287381175450633, -35.658743461891603 ], [ 150.298237219991961, -35.662862412603111 ], [ 150.312644645685225, -35.637792290534193 ], [ 150.301788601143869, -35.633672046988373 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.200993450929104, -35.695762007514091 ], [ 150.185468113659539, -35.703589551082267 ], [ 150.190869243704554, -35.71065377661219 ], [ 150.20639458097412, -35.702826926616176 ], [ 150.200993450929104, -35.695762007514091 ] ] ] } },
{ "type": "Feature", "properties": { "area": 11.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.007443240734915, -36.637572552567505 ], [ 149.983151534874082, -36.680951259884239 ], [ 149.997607962199652, -36.686159259677382 ], [ 150.021899668060485, -36.642783488017528 ], [ 150.007443240734915, -36.637572552567505 ] ] ] } },
{ "type": "Feature", "properties": { "area": 4.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 149.947123319521353, -37.355907479046856 ], [ 149.944581160759611, -37.379231991707378 ], [ 149.955734593519367, -37.379999704917353 ], [ 149.958276752281108, -37.356675430961559 ], [ 149.947123319521353, -37.355907479046856 ] ] ] } },
{ "type": "Feature", "properties": { "area": 15.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.12589147682732, -36.100705379899267 ], [ 150.116044689846262, -36.164782735637523 ], [ 150.131184238173063, -36.166299684288582 ], [ 150.14103102515412, -36.102223567670634 ], [ 150.12589147682732, -36.100705379899267 ] ] ] } },
{ "type": "Feature", "properties": { "area": 7.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.150895485010807, -36.013124875496636 ], [ 150.133328495567525, -36.053523154670351 ], [ 150.144559457025167, -36.056716009660974 ], [ 150.162126446468449, -36.01631936858422 ], [ 150.150895485010807, -36.013124875496636 ] ] ] } },
{ "type": "Feature", "properties": { "area": 68.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.772273056596134, -31.717898691811367 ], [ 152.712427680871201, -31.836168983864475 ], [ 152.746026128712913, -31.848446516127446 ], [ 152.805871504437874, -31.73019193633041 ], [ 152.772273056596134, -31.717898691811367 ] ] ] } },
{ "type": "Feature", "properties": { "area": 7.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.989493574791879, -30.760048806130182 ], [ 152.991879197907707, -30.798180419014635 ], [ 153.004503644948954, -30.797597539682879 ], [ 153.002118021833127, -30.759465695700012 ], [ 152.989493574791879, -30.760048806130182 ] ] ] } },
{ "type": "Feature", "properties": { "area": 13.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.277794846295905, -29.82235010198044 ], [ 153.253959742910183, -29.876738038856626 ], [ 153.269601929992376, -29.881893368777018 ], [ 153.293437033378098, -29.827508241151222 ], [ 153.277794846295905, -29.82235010198044 ] ] ] } },
{ "type": "Feature", "properties": { "area": 7.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.254229131824076, -29.874447999881987 ], [ 153.267566479566426, -29.901857513639534 ], [ 153.282688589948748, -29.896326931200122 ], [ 153.269351242206426, -29.868915896712689 ], [ 153.254229131824076, -29.874447999881987 ] ] ] } },
{ "type": "Feature", "properties": { "area": 14.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.344637190483979, -29.575464868401184 ], [ 153.369602543233555, -29.513083544948621 ], [ 153.354714391912239, -29.508572460817479 ], [ 153.329749039162692, -29.570956567015674 ], [ 153.344637190483979, -29.575464868401184 ] ] ] } },
{ "type": "Feature", "properties": { "area": 3.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.362737747409909, -29.477445405187137 ], [ 153.350662031579162, -29.497432300536605 ], [ 153.36074039013414, -29.502045538668089 ], [ 153.372816105964887, -29.482059553487954 ], [ 153.362737747409909, -29.477445405187137 ] ] ] } },
{ "type": "Feature", "properties": { "area": 14.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.320146124747509, -29.570645511048539 ], [ 153.326721920535533, -29.617892143549035 ], [ 153.348291180744212, -29.615622805009636 ], [ 153.341715384956188, -29.568375109488429 ], [ 153.320146124747509, -29.570645511048539 ] ] ] } },
{ "type": "Feature", "properties": { "area": 32.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.995057588166247, -30.645326962844418 ], [ 152.978718199536701, -30.746980018879675 ], [ 153.000642826229068, -30.74958434257352 ], [ 153.016982214858587, -30.647934031146121 ], [ 152.995057588166247, -30.645326962844418 ] ] ] } },
{ "type": "Feature", "properties": { "area": 11.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.56574215412877, -28.321042880928342 ], [ 153.576646967460789, -28.322863201806179 ], [ 153.591499775291055, -28.253891177503917 ], [ 153.580594961959008, -28.252069676968144 ], [ 153.56574215412877, -28.321042880928342 ] ] ] } },
{ "type": "Feature", "properties": { "area": 3.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.137571081393247, -30.276322562400033 ], [ 153.133058608740953, -30.299554708416988 ], [ 153.144218632256468, -30.301170784397364 ], [ 153.148731104908762, -30.277939021166041 ], [ 153.137571081393247, -30.276322562400033 ] ] ] } },
{ "type": "Feature", "properties": { "area": 11.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.165656048374757, -35.957394920534476 ], [ 150.166246789564497, -35.907538102108255 ], [ 150.151055464443601, -35.907420052725122 ], [ 150.150464723253862, -35.957276945575231 ], [ 150.165656048374757, -35.957394920534476 ] ] ] } },
{ "type": "Feature", "properties": { "area": 10.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.549691773803886, -28.5355217517371 ], [ 153.562793840662067, -28.595908674150497 ], [ 153.574151275641327, -28.594008419731992 ], [ 153.561049208783146, -28.533620406644971 ], [ 153.549691773803886, -28.5355217517371 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.464585299834823, -28.114480730957347 ], [ 153.475531490307674, -28.129430619960267 ], [ 153.483446286638525, -28.124923201117159 ], [ 153.472500096165703, -28.109972683559892 ], [ 153.464585299834823, -28.114480730957347 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.126252219774756, -36.199558378437217 ], [ 150.128761030756976, -36.213816861646031 ], [ 150.138454184084168, -36.212706528380018 ], [ 150.135945373101947, -36.198447842874081 ], [ 150.126252219774756, -36.199558378437217 ] ] ] } },
{ "type": "Feature", "properties": { "area": 9.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.072165346981933, -36.372487726327627 ], [ 150.055711366780514, -36.41430073553596 ], [ 150.068902154975234, -36.417663179118982 ], [ 150.085356135176653, -36.375851979149459 ], [ 150.072165346981933, -36.372487726327627 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.14452858170128, -36.260574211554953 ], [ 150.122240618993203, -36.289157009337394 ], [ 150.131593727687289, -36.293896170263906 ], [ 150.153881690395366, -36.265315107975731 ], [ 150.14452858170128, -36.260574211554953 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 150.126885541351982, -36.085934320536161 ], [ 150.133363903413453, -36.098672202540037 ], [ 150.143262757164621, -36.095385020868513 ], [ 150.136784395103149, -36.082646606084559 ], [ 150.126885541351982, -36.085934320536161 ] ] ] } },
{ "type": "Feature", "properties": { "area": 2.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.252426757662533, -33.941576829965534 ], [ 151.252364256796739, -33.957664398960631 ], [ 151.263153831247166, -33.957693240728936 ], [ 151.263216332112961, -33.941605677186324 ], [ 151.252426757662533, -33.941576829965534 ] ] ] } },
{ "type": "Feature", "properties": { "area": 25.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.503024641329773, -33.351022779979488 ], [ 151.577393068494985, -33.290723412378014 ], [ 151.563366240797961, -33.278639156093327 ], [ 151.488997813632778, -33.33894688009422 ], [ 151.503024641329773, -33.351022779979488 ] ] ] } },
{ "type": "Feature", "properties": { "area": 18.7 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.60391978725491, -28.721882073666812 ], [ 153.585402173111561, -28.803430405663754 ], [ 153.601022913046734, -28.806155109203882 ], [ 153.619540527190111, -28.724608906808825 ], [ 153.60391978725491, -28.721882073666812 ] ] ] } },
{ "type": "Feature", "properties": { "area": 693.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.307709695430958, -24.988508915482228 ], [ 153.022000003224207, -25.785262616088694 ], [ 153.079420107856293, -25.802011102636783 ], [ 153.365129800063073, -25.005368329745604 ], [ 153.307709695430958, -24.988508915482228 ] ] ] } },
{ "type": "Feature", "properties": { "area": 6.3 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.833742791696693, -31.603121692047083 ], [ 152.827404978140862, -31.638465804471075 ], [ 152.839302590570952, -31.640012492853824 ], [ 152.845640404126783, -31.604668968002549 ], [ 152.833742791696693, -31.603121692047083 ] ] ] } },
{ "type": "Feature", "properties": { "area": 4.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.322909612995119, -33.577499042299621 ], [ 151.318960206919115, -33.60309760378393 ], [ 151.331637176589396, -33.604454571076012 ], [ 151.335586582665428, -33.578856412312042 ], [ 151.322909612995119, -33.577499042299621 ] ] ] } },
{ "type": "Feature", "properties": { "area": 28.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.219183428195493, -29.973573757379498 ], [ 153.183866690095726, -30.058950363870849 ], [ 153.204242952428842, -30.06526697414898 ], [ 153.239559690528637, -29.979895808333573 ], [ 153.219183428195493, -29.973573757379498 ] ] ] } },
{ "type": "Feature", "properties": { "area": 9.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.188130603465112, -30.081075068925884 ], [ 153.193103719409834, -30.116214438045755 ], [ 153.210750111957282, -30.114345419567229 ], [ 153.20577699601256, -30.079205385917756 ], [ 153.188130603465112, -30.081075068925884 ] ] ] } },
{ "type": "Feature", "properties": { "area": 77.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.053383035788812, -30.915952615761139 ], [ 153.022577374416386, -31.053280525921295 ], [ 153.060058801459775, -31.059455453740959 ], [ 153.090864462832201, -30.92213643824433 ], [ 153.053383035788812, -30.915952615761139 ] ] ] } },
{ "type": "Feature", "properties": { "area": 12.5 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.135066978901961, -30.304699731399385 ], [ 153.096923316797842, -30.353454590299886 ], [ 153.109226019626419, -30.360623329927343 ], [ 153.147369681730567, -30.311872041071432 ], [ 153.135066978901961, -30.304699731399385 ] ] ] } },
{ "type": "Feature", "properties": { "area": 148.9 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.559780278105933, -28.858905165374594 ], [ 153.404829827173927, -29.103121155816151 ], [ 153.437734656731266, -29.119077311325952 ], [ 153.592685107663272, -28.874899044667824 ], [ 153.559780278105933, -28.858905165374594 ] ] ] } },
{ "type": "Feature", "properties": { "area": 5.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 153.574814149386327, -28.35757451714586 ], [ 153.562477795765716, -28.389575377269619 ], [ 153.572700006881519, -28.392625610925453 ], [ 153.58503636050213, -28.360625671113336 ], [ 153.574814149386327, -28.35757451714586 ] ] ] } },
{ "type": "Feature", "properties": { "area": 33.8 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.599901815272347, -33.188108642431708 ], [ 151.542194492731795, -33.261615695321318 ], [ 151.563861760300512, -33.273513131011249 ], [ 151.621569082841063, -33.200016081658021 ], [ 151.599901815272347, -33.188108642431708 ] ] ] } },
{ "type": "Feature", "properties": { "area": 11.0 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.62486053843574, -33.139052104237216 ], [ 151.619195155562437, -33.17764141657679 ], [ 151.6381444023867, -33.179590690750238 ], [ 151.643809785260004, -33.141002236368706 ], [ 151.62486053843574, -33.139052104237216 ] ] ] } },
{ "type": "Feature", "properties": { "area": 61.4 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.647932321766802, -33.117158806658004 ], [ 151.735052086265171, -33.017016218993483 ], [ 151.707974250578189, -33.000461536667551 ], [ 151.62085448607985, -33.100622947984384 ], [ 151.647932321766802, -33.117158806658004 ] ] ] } },
{ "type": "Feature", "properties": { "area": 191.2 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.063097787308209, -32.754603421880958 ], [ 151.767874785630056, -32.886437323152997 ], [ 151.789535029810764, -32.920660742663429 ], [ 152.084758031488917, -32.788877690879936 ], [ 152.063097787308209, -32.754603421880958 ] ] ] } },
{ "type": "Feature", "properties": { "area": 67.1 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 152.243454296747956, -32.582770954550604 ], [ 152.162404811647633, -32.681872015149025 ], [ 152.19362026601479, -32.699965989790407 ], [ 152.274669751115113, -32.60088498479859 ], [ 152.243454296747956, -32.582770954550604 ] ] ] } },
{ "type": "Feature", "properties": { "area": 3.6 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 151.377071861239386, -33.523596463255998 ], [ 151.353052179498889, -33.529137911615919 ], [ 151.356141273190929, -33.538442265783701 ], [ 151.38016095493137, -33.53290141373239 ], [ 151.377071861239386, -33.523596463255998 ] ] ] } }
]
}

@ -0,0 +1,817 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Shoreline position v.s. wave energy\n",
"This notebook looks at the relationship between shoreline position and wave energy."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import datetime\n",
"import pickle\n",
"import fiona\n",
"import shapely\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import geopandas\n",
"from scipy.stats import percentileofscore\n",
"from shapely.geometry import Point\n",
"import numpy as np\n",
"import requests\n",
"from bs4 import BeautifulSoup\n",
"import urllib.parse\n",
"import itertools\n",
"from tqdm import tqdm\n",
"import glob\n",
"from scipy.interpolate import griddata, SmoothBivariateSpline\n",
"from scipy.ndimage.filters import gaussian_filter\n",
"import colorcet as cc"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Shoreline positions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import Killian's data\n",
"shorelines = pickle.load(open(\"14_timeseries_Australia_2.pkl\", \"rb\"))\n",
"beaches = fiona.open(\"14_beaches_Australia.geojson\")\n",
"polygons = fiona.open(\"14_polygons_Australia.geojson\")\n",
"transects = fiona.open(\"14_transects_Australia.geojson\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [
0
]
},
"outputs": [],
"source": [
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"# Import Chris' data\n",
"df_sites = df_from_csv('sites.csv', index_col=[0])\n",
"df_obs_impacts = df_from_csv('impacts_observed.csv', index_col=[0])\n",
"df_waves = df_from_csv('waves.csv', index_col=[0,1])\n",
"df_waves.index = df_waves.index.set_levels([df_waves.index.levels[0], pd.to_datetime(df_waves.index.levels[1])])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get coorindates of transects where Killian has given shoreline data\n",
"transect_data = [x for x in transects if x['properties']['id'] in shorelines.keys()]\n",
"transect_dict = [{'name':x['properties']['name'],\n",
" 'id':x['properties']['id'],\n",
" 'orientation':x['properties']['orientation'],\n",
" 'start_coords': Point(x['geometry']['coordinates'][0][0], x['geometry']['coordinates'][0][1]),\n",
" 'end_coords': Point(x['geometry']['coordinates'][1][0], x['geometry']['coordinates'][1][1])} for x in transect_data]\n",
"df_transects = pd.DataFrame(transect_dict)\n",
"gdf_transects = geopandas.GeoDataFrame(df_transects, geometry='start_coords',crs={'init':'epsg:4326'})\n",
"\n",
"# Find closest Chris transect to each one of Kilian's transects\n",
"# First transform coords using geopandas\n",
"df_sites['coords'] = list(zip(df_sites.lon, df_sites.lat))\n",
"df_sites['coords'] = df_sites['coords'].apply(Point)\n",
"gdf_sites = geopandas.GeoDataFrame(df_sites, geometry='coords',crs={'init':'epsg:4326'})\n",
"gdf_sites['site_id'] = gdf_sites.index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Find nearest Chris transect for each of Kilian's transect\n",
"\n",
"from shapely.ops import nearest_points\n",
"\n",
"def nearest(row,\n",
" geom_union,\n",
" df1,\n",
" df2,\n",
" geom1_col='geometry',\n",
" geom2_col='geometry',\n",
" src_column=None):\n",
" \"\"\"Find the nearest point and return the corresponding value from specified column.\"\"\"\n",
" # Find the geometry that is closest\n",
" nearest = df2[geom2_col] == nearest_points(row[geom1_col], geom_union)[1]\n",
" # Get the corresponding value from df2 (matching is based on the geometry)\n",
" value = df2[nearest][src_column].get_values()[0]\n",
" return value\n",
"\n",
"unary_union = gdf_sites.unary_union\n",
"gdf_transects['chris_site_id'] = gdf_transects.apply(nearest,\n",
" geom_union=unary_union,\n",
" df1=gdf_transects,\n",
" df2=gdf_sites,\n",
" geom1_col='start_coords',\n",
" geom2_col='coords',\n",
" src_column='site_id',\n",
" axis=1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Got the closests site_id, now check the distance. If distance too far between these sites, then probably not a good match.\n",
"gdf_transects = gdf_transects.merge(gdf_sites[['coords']], left_on='chris_site_id', right_on='site_id')\n",
"gdf_transects = gdf_transects.rename({'coords': 'chris_coords'},axis='columns')\n",
"gdf_transects\n",
"distances = gdf_transects[['start_coords']].to_crs(epsg=28356).distance(\n",
" geopandas.GeoDataFrame(gdf_transects[['chris_coords']],\n",
" geometry='chris_coords',\n",
" crs={\n",
" 'init': 'epsg:4326'\n",
" }).to_crs(epsg=28356))\n",
"\n",
"gdf_transects['transect_to_chris_dist'] = distances"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Limit used transects to 300 m max distance\n",
"gdf_transects = gdf_transects[gdf_transects.transect_to_chris_dist < 300]\n",
"gdf_transects"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Calculate the change to the percentile of shoreline right after the storm\n",
"# Kilian's shorelines are given for z=0 MSL, so find change in shoreline due to storm\n",
"gdf_transects=gdf_transects.merge(df_obs_impacts.width_msl_change_m,left_on=['chris_site_id'], right_on=['site_id'])\n",
"gdf_transects"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# At each beach calculate percentile of shoreline right before the storm\n",
"data = []\n",
"\n",
"for row in gdf_transects.iterrows():\n",
"\n",
" # Get shoreline records\n",
" id_shorelines = shorelines[row[1].id]['chainage']\n",
" id_dates = shorelines[row[1].id]['dates']\n",
"\n",
" # Find last date before June 2016 storm\n",
" dt_storm = datetime.datetime(2016, 6, 3)\n",
" dt_storm = dt_storm.replace(tzinfo=datetime.timezone.utc)\n",
" mask = pd.Series([x < dt_storm for x in id_dates])\n",
" i_last_obs = mask[::-1].idxmax()\n",
"\n",
" last_obs_ch = id_shorelines[i_last_obs]\n",
" last_obs_date = id_dates[i_last_obs]\n",
" post_storm_ch = last_obs_ch + row[1].width_msl_change_m\n",
"\n",
" prestorm_shoreline_pctile = percentileofscore(id_shorelines[~np.isnan(id_shorelines)], last_obs_ch)\n",
" poststorm_shoreline_pctile = percentileofscore(id_shorelines[~np.isnan(id_shorelines)],\n",
" post_storm_ch)\n",
" change_shoreline_pctile = poststorm_shoreline_pctile - prestorm_shoreline_pctile\n",
"\n",
" rel_change_shoreline_pctile = (poststorm_shoreline_pctile- prestorm_shoreline_pctile)/prestorm_shoreline_pctile *100\n",
" \n",
" # Calculate percentile of shoreline score\n",
" data.append({\n",
" 'prestorm_shoreline_pctile': prestorm_shoreline_pctile,\n",
" 'poststorm_shoreline_pctile': poststorm_shoreline_pctile,\n",
" 'change_shoreline_pctile': change_shoreline_pctile,\n",
" 'rel_change_shoreline_pctile': rel_change_shoreline_pctile,\n",
" 'index': row[0]\n",
" })\n",
"\n",
"data = pd.DataFrame(data).set_index('index')\n",
"gdf_transects = gdf_transects.join(data)\n",
"gdf_transects"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Grab data from NSW Nearshore wave transformation tool.\n",
"# Need to relate Kilian's site id\n",
"sites = [{\n",
" 'id': 'way4042355',\n",
" 'site_id': 'DEEWHYs0003',\n",
" 'nsw_nearshore_id': 1007832\n",
"}, {\n",
" 'id': 'way13858409',\n",
" 'site_id': 'DEEWHYn0003',\n",
" 'nsw_nearshore_id': 1007822, \n",
"}, {\n",
" 'id': 'way13858412',\n",
" 'site_id': 'MONA0011',\n",
" 'nsw_nearshore_id': 1007726, \n",
"},\n",
"{\n",
" 'id': 'way14040821',\n",
" 'site_id': 'NARRA0007',\n",
" 'nsw_nearshore_id': 1007760, \n",
"},{\n",
" 'id': 'way14040977',\n",
" 'site_id': 'NARRA0018',\n",
" 'nsw_nearshore_id': 1007770, \n",
"},{\n",
" 'id': 'way14041013',\n",
" 'site_id': 'NARRA0030',\n",
" 'nsw_nearshore_id': 1007778, \n",
"},{\n",
" 'id': 'way25005079',\n",
" 'site_id': 'MACM0009',\n",
" 'nsw_nearshore_id': 1007354, \n",
"},{\n",
" 'id': 'way54609773',\n",
" 'site_id': 'WAMBE0005',\n",
" 'nsw_nearshore_id': 1007264, \n",
"},{\n",
" 'id': 'way54667480',\n",
" 'site_id': 'AVOCAn0005',\n",
" 'nsw_nearshore_id': 1007306, \n",
"},{\n",
" 'id': 'way54669965',\n",
" 'site_id': 'AVOCAs0004',\n",
" 'nsw_nearshore_id': 1007312, \n",
"},{\n",
" 'id': 'way134627391',\n",
" 'site_id': 'ONEMILE0007',\n",
" 'nsw_nearshore_id': 1005098, \n",
"},{\n",
" 'id': 'way159040990',\n",
" 'site_id': 'LHOUSE0004',\n",
" 'nsw_nearshore_id': 1005448, \n",
"},{\n",
" 'id': 'way173070325',\n",
" 'site_id': 'LHOUSEn0077',\n",
" 'nsw_nearshore_id': 1004186, \n",
"},{\n",
" 'id': 'way182614828',\n",
" 'site_id': 'TREACH0009',\n",
" 'nsw_nearshore_id': 1005472, \n",
"},{\n",
" 'id': 'way189407637',\n",
" 'site_id': 'NSHORE_n0063',\n",
" 'nsw_nearshore_id': 1003994, \n",
"},{\n",
" 'id': 'way190929758',\n",
" 'site_id': 'CRESn0069',\n",
" 'nsw_nearshore_id': 1003708, \n",
"},{\n",
" 'id': 'way222144734',\n",
" 'site_id': 'BLUEYS0002',\n",
" 'nsw_nearshore_id': 1005316, \n",
"},{\n",
" 'id': 'way222145626',\n",
" 'site_id': 'BOOM0008',\n",
" 'nsw_nearshore_id': 1005298, \n",
"},{\n",
" 'id': 'way224198013',\n",
" 'site_id': 'MANNING0048',\n",
" 'nsw_nearshore_id': 1004712, \n",
"},{\n",
" 'id': 'way450323845',\n",
" 'site_id': 'NAMB0033',\n",
" 'nsw_nearshore_id': np.nan, \n",
"},{\n",
" 'id': 'relation2303044',\n",
" 'site_id': 'ENTRA0041',\n",
" 'nsw_nearshore_id': 1007110, \n",
"},{\n",
" 'id': 'relation2723197',\n",
" 'site_id': 'GRANTSn0022',\n",
" 'nsw_nearshore_id': 1004296, \n",
"}\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def nearshore_wave_csv_url(id,start_date,end_date):\n",
" URL = 'http://www.nswaves.com.au/transform.php'\n",
" payload = {\n",
" 'init': '1',\n",
" 'type': 'Transform-Full',\n",
" 'startsite': '{}'.format(id),\n",
" 'endsite': '{}'.format(id),\n",
" 'timestep': 'null',\n",
" 'startdate': start_date.strftime('%Y-%m-%d'),\n",
" 'starthour': '00',\n",
" 'enddate': end_date.strftime('%Y-%m-%d'),\n",
" 'endhour': '00',\n",
" 'sitestep': '1',\n",
" 'method': 'Parametric',\n",
" 'source': 'Waverider',\n",
" 'filename': 'ckl',\n",
" 'format': 'csv',\n",
" }\n",
"\n",
" session = requests.session()\n",
" r = requests.post(URL, data=payload)\n",
" \n",
" soup = BeautifulSoup(r.text)\n",
" \n",
" # Check if data extraction was successful\n",
" if soup.findAll(text=\"OK : Data Extraction Successful - Click filename/s to download data file\"):\n",
"\n",
" # Find all links\n",
" for link in soup.find_all('a'):\n",
"\n",
" href = link.get('href')\n",
" if '/data/full' not in href:\n",
" continue\n",
"\n",
" # Convert to absolute convert to absolute url\n",
" csv_url = urllib.parse.urljoin(URL, href)\n",
"\n",
" return csv_url\n",
" else:\n",
" return None\n",
"\n",
" \n",
"def download_csv(url, file_path):\n",
" urllib.request.urlretrieve(url,file_path)\n",
" print('Downloaded {}'.format(file_path))\n",
" \n",
" \n",
"def daterange(start_date, end_date,delta):\n",
" while start_date < end_date:\n",
" yield start_date\n",
" start_date += delta\n",
" \n",
"def download_nearshore_csv(id, site_id, nsw_nearshore_id, start_date, end_date,output_folder='./14_nearshore_waves/'):\n",
" \n",
" # Create output folder if doesn't already exists\n",
" os.makedirs(output_folder, exist_ok=True)\n",
"\n",
" # Output filename\n",
" output_filename = '{}_{}_{}_{}_{}.csv'.format(\n",
" id,\n",
" site_id,\n",
" nsw_nearshore_id,\n",
" start_date.strftime('%Y%m%d'),\n",
" end_date.strftime('%Y%m%d'),\n",
" )\n",
" output_filepath = os.path.join(output_folder,output_filename)\n",
"\n",
" # Don't download if file already exists\n",
" if os.path.isfile(output_filepath):\n",
" return\n",
"\n",
" csv_url = nearshore_wave_csv_url(nsw_nearshore_id,start_date,end_date)\n",
"\n",
" if csv_url:\n",
" download_csv(csv_url, output_filepath)\n",
" else:\n",
" print('No url found')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# start_year = 2005\n",
"# end_year = 2015\n",
"# output_folder = './14_nearshore_waves/'\n",
"\n",
"# # Create list of start end dates we want to request\n",
"# date_ranges = [(datetime.datetime(x, 1, 1), datetime.datetime(x, 12, 31))\n",
"# for x in range(start_year, end_year + 1)]\n",
"\n",
"# inputs = list(itertools.product(sites, date_ranges))\n",
"\n",
"# for inpt in inputs:\n",
"# download_nearshore_csv(inpt[0]['id'], inpt[0]['site_id'], inpt[0]['nsw_nearshore_id'], inpt[1][0], inpt[1][1])\n",
"# break"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# # Use a queue to get data\n",
"\n",
"# from queue import Queue\n",
"# from threading import Thread\n",
"# q = Queue(maxsize=0)\n",
"# num_theads = 4\n",
"\n",
"# start_year = 2005\n",
"# end_year = 2015\n",
"# date_ranges = [(datetime.datetime(x, 1, 1), datetime.datetime(x, 12, 31))\n",
"# for x in range(start_year, end_year + 1)]\n",
"\n",
"# inputs = [x for x in list(itertools.product(sites, date_ranges))]\n",
"\n",
"# #Populating Queue with tasks\n",
"# results = [{} for x in inputs]\n",
"\n",
"# #load up the queue with the urls to fetch and the index for each job (as a tuple):\n",
"# for i, inpt in enumerate(inputs):\n",
"# q.put((i, inpt))\n",
"\n",
"\n",
"# # Threaded function for queue processing.\n",
"# def crawl(q, result):\n",
"# while not q.empty():\n",
"# work = q.get() #fetch new work from the Queue\n",
"# print(work)\n",
"# download_nearshore_csv(work[1][0]['id'], work[1][0]['site_id'],\n",
"# work[1][0]['nsw_nearshore_id'], work[1][1][0],\n",
"# work[1][1][1])\n",
"# #signal to the queue that task has been processed\n",
"# q.task_done()\n",
"# return True\n",
"\n",
"\n",
"# #Starting worker threads on queue processing\n",
"# for i in range(num_theads):\n",
"# print('Starting thread {}'.format(i))\n",
"# worker = Thread(target=crawl, args=(q, results))\n",
"# worker.setDaemon(True) #setting threads as \"daemon\" allows main program to\n",
"# #exit eventually even if these dont finish\n",
"# #correctly.\n",
"# worker.start()\n",
"\n",
"# #now we wait until the queue has been processed\n",
"# q.join()\n",
"# print('All tasks completed.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# For each site, get\n",
"for site in sites:\n",
"\n",
" # print(site)\n",
" df_sites\n",
"\n",
" # Get shoreline orientation\n",
" orientation = df_sites.loc[[site['site_id']]].orientation.iloc[0]\n",
"\n",
" # Get peak hour wave energy from June 2016 storm\n",
" max_hrly_wave_power = df_waves.loc[[site['site_id']]].Pxs.max()\n",
"\n",
" # Load nearshore wave csv files into one dataframe\n",
" site_nearshore_wave_files = glob.glob('./14_nearshore_waves/*{}*'.format(\n",
" site['site_id']))\n",
"\n",
" if len(site_nearshore_wave_files) == 0:\n",
" continue\n",
"\n",
" df_hist_waves = pd.concat((pd.read_csv(f,\n",
" skiprows=8,\n",
" index_col=0,\n",
" names=['Hs', 'Tp', 'dir'],\n",
" na_values=' NaN')\n",
" for f in site_nearshore_wave_files))\n",
" df_hist_waves.index = pd.to_datetime(df_hist_waves.index)\n",
"\n",
" # At each row, calculate crossshore component of nearshore wave energy\n",
" df_hist_waves['d'] = 10\n",
" df_hist_waves['L'] = 9.81 * df_hist_waves.Tp**2 / 2 / np.pi\n",
" df_hist_waves['n'] = 0.5 * (\n",
" 1 + (4 * np.pi * df_hist_waves.d / df_hist_waves.L) /\n",
" (np.sinh(4 * np.pi * df_hist_waves.d / df_hist_waves.L)))\n",
" df_hist_waves['E'] = 1 / 16 * 1025 * 9.81 * df_hist_waves.Hs**2\n",
" df_hist_waves['C'] = 9.81 * df_hist_waves.Tp / 2 / np.pi * np.tanh(\n",
" 2 * np.pi * df_hist_waves.d / df_hist_waves.L)\n",
" df_hist_waves['shoreline_tn_angle'] = 270 - orientation\n",
" df_hist_waves.loc[\n",
" df_hist_waves.shoreline_tn_angle > 360,\n",
" 'shoreline_tn_angle'] = df_hist_waves.shoreline_tn_angle - 360\n",
" df_hist_waves[\n",
" 'alpha'] = df_hist_waves.shoreline_tn_angle - df_hist_waves.dir\n",
" df_hist_waves[\n",
" 'Px'] = df_hist_waves.n * df_hist_waves.E * df_hist_waves.C * np.cos(\n",
" np.deg2rad(df_hist_waves.alpha))\n",
"\n",
" # Apply percentileofscore for June 2016 wave energy\n",
" storm_Px_hrly_pctile = percentileofscore(df_hist_waves.Px.dropna().values,\n",
" max_hrly_wave_power,\n",
" kind='mean')\n",
"\n",
" # Calculate cumulate wave energy from storm\n",
" idx = ((df_waves.index.get_level_values('datetime') > '2016-06-04') &\n",
" (df_waves.index.get_level_values('datetime') < '2016-06-07') &\n",
" (df_waves.index.get_level_values('site_id') == site['site_id']))\n",
" hrs = len(df_waves[idx])\n",
" Pxscum_storm = df_waves[idx].Pxs.sum()\n",
" \n",
" # Calculate cumulate wave energy of mean wave conditions over length of storm\n",
" Pxscum_mean = df_hist_waves['Px'].mean() * hrs\n",
" Pxscum_storm_mean_ratio = Pxscum_storm / Pxscum_mean\n",
"\n",
" # Add to gdf_transects dataframe\n",
" idx = gdf_transects[gdf_transects.chris_site_id == site['site_id']].index\n",
" gdf_transects.loc[idx, 'storm_Px_hrly_pctile'] = storm_Px_hrly_pctile\n",
" gdf_transects.loc[idx, 'Pxscum_storm'] = Pxscum_storm\n",
" gdf_transects.loc[idx, 'Pxscum_mean'] = Pxscum_mean\n",
" gdf_transects.loc[idx, 'Pxscum_storm_mean_ratio'] = Pxscum_storm_mean_ratio\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gdf_transects.sort_values(by='Pxscum_storm_mean_ratio',ascending=False).head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gdf_transects.sort_values(by='rel_change_shoreline_pctile').head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Drop nans\n",
"gdf_transects = gdf_transects.dropna(axis='index',\n",
" subset=[\n",
" 'Pxscum_storm_mean_ratio',\n",
" 'prestorm_shoreline_pctile',\n",
" 'change_shoreline_pctile',\n",
" 'rel_change_shoreline_pctile'\n",
" ],\n",
" how='any')\n",
"\n",
"# Grid results\n",
"grid_x, grid_y = np.mgrid[0:2:100j, 0:100:100j]\n",
"\n",
"x_vals = gdf_transects.Pxscum_storm_mean_ratio.values\n",
"y_vals = gdf_transects.prestorm_shoreline_pctile.values\n",
"z_vals = gdf_transects.rel_change_shoreline_pctile.values\n",
"\n",
"points = [[x, y] for x, y in zip(\n",
" x_vals,\n",
" y_vals,\n",
")]\n",
"\n",
"grid = griddata((x_vals,y_vals), z_vals, (grid_x, grid_y), method='cubic')\n",
"\n",
"# Smooth data\n",
"# https://stackoverflow.com/a/34370291\n",
"# grid = gaussian_filter(grid, sigma=0.5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def round_down(num, divisor):\n",
" return num - (num%divisor)\n",
"\n",
"def round_up(x, divisor): \n",
" return (x + divisor - 1) // divisor * divisor"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gdf_transects[gdf_transects.prestorm_shoreline_pctile<40].sort_values(by='change_shoreline_pctile',ascending=True).head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Plot peak wave energy pctile vs prestorm shoreline percentile vs change in shoreline percentile\n",
"\n",
"x_col = 'Pxscum_storm_mean_ratio'\n",
"y_col = 'prestorm_shoreline_pctile'\n",
"# z_col = 'rel_change_shoreline_pctile'\n",
"z_col = 'change_shoreline_pctile'\n",
"\n",
"# Drop nans\n",
"gdf_transects = gdf_transects.dropna(axis='index',\n",
" subset=[x_col, y_col,z_col\n",
" ],\n",
" how='any')\n",
"\n",
"# Grid results\n",
"grid_x, grid_y = np.mgrid[0:25:100j, 0:100:100j]\n",
"\n",
"x_vals = gdf_transects[x_col].values\n",
"y_vals = gdf_transects[y_col].values\n",
"z_vals = gdf_transects[z_col].values\n",
"\n",
"grid = griddata((x_vals,y_vals), z_vals, (grid_x, grid_y), method='linear',rescale=True)\n",
"\n",
"# Smooth data\n",
"# https://stackoverflow.com/a/34370291\n",
"# grid = gaussian_filter(grid, sigma=0.5)\n",
"\n",
"\n",
"# # 2D Spline interpolation\n",
"# s = SmoothBivariateSpline(x_vals, y_vals,z_vals)\n",
"# spline_x = np.arange(1,25,0.1)\n",
"# spline_y = np.arange(0,100,0.5)\n",
"# spline_z = s(spline_x, spline_y,grid=True)\n",
"# spline_grid_x, spline_grid_y = np.meshgrid(spline_x, spline_y)\n",
"\n",
"\n",
"# Create figure\n",
"fig = plt.figure(figsize=(3, 3), dpi=150, facecolor='w', edgecolor='k')\n",
"ax = fig.add_subplot(111)\n",
"\n",
"# Define colors\n",
"cmap_interval = 25\n",
"cmap = cc.cm.fire\n",
"vmin = round_down(np.min(z_vals), cmap_interval)\n",
"vmax = round_up(np.max(z_vals), cmap_interval)\n",
"levels = [x*cmap_interval for x in range(-4,2)]\n",
"\n",
"\n",
"# Plot SPLINE grid surface\n",
"# cf = ax.contourf(spline_grid_x, spline_grid_y, spline_z.T,levels=levels, cmap=cmap,vmin=vmin,vmax=vmax)\n",
"\n",
"# Plot SPLINE contours\n",
"# cs = plt.contour(grid_x, grid_y,grid,levels=levels,linewidths=0.5,colors='white', vmin=vmin,vmax=vmax)\n",
"# ax.clabel(cs, inline=1, fontsize=4, fmt='%1.0f%%')\n",
"\n",
"\n",
"# Plot CUBIC FIT grid surface\n",
"cf = plt.contourf(grid_x, grid_y,grid,levels=levels, cmap=cmap,vmin=vmin,vmax=vmax)\n",
"\n",
"# Plot CUBIC FIT contours\n",
"cs = plt.contour(grid_x, grid_y,grid,levels=levels,linewidths=0.5,colors='white', vmin=vmin,vmax=vmax)\n",
"ax.clabel(cs, inline=1, fontsize=4, fmt='%1.0f%%')\n",
"\n",
"\n",
"scatter = ax.scatter(\n",
" x=x_vals,\n",
" y=y_vals,\n",
" c=z_vals,\n",
" s=1,\n",
" cmap=cmap,vmin=vmin,vmax=vmax\n",
")\n",
"\n",
"ax.set_xlim([1,25])\n",
"\n",
"ax.set_xlabel(x_col)\n",
"ax.set_ylabel(y_col)\n",
"\n",
"cbar = plt.colorbar(cf)\n",
"cbar.set_label(z_col)\n",
"\n",
"ax.grid(True, linestyle=\"--\", alpha=0.2, color='grey', linewidth=1)\n",
"\n",
"plt.show()\n",
"\n",
"fig.savefig('14_beach_state_vs_wave_energy_{}'.format(z_col),dpi=600,bbox_inches = \"tight\", pad_inches=0.01)"
]
}
],
"metadata": {
"hide_input": false,
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {
"height": "calc(100% - 180px)",
"left": "10px",
"top": "150px",
"width": "297.797px"
},
"toc_section_display": true,
"toc_window_display": true
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -0,0 +1,176 @@
{
"type": "FeatureCollection",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "name": "Dee Why Beach", "id": "way4042355", "orientation": 117.8, "beach_length": 1367.6787658900539 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.297426209301022, -33.749879728713736 ], [ 151.303385953876585, -33.752492350405944 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way5757445", "orientation": 143.1, "beach_length": 7266.5228394129863 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.688273909621756, -35.014570881874867 ], [ 150.692319159611543, -35.018983377256809 ] ] } },
{ "type": "Feature", "properties": { "name": "Currarong Beach", "id": "way5953437", "orientation": 11.8, "beach_length": 1164.4552080889939 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.816619637270946, -35.016318170650749 ], [ 150.817997401737813, -35.010916773154712 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way5953443", "orientation": 69.5, "beach_length": 4390.1973527327182 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.764949528081843, -34.922137344927066 ], [ 150.771260230160465, -34.920202716150072 ] ] } },
{ "type": "Feature", "properties": { "name": "Seven Mile Beach", "id": "way5954873", "orientation": 112.2, "beach_length": 20574.535884866931 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.75586860673252, -34.827258822743808 ], [ 150.762106534463413, -34.829348464229902 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way7451332", "orientation": 129.4, "beach_length": 1603.4355113199163 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.729218741295767, -32.972437522611465 ], [ 151.734424929142961, -32.976025069724002 ] ] } },
{ "type": "Feature", "properties": { "name": "Nobbys Beach", "id": "way7487200", "orientation": 133.2, "beach_length": 1421.6256822067976 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.794836683328242, -32.920272132548867 ], [ 151.799748010775659, -32.924143524568301 ] ] } },
{ "type": "Feature", "properties": { "name": "Pebbly Beach", "id": "way12591715", "orientation": 142.5, "beach_length": 1009.719676912916 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.326250780857038, -35.608170015695841 ], [ 150.330352228577539, -35.612515567552236 ] ] } },
{ "type": "Feature", "properties": { "name": "Long Reef Beach", "id": "way13858409", "orientation": 155.6, "beach_length": 1471.3219055229181 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.308732365126104, -33.742496010220343 ], [ 151.311515600300481, -33.747597876386187 ] ] } },
{ "type": "Feature", "properties": { "name": "Mona Vale Beach", "id": "way13858412", "orientation": 116.4, "beach_length": 1338.8494987369897 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.310415712181566, -33.682410890665786 ], [ 151.31645044891448, -33.684903624108799 ] ] } },
{ "type": "Feature", "properties": { "name": "North Narrabeen Beach", "id": "way14040821", "orientation": 116.3, "beach_length": 1494.2626149369187 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.302693891096908, -33.70727706277372 ], [ 151.308733847065042, -33.709760309505015 ] ] } },
{ "type": "Feature", "properties": { "name": "Narrabeen Beach", "id": "way14040977", "orientation": 100.8, "beach_length": 1373.2055690473667 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.298426776423128, -33.717344730525362 ], [ 151.305044803803554, -33.718394817682203 ] ] } },
{ "type": "Feature", "properties": { "name": "Collaroy Beach", "id": "way14041013", "orientation": 71.2, "beach_length": 1661.418374661537 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.299027248983037, -33.728910506530326 ], [ 151.30540517022601, -33.727104738954885 ] ] } },
{ "type": "Feature", "properties": { "name": "Newport Beach", "id": "way14041635", "orientation": 95.4, "beach_length": 1427.2517323683933 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.321643394091922, -33.653983190352847 ], [ 151.328350858060105, -33.654510964979941 ] ] } },
{ "type": "Feature", "properties": { "name": "Garie Beach", "id": "way23140813", "orientation": 143.0, "beach_length": 1288.4252068564786 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.06759399349653, -34.169448561443176 ], [ 151.071648640747895, -34.173900327402919 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way25005079", "orientation": 129.1, "beach_length": 2025.6498496395332 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.426597886628542, -33.493461222834767 ], [ 151.431826394243473, -33.497004676254477 ] ] } },
{ "type": "Feature", "properties": { "name": "Fingal Beach", "id": "way28969442", "orientation": 126.4, "beach_length": 1780.5075815647056 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.170819933303505, -32.742104345084726 ], [ 152.176242796305473, -32.745467120413899 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way30978532", "orientation": 91.0, "beach_length": 27866.970405937809 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.416889214109915, -27.219547910447488 ], [ 153.423625552607518, -27.219652472501451 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way30978533", "orientation": 106.5, "beach_length": 9949.6233025637666 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.449802428748541, -27.074975863105792 ], [ 153.45626234691764, -27.076679666207621 ] ] } },
{ "type": "Feature", "properties": { "name": "Main Beach", "id": "way31000898", "orientation": 107.1, "beach_length": 31524.504786492536 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.489726460582915, -27.551922865831692 ], [ 153.496165986635276, -27.553679241015541 ] ] } },
{ "type": "Feature", "properties": { "name": "Werri Beach", "id": "way37890458", "orientation": 109.9, "beach_length": 2529.5719540259611 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.833054662544583, -34.73513954960935 ], [ 150.839389726514355, -34.737024118079752 ] ] } },
{ "type": "Feature", "properties": { "name": "Murramarang Beach", "id": "way38144058", "orientation": 66.5, "beach_length": 1274.9971066031389 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.400692945942467, -35.523329416877623 ], [ 150.406871514052028, -35.521142886604814 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way38145816", "orientation": 150.6, "beach_length": 3574.9449970357891 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.572125558604938, -35.19167332543941 ], [ 150.575432956191719, -35.1964700587423 ] ] } },
{ "type": "Feature", "properties": { "name": "Curl Curl Beach", "id": "way41740993", "orientation": 127.2, "beach_length": 1438.5285128735152 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.294465322293036, -33.768981301790767 ], [ 151.299831834790211, -33.772367397196469 ] ] } },
{ "type": "Feature", "properties": { "name": "Terrigal Beach", "id": "way54609773", "orientation": 124.5, "beach_length": 4017.1932249514589 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.447616400405025, -33.428842988601993 ], [ 151.453168839039648, -33.432027722974048 ] ] } },
{ "type": "Feature", "properties": { "name": "Shelly Beach", "id": "way54609778", "orientation": 121.9, "beach_length": 3050.9077716642514 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.488212799687375, -33.370587687036029 ], [ 151.493932631508244, -33.373560935520118 ] ] } },
{ "type": "Feature", "properties": { "name": "North Avoca Beach", "id": "way54667480", "orientation": 123.9, "beach_length": 1035.2939738578305 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.437043809557593, -33.459692013650027 ], [ 151.442635904970388, -33.462826934868581 ] ] } },
{ "type": "Feature", "properties": { "name": "Avoca Beach", "id": "way54669965", "orientation": 83.6, "beach_length": 1104.9091210534039 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.433667144832867, -33.467661343336587 ], [ 151.440362521662735, -33.467034853259669 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way54680278", "orientation": 129.4, "beach_length": 3136.0127011669574 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.119879943007049, -32.769000081845114 ], [ 152.125086130854243, -32.772595870258733 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way55486822", "orientation": 132.7, "beach_length": 1104.4302797352184 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.988772086251771, -34.229364098107446 ], [ 150.993723473851873, -34.233141635265319 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way55889024", "orientation": 81.5, "beach_length": 1232.6737616867676 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.872006675532447, -34.58628581273998 ], [ 150.878670036029661, -34.585465956389292 ] ] } },
{ "type": "Feature", "properties": { "name": "Long Beach", "id": "way77993576", "orientation": 162.4, "beach_length": 2803.7250094349192 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.223220089980771, -35.702454079182424 ], [ 150.22525726618818, -35.707668942903908 ] ] } },
{ "type": "Feature", "properties": { "name": "Bherwerre Beach", "id": "way78271876", "orientation": 160.9, "beach_length": 8449.8285415778719 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.625636911751968, -35.166840954141129 ], [ 150.62784149805114, -35.172045235294341 ] ] } },
{ "type": "Feature", "properties": { "name": "Towradgi Beach", "id": "way78388644", "orientation": 113.9, "beach_length": 3490.7143043811325 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.904518090155705, -34.395944048215512 ], [ 150.910677752417371, -34.39819634581459 ] ] } },
{ "type": "Feature", "properties": { "name": "Greenhills Beach", "id": "way86379306", "orientation": 154.9, "beach_length": 1429.709869940998 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.171313877866794, -34.036110676981444 ], [ 151.174171864054045, -34.041166455329495 ] ] } },
{ "type": "Feature", "properties": { "name": "Bombo Beach", "id": "way87849653", "orientation": 102.7, "beach_length": 1687.8658370549799 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.85306294036414, -34.65870796445229 ], [ 150.859635472296731, -34.659926309498161 ] ] } },
{ "type": "Feature", "properties": { "name": "Jones beach", "id": "way87849657", "orientation": 100.9, "beach_length": 1267.3743657941834 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.85355202581303, -34.639271225925022 ], [ 150.860167839712972, -34.640319403010693 ] ] } },
{ "type": "Feature", "properties": { "name": "Manyana Beach", "id": "way93288569", "orientation": 126.6, "beach_length": 1265.8364782053784 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.514262690688838, -35.261694144827743 ], [ 150.519671564751263, -35.264974041569936 ] ] } },
{ "type": "Feature", "properties": { "name": "Inyadda Beach", "id": "way93288573", "orientation": 145.1, "beach_length": 1942.857515375455 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.53092366649139, -35.250734160332513 ], [ 150.534778421862882, -35.255246479286811 ] ] } },
{ "type": "Feature", "properties": { "name": "Berrara Beach", "id": "way93288644", "orientation": 131.0, "beach_length": 1579.9830572842293 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.541223871887212, -35.213278350672283 ], [ 150.5463086255196, -35.216889549211594 ] ] } },
{ "type": "Feature", "properties": { "name": "Mystics", "id": "way95039342", "orientation": 71.6, "beach_length": 1991.0695681795767 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.854936238195023, -34.621731961966979 ], [ 150.861329161875005, -34.619981884762197 ] ] } },
{ "type": "Feature", "properties": { "name": "mollymook Sea beach", "id": "way95783344", "orientation": 106.3, "beach_length": 3036.5051584484122 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.473685638356073, -35.331300579853242 ], [ 150.480152196582765, -35.332843246565965 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way95783345", "orientation": 99.7, "beach_length": 1927.0868091013078 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.470428905438524, -35.310528010692501 ], [ 150.477069949127696, -35.311454343327576 ] ] } },
{ "type": "Feature", "properties": { "name": "Conjola Beach", "id": "way95783351", "orientation": 137.4, "beach_length": 4306.8063800566279 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.491096091453329, -35.277269304505388 ], [ 150.495656451670982, -35.281317855539413 ] ] } },
{ "type": "Feature", "properties": { "name": "Monument Beach", "id": "way95783352", "orientation": 119.2, "beach_length": 1072.0866326632313 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.530556492244102, -35.227820112586109 ], [ 150.536437686573038, -35.230505011981634 ] ] } },
{ "type": "Feature", "properties": { "name": "Burrill Beach", "id": "way95783353", "orientation": 133.6, "beach_length": 1286.446905199022 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.452706601041683, -35.387695041636611 ], [ 150.457585610927623, -35.391482792332773 ] ] } },
{ "type": "Feature", "properties": { "name": "Racecourse Beach", "id": "way95783354", "orientation": 128.8, "beach_length": 1596.7646423799629 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.461154139235646, -35.379007442639015 ], [ 150.466404823276093, -35.382449456071562 ] ] } },
{ "type": "Feature", "properties": { "name": "Turmeil Beach", "id": "way95783355", "orientation": 102.1, "beach_length": 1955.8102034852254 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.389695625072335, -35.468052014337133 ], [ 150.396283307268362, -35.469202219596916 ] ] } },
{ "type": "Feature", "properties": { "name": "Wairo Beach", "id": "way95783357", "orientation": 126.5, "beach_length": 6076.6508842274216 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.419104180875422, -35.42288519949318 ], [ 150.424520057656451, -35.426150861400252 ] ] } },
{ "type": "Feature", "properties": { "name": "Buckley's Beach", "id": "way95783362", "orientation": 108.6, "beach_length": 1639.2461082610259 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.474209662923386, -35.296434667863565 ], [ 150.480595124287277, -35.29818856105905 ] ] } },
{ "type": "Feature", "properties": { "name": "Woonona Beach", "id": "way95786684", "orientation": 101.2, "beach_length": 1533.3014801414317 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.917936878559942, -34.352650552061306 ], [ 150.92454593112808, -34.353730922053344 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way95786688", "orientation": 128.4, "beach_length": 1777.0098733519792 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.917913801592391, -34.378596883231367 ], [ 150.923193830173261, -34.382050711696237 ] ] } },
{ "type": "Feature", "properties": { "name": "Thirroul Beach", "id": "way95786690", "orientation": 121.3, "beach_length": 1146.3923780647244 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.927324604641882, -34.314707974364282 ], [ 150.933081405342563, -34.317598918887732 ] ] } },
{ "type": "Feature", "properties": { "name": "Bulli Beach", "id": "way95786693", "orientation": 110.0, "beach_length": 1137.4537692982917 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.921885521804398, -34.342371884249602 ], [ 150.928216573631602, -34.344274492046054 ] ] } },
{ "type": "Feature", "properties": { "name": "McCauleys Beach", "id": "way95786716", "orientation": 90.3, "beach_length": 1195.787102761587 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.922697670004027, -34.325167095777559 ], [ 150.929434942280807, -34.325196228974804 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way100421203", "orientation": 105.8, "beach_length": 3372.8094924808279 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.900497590727099, -34.433679306094753 ], [ 150.906980404203892, -34.435192313457918 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way104748689", "orientation": 121.2, "beach_length": 8172.9490380456255 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.88336709945861, -34.513386224405068 ], [ 150.889130000371551, -34.516262026022645 ] ] } },
{ "type": "Feature", "properties": { "name": "Racecourse Beach", "id": "way109973381", "orientation": 124.5, "beach_length": 1591.3190450316545 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.390997637206112, -35.535433026785185 ], [ 150.396550075840736, -35.538538329953681 ] ] } },
{ "type": "Feature", "properties": { "name": "Nine Mile Beach", "id": "way133342568", "orientation": 109.2, "beach_length": 14293.895488916563 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.509906010523565, -32.120017022573229 ], [ 152.516268618478648, -32.121893555214456 ] ] } },
{ "type": "Feature", "properties": { "name": "One Mile Beach", "id": "way134627391", "orientation": 83.5, "beach_length": 1587.5752698474448 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.534435943097009, -32.19040419356476 ], [ 152.541129998975663, -32.189758739028534 ] ] } },
{ "type": "Feature", "properties": { "name": "Lighthouse Beach", "id": "way159040990", "orientation": 160.3, "beach_length": 2188.4790477193133 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.52755624748616, -32.44265404793714 ], [ 152.529827381157503, -32.448006954924764 ] ] } },
{ "type": "Feature", "properties": { "name": "Forrester's beach", "id": "way159095198", "orientation": 136.5, "beach_length": 1873.0872243549609 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.46551114701694, -33.410090887477729 ], [ 151.470148842788717, -33.414170312508581 ] ] } },
{ "type": "Feature", "properties": { "name": "Lighthouse Beach", "id": "way173070325", "orientation": 127.9, "beach_length": 18557.898178721829 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.878255590261972, -31.52595483907065 ], [ 152.883571937465945, -31.529482583127681 ] ] } },
{ "type": "Feature", "properties": { "name": "Bondi Beach", "id": "way173244595", "orientation": 155.5, "beach_length": 1157.8171737499761 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.276852978827577, -33.890229978666355 ], [ 151.279646918413306, -33.895319000087184 ] ] } },
{ "type": "Feature", "properties": { "name": "Treachery Beach", "id": "way182614828", "orientation": 161.0, "beach_length": 2256.0227991927118 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.508033818036949, -32.452672005068422 ], [ 152.510227289405776, -32.458047329581028 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way182621183", "orientation": 49.4, "beach_length": 1407.2757678250591 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.518988562089731, -32.430655695383784 ], [ 152.524104049741027, -32.426954918488342 ] ] } },
{ "type": "Feature", "properties": { "name": "Gap Beach", "id": "way189322079", "orientation": 88.1, "beach_length": 1081.631611844778 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.079203669747642, -30.903108127704439 ], [ 153.08593733028286, -30.902916460461707 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way189326452", "orientation": 85.5, "beach_length": 4082.4382816626189 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.962444578523389, -31.300519519577751 ], [ 152.969161174107597, -31.300067847608144 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way189326453", "orientation": 104.9, "beach_length": 7522.1080741998449 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.961455195228041, -31.221414334816714 ], [ 152.967966023244998, -31.222895818497459 ] ] } },
{ "type": "Feature", "properties": { "name": "North Shore Beach", "id": "way189407637", "orientation": 115.3, "beach_length": 14990.004608269586 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.930721702813173, -31.36849654051866 ], [ 152.936812836606663, -31.370954932399229 ] ] } },
{ "type": "Feature", "properties": { "name": "minnie Water Back Beach", "id": "way189511968", "orientation": 108.7, "beach_length": 3400.9642340079649 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.287920046443048, -29.793801709778041 ], [ 153.294301747466392, -29.795676256889305 ] ] } },
{ "type": "Feature", "properties": { "name": "Hyland Park Beach", "id": "way189940675", "orientation": 87.4, "beach_length": 3513.1309001894724 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.008425950330434, -30.613595802509401 ], [ 153.015156379314647, -30.613332773080192 ] ] } },
{ "type": "Feature", "properties": { "name": "Killick Beach", "id": "way190929758", "orientation": 121.5, "beach_length": 16792.206309969777 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.000639688093969, -31.128367126991147 ], [ 153.006384235780189, -31.131380464144375 ] ] } },
{ "type": "Feature", "properties": { "name": "Tallow Beach", "id": "way191324197", "orientation": 108.8, "beach_length": 7471.6596449413955 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.620095345273228, -28.668157592473477 ], [ 153.626473266516172, -28.670062632938784 ] ] } },
{ "type": "Feature", "properties": { "name": "Fiona Beach", "id": "way192040645", "orientation": 156.8, "beach_length": 10844.393389875697 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.449758896197949, -32.468983496034681 ], [ 152.452413026486255, -32.474207888506783 ] ] } },
{ "type": "Feature", "properties": { "name": "Black Head Beach", "id": "way192060355", "orientation": 99.3, "beach_length": 1728.0323893188813 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.541791477197393, -32.064615722434894 ], [ 152.548440283996911, -32.065538407601309 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way197880327", "orientation": 86.2, "beach_length": 1180.6458185008732 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.052890320666677, -36.492283185563338 ], [ 150.059612872987799, -36.49192421768501 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way197880338", "orientation": 57.5, "beach_length": 1375.8986285786966 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.066808158511378, -36.421051519025809 ], [ 150.072490394208387, -36.418138551698206 ] ] } },
{ "type": "Feature", "properties": { "name": "Baragoot Beach", "id": "way197880340", "orientation": 112.6, "beach_length": 3798.3301609793943 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.058344540531692, -36.472792043473511 ], [ 150.064564544395353, -36.474874042724238 ] ] } },
{ "type": "Feature", "properties": { "name": "Blueys Beach", "id": "way222144734", "orientation": 126.8, "beach_length": 1164.8691470618292 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.53569772120116, -32.351457297001396 ], [ 152.541092540418646, -32.354866636424404 ] ] } },
{ "type": "Feature", "properties": { "name": "Boomerang Beach", "id": "way222145626", "orientation": 119.6, "beach_length": 1694.4202609719857 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.541804963908675, -32.339767659869565 ], [ 152.547663068293502, -32.342579299773398 ] ] } },
{ "type": "Feature", "properties": { "name": "Sandbar Beach", "id": "way222267320", "orientation": 114.5, "beach_length": 3451.260473267856 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.520034124508214, -32.388714057241145 ], [ 152.526164865390115, -32.391073322483898 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way222390016", "orientation": 110.7, "beach_length": 11554.002303613363 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.528985590011047, -32.268921293411289 ], [ 152.535288017538591, -32.270934942720324 ] ] } },
{ "type": "Feature", "properties": { "name": "Old Bar Beach", "id": "way224198013", "orientation": 135.6, "beach_length": 13321.86971687392 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.645502295395801, -31.909877497319457 ], [ 152.650216182439721, -31.91396363156792 ] ] } },
{ "type": "Feature", "properties": { "name": "Pippi Beach", "id": "way226380327", "orientation": 114.9, "beach_length": 2093.2915651251469 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.363939285464653, -29.444978137816115 ], [ 153.370050371725199, -29.447448361479612 ] ] } },
{ "type": "Feature", "properties": { "name": "Nelsons Beach", "id": "way230385239", "orientation": 116.6, "beach_length": 1293.1567245991507 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.692601124420293, -35.074497160024031 ], [ 150.698625367550136, -35.076966020068063 ] ] } },
{ "type": "Feature", "properties": { "name": "Wanda Beach", "id": "way253258718", "orientation": 132.4, "beach_length": 1060.2608924073777 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.162102441399753, -34.041487964454262 ], [ 151.16707768429319, -34.045252375542432 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way303942662", "orientation": 99.5, "beach_length": 2762.1546538324255 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.028039902935916, -30.512880275794156 ], [ 153.034684868663675, -30.513838263655757 ] ] } },
{ "type": "Feature", "properties": { "name": "Belongil Beach", "id": "way306312031", "orientation": 52.2, "beach_length": 8141.3112283828377 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.584817232086579, -28.619517676145943 ], [ 153.590140794519868, -28.615892763297513 ] ] } },
{ "type": "Feature", "properties": { "name": "Rosedale Beach", "id": "way307144510", "orientation": 82.5, "beach_length": 1165.3429096205248 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.22424175613682, -35.814033256814547 ], [ 150.230921481679331, -35.81332012803567 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way307145569", "orientation": 124.0, "beach_length": 1161.7524386962018 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.184625773494815, -35.832802090307361 ], [ 150.19021130191382, -35.835856441300486 ] ] } },
{ "type": "Feature", "properties": { "name": "North Broulee Beach", "id": "way307146328", "orientation": 78.5, "beach_length": 2586.1859082861752 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.17610432066931, -35.851149084440259 ], [ 150.182706430715172, -35.850060346173386 ] ] } },
{ "type": "Feature", "properties": { "name": "Bengello Beach", "id": "way307149092", "orientation": 114.5, "beach_length": 7504.7002482403259 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.153612670538081, -35.87796575013369 ], [ 150.159743411419981, -35.88022955506014 ] ] } },
{ "type": "Feature", "properties": { "name": "Murrays Beach", "id": "way310196798", "orientation": 117.1, "beach_length": 1103.5523309805026 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.104568382584773, -30.36079172594734 ], [ 153.110566070848535, -30.363439955215096 ] ] } },
{ "type": "Feature", "properties": { "name": "Sawtell Main Beach", "id": "way310196987", "orientation": 89.3, "beach_length": 1489.8880110251912 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.10139610757065, -30.370640708343696 ], [ 153.108132969389715, -30.370569693148227 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way317885375", "orientation": 108.5, "beach_length": 2691.2574178703148 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.867638260544226, -34.550898108893534 ], [ 150.874027462797471, -34.552658828545852 ] ] } },
{ "type": "Feature", "properties": { "name": "Wonboyn Beach", "id": "way331942614", "orientation": 121.9, "beach_length": 5220.5938607999415 }, "geometry": { "type": "LineString", "coordinates": [ [ 149.949107620675818, -37.264548086321227 ], [ 149.954827452496687, -37.26738147714029 ] ] } },
{ "type": "Feature", "properties": { "name": "Mungo Beach", "id": "way345715960", "orientation": 135.7, "beach_length": 20333.423704402718 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.330376531181741, -32.528990937624144 ], [ 152.335082009623477, -32.533056269003325 ] ] } },
{ "type": "Feature", "properties": { "name": "Maggies Beach", "id": "way363247956", "orientation": 89.7, "beach_length": 3326.2603702300262 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.572355514757646, -28.348615503975967 ], [ 153.579092787034426, -28.348584457927902 ] ] } },
{ "type": "Feature", "properties": { "name": "Durras Beach", "id": "way369080492", "orientation": 166.0, "beach_length": 1984.6596123443278 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.313479270156165, -35.633341813967576 ], [ 150.315109186179001, -35.638654853629106 ] ] } },
{ "type": "Feature", "properties": { "name": "Durras Beach", "id": "way369080493", "orientation": 114.4, "beach_length": 2943.0947142531068 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.296985945447489, -35.647239147736421 ], [ 150.30312155333371, -35.649500829782816 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way369096364", "orientation": 146.4, "beach_length": 1141.6980793948974 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.194808950406383, -35.701536213195205 ], [ 150.198537351057297, -35.706093159502608 ] ] } },
{ "type": "Feature", "properties": { "name": "Middle Beach", "id": "way378122331", "orientation": 121.0, "beach_length": 1922.6746961684682 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.007885658320987, -36.649069667894786 ], [ 150.013660706975486, -36.651853620773231 ] ] } },
{ "type": "Feature", "properties": { "name": "Gillard's Beach", "id": "way378122714", "orientation": 114.0, "beach_length": 2094.4092640085746 }, "geometry": { "type": "LineString", "coordinates": [ [ 149.999680965236621, -36.66151550000216 ], [ 150.005835854091657, -36.663713700440503 ] ] } },
{ "type": "Feature", "properties": { "name": "Newtons Beach", "id": "way378241758", "orientation": 96.9, "beach_length": 2464.6005137677139 }, "geometry": { "type": "LineString", "coordinates": [ [ 149.948838840493693, -37.368150005961624 ], [ 149.95552740869627, -37.368793280099332 ] ] } },
{ "type": "Feature", "properties": { "name": "Brou Beach", "id": "way379893070", "orientation": 97.9, "beach_length": 8153.2304828166261 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.123707370774383, -36.13300438403936 ], [ 150.130380794198572, -36.133752276027401 ] ] } },
{ "type": "Feature", "properties": { "name": "Bingie Beach", "id": "way380212327", "orientation": 109.5, "beach_length": 5003.7820816744024 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.144683962011328, -36.034019336769752 ], [ 150.151034881453029, -36.035837992412894 ] ] } },
{ "type": "Feature", "properties": { "name": "Bellambi Beach", "id": "way380544388", "orientation": 66.3, "beach_length": 1200.2978014331732 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.919155726067373, -34.363012740527012 ], [ 150.925324878837557, -34.360777259436915 ] ] } },
{ "type": "Feature", "properties": { "name": "Crowdy Beach", "id": "way382435196", "orientation": 113.6, "beach_length": 14924.135725110977 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.7449755551186, -31.78988067777415 ], [ 152.751149424961852, -31.792173313703469 ] ] } },
{ "type": "Feature", "properties": { "name": "Kylie's Beach", "id": "way382435198", "orientation": 129.9, "beach_length": 2246.9701416882372 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.790388118551334, -31.737718911209132 ], [ 152.795556789911245, -31.741394275911432 ] ] } },
{ "type": "Feature", "properties": { "name": "Middle Beach", "id": "way383244210", "orientation": 92.1, "beach_length": 1851.546310777074 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.995274850847295, -30.770927446815428 ], [ 153.002007690622179, -30.771139572458786 ] ] } },
{ "type": "Feature", "properties": { "name": "Grassy Beach", "id": "way383244211", "orientation": 82.5, "beach_length": 1925.165672768919 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.995263592122683, -30.786957434846368 ], [ 153.001943317665194, -30.786201957871473 ] ] } },
{ "type": "Feature", "properties": { "name": "Main Beach", "id": "way383406313", "orientation": 79.5, "beach_length": 1744.3495056482277 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.012156447242234, -30.632923190351136 ], [ 153.018780994079577, -30.631866735861752 ] ] } },
{ "type": "Feature", "properties": { "name": "Wooli Beach", "id": "way383421939", "orientation": 115.9, "beach_length": 4657.8222218240326 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.274285629804325, -29.843986469996882 ], [ 153.280346278567691, -29.846539054623989 ] ] } },
{ "type": "Feature", "properties": { "name": "Jones Beach", "id": "way383425054", "orientation": 42.8, "beach_length": 1009.249355477669 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.269644689491315, -29.892583341463258 ], [ 153.274222333303413, -29.888297508101981 ] ] } },
{ "type": "Feature", "properties": { "name": "Main Beach", "id": "way383426042", "orientation": 97.9, "beach_length": 1888.1674259404499 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.265653317839536, -29.868307734576753 ], [ 153.272326741263754, -29.869110745098936 ] ] } },
{ "type": "Feature", "properties": { "name": "South Terrace Beach", "id": "way383426043", "orientation": 83.4, "beach_length": 1586.8584308614954 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.264661382941171, -29.881769328339743 ], [ 153.271354097477456, -29.881097901425584 ] ] } },
{ "type": "Feature", "properties": { "name": "Shelley Beach", "id": "way383957412", "orientation": 112.3, "beach_length": 2980.2934950329336 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.348055569761613, -29.53868296432687 ], [ 153.354289044994431, -29.540907183787219 ] ] } },
{ "type": "Feature", "properties": { "name": "Plumbago Beach", "id": "way383957413", "orientation": 111.9, "beach_length": 2569.2015052608722 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.338765564169393, -29.559365693171785 ], [ 153.345016735329722, -29.561551550638629 ] ] } },
{ "type": "Feature", "properties": { "name": "Little Shelley Beach", "id": "way383963164", "orientation": 93.8, "beach_length": 1342.2180551735103 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.355793752382255, -29.519645951743392 ], [ 153.362516304703405, -29.520034499351762 ] ] } },
{ "type": "Feature", "properties": { "name": "Angourie Beach", "id": "way383966415", "orientation": 115.7, "beach_length": 2064.1673424809965 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.359553569320127, -29.48847920888787 ], [ 153.365624453773279, -29.491022401311739 ] ] } },
{ "type": "Feature", "properties": { "name": "Main Beach", "id": "way383975077", "orientation": 100.7, "beach_length": 3400.7434052670405 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.330416921066472, -29.586548854027352 ], [ 153.33703714176778, -29.587636647604317 ] ] } },
{ "type": "Feature", "properties": { "name": "Main Beach", "id": "way383975083", "orientation": 50.6, "beach_length": 1679.2778386106322 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.334021876084876, -29.607369988880109 ], [ 153.33922806393204, -29.603651874464926 ] ] } },
{ "type": "Feature", "properties": { "name": "Cowdroy's Beach", "id": "way384818393", "orientation": 105.8, "beach_length": 1628.4546064287781 }, "geometry": { "type": "LineString", "coordinates": [ [ 149.993405148499221, -36.67438201328843 ], [ 149.999887961976043, -36.675853307633389 ] ] } },
{ "type": "Feature", "properties": { "name": "Barri Beach", "id": "way387687423", "orientation": 104.3, "beach_length": 1834.4547960472853 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.358600578934727, -29.460293199232954 ], [ 153.365129191250304, -29.461742134849143 ] ] } },
{ "type": "Feature", "properties": { "name": "Warrain Beach", "id": "way392061792", "orientation": 73.3, "beach_length": 12744.474986398533 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.778929198509729, -34.97700120886693 ], [ 150.785382397909189, -34.975414826433735 ] ] } },
{ "type": "Feature", "properties": { "name": "Broken Head Beach", "id": "way395502828", "orientation": 66.7, "beach_length": 1494.3866570127263 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.612700208323474, -28.703113501640605 ], [ 153.618888116488534, -28.700776008201203 ] ] } },
{ "type": "Feature", "properties": { "name": "Wallabi Beach", "id": "way398697323", "orientation": 119.9, "beach_length": 1652.5524600985955 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.565894383302407, -32.000511472503632 ], [ 152.571734982797295, -32.003359576539971 ] ] } },
{ "type": "Feature", "properties": { "name": "Saltwater Beach", "id": "way398859521", "orientation": 129.8, "beach_length": 2796.5816172543705 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.555005812839426, -32.016093257066153 ], [ 152.560182019077814, -32.019749878747241 ] ] } },
{ "type": "Feature", "properties": { "name": "Diamond Beach", "id": "way400673679", "orientation": 100.8, "beach_length": 3628.4618027263687 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.541416452217334, -32.037841321306679 ], [ 152.548034479597789, -32.038911496585932 ] ] } },
{ "type": "Feature", "properties": { "name": "Forster Beach", "id": "way450323845", "orientation": 98.1, "beach_length": 13147.88015272033 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.989502206606062, -30.698279238482932 ], [ 152.996172356981305, -30.699095509906883 ] ] } },
{ "type": "Feature", "properties": { "name": "South Kingscliff Beach", "id": "way477089973", "orientation": 101.7, "beach_length": 4203.5437019182154 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.580143313377306, -28.272071885866115 ], [ 153.58674069450737, -28.273275148555147 ] ] } },
{ "type": "Feature", "properties": { "name": "Bogangar Beach", "id": "way477198650", "orientation": 92.3, "beach_length": 1449.7460371951504 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.570111445218203, -28.323258051115097 ], [ 153.576843382195221, -28.323496064480167 ] ] } },
{ "type": "Feature", "properties": { "name": "Casuarina Beach", "id": "way477198652", "orientation": 99.5, "beach_length": 3821.7978986879175 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.572970562311127, -28.302797638905098 ], [ 153.579615528038886, -28.303776687062488 ] ] } },
{ "type": "Feature", "properties": { "name": "Park Beach", "id": "way506150317", "orientation": 98.6, "beach_length": 2246.6670041287475 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.138021268576523, -30.288371722558704 ], [ 153.144682880846744, -30.289241670527939 ] ] } },
{ "type": "Feature", "properties": { "name": "Moruya Heads Beach", "id": "way561980537", "orientation": 86.1, "beach_length": 3082.6172105517958 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.155081677619819, -35.922289409723518 ], [ 150.161803440392845, -35.921918316841641 ] ] } },
{ "type": "Feature", "properties": { "name": "Pedro Beach", "id": "way562090488", "orientation": 90.4, "beach_length": 3006.79413295329 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.153541243669679, -35.944080647570594 ], [ 150.160278444115789, -35.944118726879765 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way584741088", "orientation": 79.0, "beach_length": 6848.4922804323187 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.558994945717757, -28.565150014001521 ], [ 153.565608525984231, -28.564020943031426 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way594795760", "orientation": 56.7, "beach_length": 1274.3702762914984 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.47230415616994, -28.120590640740772 ], [ 153.477935295124695, -28.117328259348785 ] ] } },
{ "type": "Feature", "properties": { "name": "North Beach", "id": "way614055418", "orientation": 89.8, "beach_length": 1199.859909578041 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.866651391051846, -34.569558648783961 ], [ 150.873388714636405, -34.5695392833398 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way664606753", "orientation": 83.1, "beach_length": 1059.6770018698264 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.130182206375309, -36.206410368832543 ], [ 150.136870774577886, -36.205757261328436 ] ] } },
{ "type": "Feature", "properties": { "name": "Haywards Beach", "id": "way664606754", "orientation": 107.4, "beach_length": 5332.0491423246485 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.066518609255041, -36.394044999198101 ], [ 150.072947674293772, -36.395666763781968 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way664606765", "orientation": 122.6, "beach_length": 3772.0435881595317 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.135725762944929, -36.275995490791587 ], [ 150.141401671927724, -36.278921771233478 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "way664713177", "orientation": 69.5, "beach_length": 1088.4824703652382 }, "geometry": { "type": "LineString", "coordinates": [ [ 150.132623945658793, -36.091488510007352 ], [ 150.138934647737358, -36.089581848595152 ] ] } },
{ "type": "Feature", "properties": { "name": "Maroubra Beach", "id": "relation2251446", "orientation": 92.3, "beach_length": 1304.7786949436613 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.255225107515685, -33.949647248967025 ], [ 151.261957044492732, -33.949871538726846 ] ] } },
{ "type": "Feature", "properties": { "name": "North Entrance Beach", "id": "relation2303044", "orientation": 137.0, "beach_length": 9900.7078833312644 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.524384869207324, -33.313435454839677 ], [ 151.528979740836718, -33.31755307743564 ] ] } },
{ "type": "Feature", "properties": { "name": "Seven Mile Beach", "id": "relation2580527", "orientation": 101.9, "beach_length": 9795.7333395711594 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.597650977776965, -28.763556961476439 ], [ 153.604243549604206, -28.764774808848394 ] ] } },
{ "type": "Feature", "properties": { "name": "Seventy Five Mile Beach", "id": "relation2611157", "orientation": 109.8, "beach_length": 104340.30115250713 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.175701667463983, -25.394744299356859 ], [ 153.182040724278636, -25.396805964137293 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "relation2723197", "orientation": 99.4, "beach_length": 3817.6368266284194 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.833201610246448, -31.621366879809862 ], [ 152.839848506633871, -31.622303888877077 ] ] } },
{ "type": "Feature", "properties": { "name": "Burwood Beach", "id": "relation2874470", "orientation": 132.6, "beach_length": 1740.965507343255 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.739813879778922, -32.959293379850727 ], [ 151.744773234258588, -32.963119700548077 ] ] } },
{ "type": "Feature", "properties": { "name": "Palm Beach", "id": "relation2978551", "orientation": 98.7, "beach_length": 2771.560782507047 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.323728294761452, -33.590944774061647 ], [ 151.330388138512319, -33.591793688458139 ] ] } },
{ "type": "Feature", "properties": { "name": "Fishermans Beach", "id": "relation3359340", "orientation": 54.7, "beach_length": 1102.4177924785465 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.304926647932973, -33.738182783520628 ], [ 151.310425264466318, -33.734945167696978 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "relation3429622", "orientation": 100.0, "beach_length": 1491.3424905260258 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.499150446483497, -33.357989048245138 ], [ 151.505785455406851, -33.358966229185413 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "relation3433510", "orientation": 112.4, "beach_length": 11802.823651619099 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.206015285788453, -30.020201713319093 ], [ 153.212244289534908, -30.022424677992785 ] ] } },
{ "type": "Feature", "properties": { "name": "Safety Beach", "id": "relation3903790", "orientation": 92.9, "beach_length": 1337.5116588251049 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.198295596874715, -30.089175916493701 ], [ 153.205024333348007, -30.089470846525359 ] ] } },
{ "type": "Feature", "properties": { "name": "Woolgoolga Beach", "id": "relation3906007", "orientation": 63.7, "beach_length": 1582.8092428572195 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.198088813490756, -30.106416729330963 ], [ 153.20412876945889, -30.10383427192788 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "relation5141614", "orientation": 100.3, "beach_length": 19300.646943814729 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.040794241999237, -30.988061743377703 ], [ 153.047423034254706, -30.989094458534261 ] ] } },
{ "type": "Feature", "properties": { "name": "Boambee Beach", "id": "relation5206367", "orientation": 124.8, "beach_length": 6957.6457413516446 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.118093971968221, -30.33072027520112 ], [ 153.123626353606511, -30.334039025235214 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "relation5374363", "orientation": 120.2, "beach_length": 35839.673826800223 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.485185922621667, -28.984732247121318 ], [ 153.491008857103736, -28.987696753726748 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "relation5403455", "orientation": 107.4, "beach_length": 3467.7786659012691 }, "geometry": { "type": "LineString", "coordinates": [ [ 153.571344835025997, -28.374362035021626 ], [ 153.577773900064699, -28.37613471802031 ] ] } },
{ "type": "Feature", "properties": { "name": "Birdie Beach", "id": "relation5610370", "orientation": 141.0, "beach_length": 1786.9807326381458 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.605942741343654, -33.204047496782778 ], [ 151.610182702287801, -33.2084284120345 ] ] } },
{ "type": "Feature", "properties": { "name": "Birdie Beach", "id": "relation5610374", "orientation": 122.0, "beach_length": 9329.2708899211502 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.571638528455793, -33.233911939456952 ], [ 151.577352137704139, -33.236898196437302 ] ] } },
{ "type": "Feature", "properties": { "name": "Moonee Beach", "id": "relation5614833", "orientation": 85.2, "beach_length": 1414.8674396814627 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.629334061854081, -33.170133845309714 ], [ 151.636047797598934, -33.16966194212808 ] ] } },
{ "type": "Feature", "properties": { "name": "Catherine Hill Bay Beach", "id": "relation5614835", "orientation": 114.4, "beach_length": 2223.576899805525 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.629636403814999, -33.150707397544664 ], [ 151.635772011701221, -33.153037588724935 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "relation5622499", "orientation": 126.3, "beach_length": 3544.1909415687978 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.652586518417479, -33.099743272054873 ], [ 151.658016351121375, -33.103084550421912 ] ] } },
{ "type": "Feature", "properties": { "name": "Stockton Beach", "id": "relation5632945", "orientation": 154.4, "beach_length": 39038.19328012778 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.914889658623906, -32.82458287310245 ], [ 151.917800777865409, -32.829688574995842 ] ] } },
{ "type": "Feature", "properties": { "name": "Bennetts Beach", "id": "relation6158652", "orientation": 125.3, "beach_length": 17070.736099033849 }, "geometry": { "type": "LineString", "coordinates": [ [ 152.204507339562895, -32.634999855045457 ], [ 152.210005956096239, -32.638278380319974 ] ] } },
{ "type": "Feature", "properties": { "name": "Soldiers Beach", "id": "relation7491177", "orientation": 128.9, "beach_length": 1341.891275117024 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.562510072353433, -33.290767981140093 ], [ 151.567753380216516, -33.294304430933003 ] ] } },
{ "type": "Feature", "properties": { "name": "Putty Beach", "id": "relation7966651", "orientation": 162.2, "beach_length": 2032.480907416342 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.365952074280472, -33.528593310798257 ], [ 151.368011655015948, -33.533940624398603 ] ] } },
{ "type": "Feature", "properties": { "name": "noname", "id": "relation8302312", "orientation": 129.6, "beach_length": 12508.032082382493 }, "geometry": { "type": "LineString", "coordinates": [ [ 151.67716704962902, -33.041776618031669 ], [ 151.682358278298523, -33.045376557328964 ] ] } }
]
}

@ -0,0 +1,656 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup notebook"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import datetime\n",
"import pickle\n",
"import fiona\n",
"import shapely\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import geopandas\n",
"from scipy.stats import percentileofscore\n",
"from shapely.geometry import Point, MultiPoint\n",
"import numpy as np\n",
"import requests\n",
"from bs4 import BeautifulSoup\n",
"import urllib.parse\n",
"import itertools\n",
"from tqdm import tqdm\n",
"import glob\n",
"from scipy.interpolate import griddata, SmoothBivariateSpline\n",
"from scipy.ndimage.filters import gaussian_filter\n",
"import colorcet as cc\n",
"import pytz"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Import data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Import Chris' data\n",
"def df_from_csv(csv, index_col, data_folder='../data/interim'):\n",
" print('Importing {}'.format(csv))\n",
" return pd.read_csv(os.path.join(data_folder,csv), index_col=index_col)\n",
"\n",
"df_sites = df_from_csv('sites.csv', index_col=[0])\n",
"df_obs_impacts = df_from_csv('impacts_observed.csv', index_col=[0])\n",
"df_waves = df_from_csv('waves.csv', index_col=[0,1])\n",
"df_waves.index = df_waves.index.set_levels([df_waves.index.levels[0], pd.to_datetime(df_waves.index.levels[1])])\n",
"df_profiles = df_from_csv('profiles.csv', index_col=[0,1,2])\n",
"\n",
"# Load shoreline transects from coastsat\n",
"shoreline_transect_files = glob.glob('./15_data/df_transect_shorelines_*.csv')\n",
"df_shoreline_transects = pd.concat((pd.read_csv(f,\n",
" skiprows=0,\n",
" index_col=[0,1])\n",
" for f in shoreline_transect_files))\n",
"\n",
"# Convert index to datetime\n",
"df_shoreline_transects.index = df_shoreline_transects.index.set_levels(\n",
" [df_shoreline_transects.index.levels[0], pd.to_datetime(df_shoreline_transects.index.levels[1])])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print('df_shoreline_transects:')\n",
"df_shoreline_transects.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Calculate shoreline percentiles"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = []\n",
"\n",
"for site_id, df in df_shoreline_transects.groupby(['site_id']):\n",
" \n",
" # Find last date before June 2016 storm\n",
" mask = pd.Series(df.index.get_level_values('time') < datetime.datetime(2016,6,3).replace(tzinfo=pytz.utc))\n",
" i_last_obs = mask[::-1].idxmax()\n",
" prestorm_observation = df.iloc[i_last_obs]\n",
"\n",
" # Get prestorm and post storm shoreline locations\n",
" # This is a shortcut, because the last x value of our profiles are at the shoreline\n",
" # If we wanted another elevation, this code needs to change\n",
" prestorm_shoreline_x = df_profiles.loc[(site_id,'prestorm',)].dropna(subset=['z']).iloc[-1].name\n",
" poststorm_shoreline_x = df_profiles.loc[(site_id,'poststorm',)].dropna(subset=['z']).iloc[-1].name\n",
"\n",
" # Find the corresponding percentile of prestorm and poststorm shorelines\n",
" prestorm_shoreline_pct = percentileofscore(df.shoreline_chainage_w_tide_correction.dropna(), prestorm_shoreline_x)\n",
" poststorm_shoreline_pct = percentileofscore(df.shoreline_chainage_w_tide_correction.dropna(), poststorm_shoreline_x)\n",
" change_shoreline_pct = poststorm_shoreline_pct - prestorm_shoreline_pct\n",
"\n",
" data.append({\n",
" 'site_id': site_id,\n",
" 'prestorm_shoreline_x': prestorm_shoreline_x,\n",
" 'poststorm_shoreline_x': poststorm_shoreline_x,\n",
" 'prestorm_shoreline_pct': prestorm_shoreline_pct,\n",
" 'poststorm_shoreline_pct': poststorm_shoreline_pct,\n",
" 'change_shoreline_pct': change_shoreline_pct,\n",
" })\n",
"\n",
"df_shorelines_pct = pd.DataFrame(data).set_index('site_id')\n",
"\n",
"print('df_shorelines_pct:')\n",
"df_shorelines_pct.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Get wave data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Find closest nsw nearshore transformation output point to each site_id\n",
"\n",
"# Import nearshore wave site_id data\n",
"df_nearshore_ids = df_from_csv('nsw_nearshore_tool_site_locations.csv', index_col=[0],data_folder='./15_data/')\n",
"df_nearshore_ids.lat = pd.to_numeric(df_nearshore_ids.lat,errors='coerce')\n",
"df_nearshore_ids.lon = pd.to_numeric(df_nearshore_ids.lon,errors='coerce')\n",
"df_nearshore_ids.depth = pd.to_numeric(df_nearshore_ids.depth,errors='coerce')\n",
"gdf_nearshore_ids = geopandas.GeoDataFrame(\n",
" df_nearshore_ids, geometry=geopandas.points_from_xy(df_nearshore_ids.lon, df_nearshore_ids.lat))\n",
"gdf_nearshore_ids.crs = {'init' :'epsg:4283'}\n",
"gdf_nearshore_ids = gdf_nearshore_ids.to_crs(epsg=28356)\n",
"\n",
"gdf_nearshore_ids.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Convert sites to geopandas dataframe\n",
"\n",
"gdf_sites = geopandas.GeoDataFrame(\n",
" df_sites, geometry=geopandas.points_from_xy(df_sites.lon, df_sites.lat))\n",
"gdf_sites.crs = {'init' :'epsg:4283'}\n",
"gdf_sites = gdf_sites.to_crs(epsg=28356)\n",
"gdf_sites.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Warning, this cell takes around 9 mins to compute\n",
"# Need to do some optimizations\n",
"\n",
"# Calculate closest nearshore wave id for each site\n",
"from shapely.ops import nearest_points\n",
"\n",
"def near(point, df2=gdf_nearshore_ids):\n",
" # find the nearest point and return the corresponding Place value\n",
" nearest = df2.geometry == nearest_points(point, df2.geometry.unary_union)[1]\n",
" return df_nearshore_ids[nearest].index[0]\n",
"\n",
"start_time = datetime.datetime.now()\n",
"gdf_sites.loc[:,'nearshore_wave_id'] = gdf_sites.apply(lambda row: near(row.geometry), axis=1)\n",
"end_time = datetime.datetime.now()\n",
"print(\"Executed in: {}\".format(end_time - start_time))\n",
"gdf_sites.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Download wave data using the NSW nearshore transformation website, for sites where we have shoreline measurements"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def nearshore_wave_csv_url(id,start_date,end_date):\n",
" URL = 'http://www.nswaves.com.au/transform.php'\n",
" payload = {\n",
" 'init': '1',\n",
" 'type': 'Transform-Full',\n",
" 'startsite': '{}'.format(id),\n",
" 'endsite': '{}'.format(id),\n",
" 'timestep': 'null',\n",
" 'startdate': start_date.strftime('%Y-%m-%d'),\n",
" 'starthour': '00',\n",
" 'enddate': end_date.strftime('%Y-%m-%d'),\n",
" 'endhour': '00',\n",
" 'sitestep': '1',\n",
" 'method': 'Parametric',\n",
" 'source': 'Waverider',\n",
" 'filename': 'ckl',\n",
" 'format': 'csv',\n",
" }\n",
"\n",
" session = requests.session()\n",
" r = requests.post(URL, data=payload)\n",
" \n",
" soup = BeautifulSoup(r.text)\n",
" \n",
" # Check if data extraction was successful\n",
" if soup.findAll(text=\"OK : Data Extraction Successful - Click filename/s to download data file\"):\n",
"\n",
" # Find all links\n",
" for link in soup.find_all('a'):\n",
"\n",
" href = link.get('href')\n",
" if '/data/full' not in href:\n",
" continue\n",
"\n",
" # Convert to absolute convert to absolute url\n",
" csv_url = urllib.parse.urljoin(URL, href)\n",
"\n",
" return csv_url\n",
" else:\n",
" return None\n",
"\n",
" \n",
"def download_csv(url, file_path):\n",
" urllib.request.urlretrieve(url,file_path)\n",
" print('Downloaded {}'.format(file_path))\n",
" \n",
" \n",
"def daterange(start_date, end_date,delta):\n",
" while start_date < end_date:\n",
" yield start_date\n",
" start_date += delta\n",
" \n",
"def download_nearshore_csv(site_id, nsw_nearshore_id, start_date, end_date,output_folder='./15_nearshore_waves/'):\n",
" \n",
" # Create output folder if doesn't already exists\n",
" os.makedirs(output_folder, exist_ok=True)\n",
"\n",
" # Output filename\n",
" output_filename = '{}_{}_{}_{}.csv'.format(\n",
" site_id,\n",
" nsw_nearshore_id,\n",
" start_date.strftime('%Y%m%d'),\n",
" end_date.strftime('%Y%m%d'),\n",
" )\n",
" output_filepath = os.path.join(output_folder,output_filename)\n",
"\n",
" # Don't download if file already exists\n",
" if os.path.isfile(output_filepath):\n",
" return\n",
"\n",
" csv_url = nearshore_wave_csv_url(nsw_nearshore_id,start_date,end_date)\n",
"\n",
" if csv_url:\n",
" download_csv(csv_url, output_filepath)\n",
" else:\n",
" print('No url found')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_sites[df_sites.beach.isin(['DIAMONDn','HARR','OLDBAR','DEEWHYn'])].index"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# beach = 'DIAMONDn'\n",
"# beach = 'HARR'\n",
"# beach = 'OLDBAR'\n",
"# beach = 'DEEWHYn'\n",
"\n",
"site_ids_to_get = df_sites[df_sites.beach.isin(['DIAMONDn','HARR','OLDBAR','DEEWHYn'])].index\n",
"# site_ids_to_get = df_shorelines_pct.index\n",
"\n",
"# Define what start and end year we want to get\n",
"start_year=2005\n",
"end_year=2014\n",
"\n",
"# Construct a list of start and end times we can query\n",
"date_ranges = [(datetime.datetime(x, 1, 1), datetime.datetime(x, 12, 31))\n",
" for x in range(start_year, end_year + 1)]\n",
"\n",
"# Creates a list of inputs...\n",
"# [('NARRA0001',\n",
"# (datetime.datetime(2005, 1, 1, 0, 0),\n",
"# datetime.datetime(2005, 12, 31, 0, 0))),\n",
"# ('NARRA0001',\n",
"# (datetime.datetime(2006, 1, 1, 0, 0),\n",
"# datetime.datetime(2006, 12, 31, 0, 0))), ...\n",
"inputs = [x for x in list(itertools.product(site_ids_to_get, date_ranges))]\n",
"\n",
"for input_params in inputs:\n",
" site_id, (start_date, end_date) = input_params\n",
" download_nearshore_csv(site_id=site_id,\n",
" nsw_nearshore_id = gdf_sites.loc[site_id].nearshore_wave_id,\n",
" start_date=start_date,\n",
" end_date=end_date)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Calculate mean wave conditions"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import glob\n",
"from tqdm import tqdm\n",
"wave_power_data = []\n",
"\n",
"# For each site, calculate mean wave power and storm wave power\n",
"site_ids = df_shorelines_pct.index\n",
"\n",
"for site_id in tqdm(site_ids):\n",
" \n",
" # Get shoreline orientation\n",
" orientation = df_sites.loc[site_id].orientation\n",
"\n",
"# # Get peak hour wave energy from June 2016 storm\n",
"# max_hrly_wave_power = df_waves.loc[[site['site_id']]].Pxs.max()\n",
"\n",
" # Load nearshore wave csv files into one dataframe\n",
" site_nearshore_wave_files = glob.glob('./15_nearshore_waves/*{}*'.format(site_id))\n",
"\n",
" if len(site_nearshore_wave_files) == 0:\n",
" continue\n",
"\n",
" df_hist_waves = pd.concat((pd.read_csv(f,\n",
" skiprows=8,\n",
" index_col=0,\n",
" names=['Hs', 'Tp', 'dir'],\n",
" na_values=' NaN')\n",
" for f in site_nearshore_wave_files))\n",
" df_hist_waves.index = pd.to_datetime(df_hist_waves.index)\n",
"\n",
" # At each row, calculate crossshore component of nearshore wave energy\n",
" df_hist_waves['d'] = 10\n",
" df_hist_waves['L'] = 9.81 * df_hist_waves.Tp**2 / 2 / np.pi\n",
" df_hist_waves['n'] = 0.5 * (\n",
" 1 + (4 * np.pi * df_hist_waves.d / df_hist_waves.L) /\n",
" (np.sinh(4 * np.pi * df_hist_waves.d / df_hist_waves.L)))\n",
" df_hist_waves['E'] = 1 / 16 * 1025 * 9.81 * df_hist_waves.Hs**2\n",
" df_hist_waves['C'] = 9.81 * df_hist_waves.Tp / 2 / np.pi * np.tanh(\n",
" 2 * np.pi * df_hist_waves.d / df_hist_waves.L)\n",
" df_hist_waves['shoreline_tn_angle'] = 270 - orientation\n",
" df_hist_waves.loc[\n",
" df_hist_waves.shoreline_tn_angle > 360,\n",
" 'shoreline_tn_angle'] = df_hist_waves.shoreline_tn_angle - 360\n",
" df_hist_waves[\n",
" 'alpha'] = df_hist_waves.shoreline_tn_angle - df_hist_waves.dir\n",
" df_hist_waves[\n",
" 'Px'] = df_hist_waves.n * df_hist_waves.E * df_hist_waves.C * np.cos(\n",
" np.deg2rad(df_hist_waves.alpha))\n",
"\n",
"# # Apply percentileofscore for June 2016 wave energy\n",
"# storm_Px_hrly_pctile = percentileofscore(df_hist_waves.Px.dropna().values,\n",
"# max_hrly_wave_power,\n",
"# kind='mean')\n",
"\n",
" # Calculate cumulate wave energy from storm\n",
" idx = ((df_waves.index.get_level_values('datetime') > '2016-06-04') &\n",
" (df_waves.index.get_level_values('datetime') < '2016-06-07') &\n",
" (df_waves.index.get_level_values('site_id') == site_id))\n",
" hrs = len(df_waves[idx])\n",
" Pxscum_storm = df_waves[idx].Pxs.sum()\n",
" \n",
" # Calculate cumulate wave energy of mean wave conditions over length of storm\n",
" Pxscum_mean = df_hist_waves['Px'].mean() * hrs\n",
" Pxscum_storm_mean_ratio = Pxscum_storm / Pxscum_mean\n",
"\n",
" wave_power_data.append({\n",
" 'site_id': site_id,\n",
" 'Pxscum_mean': Pxscum_mean,\n",
" 'Pxscum_storm': Pxscum_storm,\n",
" 'Pxscum_storm_mean_ratio': Pxscum_storm_mean_ratio\n",
" })\n",
"\n",
"df_wave_power = pd.DataFrame(wave_power_data).set_index('site_id')\n",
"df_wave_power.head()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Combine data into one data frame\n",
"df_plot = pd.concat([df_wave_power,df_shorelines_pct],axis=1)\n",
"df_plot.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Define some helper functions\n",
"def round_down(num, divisor):\n",
" return num - (num%divisor)\n",
"\n",
"def round_up(x, divisor): \n",
" return (x + divisor - 1) // divisor * divisor"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create interpolated grid to plot\n",
"x_col = 'Pxscum_storm_mean_ratio'\n",
"y_col = 'prestorm_shoreline_pct'\n",
"z_col = 'change_shoreline_pct'\n",
"\n",
"# Grid data\n",
"x_grid_max = round_up(max(df_plot[x_col]), 2)\n",
"y_grid_max = 100\n",
"\n",
"grid_x, grid_y = np.mgrid[0:x_grid_max:100j, 0:y_grid_max:100j]\n",
"\n",
"x_vals = df_plot[x_col].values\n",
"y_vals = df_plot[y_col].values\n",
"z_vals = df_plot[z_col].values\n",
"\n",
"points = [[x, y] for x, y in zip(\n",
" x_vals,\n",
" y_vals,\n",
")]\n",
"\n",
"grid = griddata((x_vals,y_vals), z_vals, (grid_x, grid_y), method='linear',rescale=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#https://stackoverflow.com/a/47500863\n",
"import scipy as sp\n",
"import scipy.interpolate\n",
"from mpl_toolkits.mplot3d import axes3d\n",
"spline = sp.interpolate.Rbf(x_vals,y_vals,z_vals,function='linear',smooth=30)\n",
"\n",
"x_grid = np.linspace(0, max(x_vals), 100)\n",
"y_grid = np.linspace(0, max(y_vals), 100)\n",
"B1, B2 = np.meshgrid(x_grid, y_grid, indexing='xy')\n",
"Z = np.zeros((x_vals.size, z_vals.size))\n",
"\n",
"Z = spline(B1,B2)\n",
"fig = plt.figure(figsize=(10,6))\n",
"ax = axes3d.Axes3D(fig)\n",
"ax.view_init(elev=10., azim=230)\n",
"ax.plot_wireframe(B1, B2, Z,alpha=0.1)\n",
"ax.plot_surface(B1, B2, Z,alpha=0.1)\n",
"ax.scatter3D(x_vals,y_vals,z_vals, c='r')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Create figure\n",
"fig = plt.figure(figsize=(3, 3), dpi=150, facecolor='w', edgecolor='k')\n",
"ax = fig.add_subplot(111)\n",
"\n",
"# Define colors\n",
"cmap_interval = 25\n",
"cmap = cc.cm.fire\n",
"vmin = round_down(np.min(z_vals), cmap_interval)\n",
"vmax = round_up(np.max(z_vals), cmap_interval)\n",
"levels = [x*cmap_interval for x in range(-4,2)]\n",
"\n",
"# Plot grid surface\n",
"cf = plt.contourf(grid_x, grid_y,grid,levels=levels, cmap=cmap,vmin=vmin,vmax=vmax)\n",
"\n",
"# Plot contours\n",
"cs = plt.contour(grid_x, grid_y,grid,levels=levels,linewidths=0.5,colors='white', vmin=vmin,vmax=vmax)\n",
"ax.clabel(cs, inline=1, fontsize=4, fmt='%1.0f%%')\n",
"\n",
"scatter = ax.scatter(\n",
" x=x_vals,\n",
" y=y_vals,\n",
" c=z_vals,\n",
" s=10,\n",
" linewidth=0.8,\n",
" edgecolor='k',\n",
" cmap=cmap,vmin=vmin,vmax=vmax\n",
")\n",
"\n",
"ax.set_xlim([round_down(min(x_vals), 1),round_up(max(x_vals), 1)])\n",
"\n",
"ax.set_xlabel(x_col)\n",
"ax.set_ylabel(y_col)\n",
"\n",
"cbar = plt.colorbar(cf)\n",
"cbar.set_label(z_col)\n",
"\n",
"ax.grid(True, linestyle=\"--\", alpha=0.2, color='grey', linewidth=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Working"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Find which beaches we should extract next\n",
"\n",
"d = pd.concat([df_sites, df_obs_impacts], axis=1)\n",
"for site_id, df in d.groupby(['beach']):\n",
" break\n",
" \n",
"d_msl_change= d.groupby(['beach']).width_msl_change_m.mean()\n",
"d_site_count = d.groupby(['beach']).lat.count()\n",
"d_site_count_msl_change = pd.concat([d_msl_change,d_site_count],axis=1).sort_values(by='width_msl_change_m')\n",
"l = len(d_site_count_msl_change)\n",
"print(d_site_count_msl_change[:10])\n",
"print('...')\n",
"print(d_site_count_msl_change[int(l/2-5):int(l/2+5)])\n",
"print('...')\n",
"print(d_site_count_msl_change[-10:])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Get polygons for coastsat\n",
"\n",
"# beach = 'DIAMONDn'\n",
"# beach = 'HARR'\n",
"# beach = 'OLDBAR'\n",
"beach = 'DEEWHYn'\n",
"buffer = 0.3 #percent\n",
"\n",
"points = MultiPoint([Point(r[1].lon, r[1].lat) for r in df_sites[df_sites.beach==beach].iterrows()])\n",
"# bounds = points.envelope.bounds\n",
"bounds = points.minimum_rotated_rectangle.bounds\n",
"\n",
"lon_range = bounds[2] - bounds[0]\n",
"lat_range = bounds[3] - bounds[1]\n",
"\n",
"x1 = bounds[0] - lon_range * buffer\n",
"x2 = bounds[2] + lon_range* buffer\n",
"y1 = bounds[1] - lat_range * buffer\n",
"y2 = bounds[3] + lat_range * buffer\n",
"\n",
"# Create our polygon\n",
"polygon = [[[x1, y1],\n",
" [x1, y2],\n",
" [x2, y2],\n",
" [x2, y1],\n",
" [x1, y1]]] \n",
"\n",
"print(beach)\n",
"polygon"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

Binary file not shown.

@ -1,13 +0,0 @@
import pandas as pd
import os
def main():
data_folder = './data/interim'
df_waves = pd.read_csv(os.path.join(data_folder, 'waves.csv'), index_col=[0,1])
df_tides = pd.read_csv(os.path.join(data_folder, 'tides.csv'), index_col=[0,1])
df_profiles = pd.read_csv(os.path.join(data_folder, 'profiles.csv'), index_col=[0,1,2])
df_sites = pd.read_csv(os.path.join(data_folder, 'sites.csv'),index_col=[0])
if __name__ == '__main__':
main()

@ -2,13 +2,13 @@
Compares forecasted and observed impacts, putting them into one data frame and exporting the results.
"""
import logging.config
import os
import pandas as pd
logging.config.fileConfig('./src/logging.conf', disable_existing_loggers=False)
logger = logging.getLogger(__name__)
from logs import setup_logging
logger = setup_logging()
def compare_impacts(df_forecasted, df_observed):
@ -18,15 +18,26 @@ def compare_impacts(df_forecasted, df_observed):
:param df_observed:
:return:
"""
df_compared = df_forecasted.merge(df_observed, left_index=True, right_index=True,
suffixes=['_forecasted', '_observed'])
df_compared = df_forecasted.merge(
df_observed,
left_index=True,
right_index=True,
suffixes=["_forecasted", "_observed"],
)
return df_compared
if __name__ == '__main__':
logger.info('Importing existing data')
data_folder = './data/interim'
df_forecasted = pd.read_csv(os.path.join(data_folder, 'impacts_forecasted_mean_slope_sto06.csv'), index_col=[0])
df_observed = pd.read_csv(os.path.join(data_folder, 'impacts_observed.csv'), index_col=[0])
if __name__ == "__main__":
logger.info("Importing existing data")
data_folder = "./data/interim"
df_forecasted = pd.read_csv(
os.path.join(data_folder, "impacts_forecasted_mean_slope_sto06.csv"),
index_col=[0],
)
df_observed = pd.read_csv(
os.path.join(data_folder, "impacts_observed.csv"), index_col=[0]
)
df_compared = compare_impacts(df_forecasted, df_observed)
df_compared.to_csv(os.path.join(data_folder, 'impacts_observed_vs_forecasted_mean_slope_sto06.csv'))
df_compared.to_csv(
os.path.join(data_folder, "impacts_observed_vs_forecasted_mean_slope_sto06.csv")
)

@ -1,67 +1,171 @@
import logging.config
import os
from multiprocessing import Pool
import click
import numpy as np
import numpy.ma as ma
import pandas as pd
from scipy import stats
from src.analysis.runup_models import sto06_individual, sto06
from analysis import runup_models
from utils import crossings
from logs import setup_logging
logging.config.fileConfig('./src/logging.conf', disable_existing_loggers=False)
logger = logging.getLogger(__name__)
logger = setup_logging()
MULTIPROCESS_THREADS = int(os.environ.get("MULTIPROCESS_THREADS", 4))
def forecast_twl(df_tides, df_profiles, df_waves, df_profile_features, runup_function, n_processes=4,
slope='foreshore'):
def forecast_twl(
df_tides,
df_profiles,
df_waves,
df_profile_features,
df_grain_size,
runup_function,
n_processes=MULTIPROCESS_THREADS,
slope="foreshore",
profile_type="prestorm",
):
# Use df_waves as a base
df_twl = df_waves.copy()
# Merge tides
logger.info('Merging tides')
logger.info("Merging tides")
df_twl = df_twl.merge(df_tides, left_index=True, right_index=True)
# Estimate foreshore slope. Do the analysis per site_id. This is so we only have to query the x and z
# cross-section profiles once per site.
logger.info('Calculating beach slopes')
site_ids = df_twl.index.get_level_values('site_id').unique()
# site_ids = [x for x in site_ids if 'NARRA' in x] # todo remove this - for testing narrabeen only
if slope == 'foreshore':
site_ids = df_twl.index.get_level_values("site_id").unique()
if slope == "foreshore":
logger.info("Calculating foreshore slopes")
# Process each site_id with a different process and combine results at the end
with Pool(processes=n_processes) as pool:
results = pool.starmap(foreshore_slope_for_site_id,
[(site_id, df_twl, df_profiles) for site_id in site_ids])
df_twl['beta'] = pd.concat(results)
elif slope == 'mean':
# todo mean beach profile
df_temp = df_twl.join(df_profile_features, how='inner')
df_temp['mhw'] = 0.5
with Pool(processes=n_processes) as pool:
results = pool.starmap(mean_slope_for_site_id,
[(site_id, df_temp, df_profiles, 'dune_toe_z', 'mhw') for site_id in site_ids])
df_twl['beta'] = pd.concat(results)
results = pool.starmap(
foreshore_slope_for_site_id,
[(site_id, df_twl, df_profiles) for site_id in site_ids],
)
df_twl["beta"] = pd.concat(results)
elif slope == "mean":
df_slopes = get_mean_slope(df_profile_features, df_profiles, profile_type)
# Merge calculated slopes onto each twl timestep
df_twl = df_twl.merge(df_slopes, left_index=True, right_index=True)
elif slope == "intertidal":
logger.info("Calculating intertidal slopes")
df_slopes = get_intertidal_slope(df_profiles, profile_type)
# Merge calculated slopes onto each twl timestep
df_twl = df_twl.merge(df_slopes, left_index=True, right_index=True)
# Estimate runup
R2, setup, S_total, S_inc, S_ig = runup_function(df_twl, Hs0_col='Hs0', Tp_col='Tp', beta_col='beta')
R2, setup, S_total, S_inc, S_ig = runup_function(
Hs0=df_twl["Hs0"].tolist(),
Tp=df_twl["Tp"].tolist(),
beta=df_twl["beta"].tolist(),
r=df_twl.merge(df_grain_size, on="site_id").r.tolist(),
)
df_twl['R2'] = R2
df_twl['setup'] = setup
df_twl['S_total'] = S_total
df_twl["R2"] = R2
df_twl["setup"] = setup
df_twl["S_total"] = S_total
# Estimate TWL
df_twl['R_high'] = df_twl['tide'] + df_twl['R2']
df_twl['R_low'] = df_twl['tide'] + 1.1 * df_twl['setup'] - 1.1 / 2 * df_twl['S_total']
# Drop unneeded columns
df_twl.drop(columns=['E', 'Exs', 'P', 'Pxs', 'dir'], inplace=True, errors='ignore')
df_twl["R_high"] = df_twl["tide"] + df_twl["R2"]
df_twl["R_low"] = (
df_twl["tide"] + 1.1 * df_twl["setup"] - 1.1 / 2 * df_twl["S_total"]
)
return df_twl
def mean_slope_for_site_id(site_id, df_twl, df_profiles, top_elevation_col, btm_elevation_col):
def get_intertidal_slope(df_profiles, profile_type, top_z=1.15, btm_z=-0.9):
"""
Gets intertidal slopes
:param df_profiles:
:param profile_type:
:return:
"""
# Calculate slopes for each profile
df_slopes = (
df_profiles.xs(profile_type, level="profile_type")
.dropna(subset=["z"])
.groupby("site_id")
.apply(
lambda x: slope_from_profile(
profile_x=x.index.get_level_values("x").tolist(),
profile_z=x.z.tolist(),
top_elevation=top_z,
btm_elevation=max(min(x.z), btm_z),
method="least_squares",
)
)
.rename("beta")
.to_frame()
)
return df_slopes
def get_mean_slope(df_profile_features, df_profiles, profile_type, btm_z=0.5):
"""
Calculates the mean slopes for all profiles
:param df_profile_features:
:param df_profiles:
:param profile_type:
:param btm_z: Typically mean high water
:return:
"""
logger.info("Calculating mean (dune toe to MHW) slopes")
# When calculating mean slope, we go from the dune toe to mhw. However, in some profiles, the dune toe is not
# defined. In these cases, we should go to the dune crest. Let's make a temporary dataframe which has this
# already calculated.
df_top_ele = df_profile_features.xs(profile_type, level="profile_type").copy()
df_top_ele.loc[:, "top_ele"] = df_top_ele.dune_toe_z
df_top_ele.loc[
df_top_ele.top_ele.isnull().values, "top_ele"
] = df_top_ele.dune_crest_z
n_no_top_ele = len(df_top_ele[df_top_ele.top_ele.isnull()].index)
if n_no_top_ele != 0:
logger.warning(
"{} sites do not have dune toes/crests to calculate mean slope".format(
n_no_top_ele
)
)
df_slopes = (
df_profiles.xs(profile_type, level="profile_type")
.dropna(subset=["z"])
.groupby("site_id")
.apply(
lambda x: slope_from_profile(
profile_x=x.index.get_level_values("x").tolist(),
profile_z=x.z.tolist(),
top_elevation=df_top_ele.loc[x.index[0][0], :].top_ele,
btm_elevation=btm_z,
method="least_squares",
)
)
.rename("beta")
.to_frame()
)
return df_slopes
def mean_slope_for_site_id(
site_id,
df_twl,
df_profiles,
top_elevation_col,
top_x_col,
btm_elevation_col,
profile_type="prestorm",
):
"""
Calculates the foreshore slope values a given site_id. Returns a series (with same indicies as df_twl) of
foreshore slopes. This function is used to parallelize getting foreshore slopes as it is computationally
@ -73,16 +177,24 @@ def mean_slope_for_site_id(site_id, df_twl, df_profiles, top_elevation_col, btm_
"""
# Get the prestorm beach profile
profile = df_profiles.query("site_id =='{}' and profile_type == 'prestorm'".format(site_id))
profile_x = profile.index.get_level_values('x').tolist()
profile = df_profiles.loc[(site_id, profile_type)]
profile_x = profile.index.get_level_values("x").tolist()
profile_z = profile.z.tolist()
df_twl_site = df_twl.query("site_id == '{}'".format(site_id))
idx = pd.IndexSlice
df_twl_site = df_twl.loc[idx[site_id, :], :]
df_beta = df_twl_site.apply(lambda row: slope_from_profile(profile_x=profile_x, profile_z=profile_z,
df_beta = df_twl_site.apply(
lambda row: slope_from_profile(
profile_x=profile_x,
profile_z=profile_z,
top_elevation=row[top_elevation_col],
btm_elevation=row[btm_elevation_col],
method='end_points'), axis=1)
method="least_squares",
top_x=row[top_x_col],
),
axis=1,
)
return df_beta
@ -98,17 +210,25 @@ def foreshore_slope_for_site_id(site_id, df_twl, df_profiles):
"""
# Get the prestorm beach profile
profile = df_profiles.query("site_id =='{}' and profile_type == 'prestorm'".format(site_id))
profile_x = profile.index.get_level_values('x').tolist()
profile = df_profiles.query(
"site_id =='{}' and profile_type == 'prestorm'".format(site_id)
)
profile_x = profile.index.get_level_values("x").tolist()
profile_z = profile.z.tolist()
df_twl_site = df_twl.query("site_id == '{}'".format(site_id))
df_beta = df_twl_site.apply(lambda row: foreshore_slope_from_profile(profile_x=profile_x, profile_z=profile_z,
df_beta = df_twl_site.apply(
lambda row: foreshore_slope_from_profile(
profile_x=profile_x,
profile_z=profile_z,
tide=row.tide,
runup_function=sto06_individual,
runup_function=runup_models.sto06,
Hs0=row.Hs0,
Tp=row.Tp), axis=1)
Tp=row.Tp,
),
axis=1,
)
return df_beta
@ -130,16 +250,26 @@ def foreshore_slope_from_profile(profile_x, profile_z, tide, runup_function, **k
return None
# Initalize estimates
max_number_iterations = 20
max_number_iterations = 30
iteration_count = 0
min_accuracy = 0.001
averaged_accuracy = (
0.03
) # if slopes within this amount, average after max number of iterations
acceptable_accuracy = (
0.01
) # if slopes within this amount, accept after max number of iterations
preferred_accuracy = 0.001 # if slopes within this amount, accept
beta = 0.05
while True:
R2, setup, S_total, _, _ = runup_function(beta=beta, **kwargs)
beta_new = slope_from_profile(profile_x=profile_x, profile_z=profile_z, method='end_points',
beta_new = slope_from_profile(
profile_x=profile_x,
profile_z=profile_z,
method="least_squares",
top_elevation=tide + setup + S_total / 2,
btm_elevation=tide + setup - S_total / 2)
btm_elevation=tide + setup - S_total / 2,
)
# Return None if we can't find a slope, usually because the elevations we've specified are above/below our
# profile x and z coordinates.
@ -147,18 +277,31 @@ def foreshore_slope_from_profile(profile_x, profile_z, tide, runup_function, **k
return None
# If slopes do not change much between interactions, return the slope
if abs(beta_new - beta) < min_accuracy:
if abs(beta_new - beta) < preferred_accuracy:
return beta
# If we can't converge a solution, return None
if iteration_count > max_number_iterations:
if abs(beta_new - beta) < acceptable_accuracy:
return beta
elif abs(beta_new - beta) < averaged_accuracy:
return (beta_new + beta) / 2
else:
return None
beta = beta_new
iteration_count += 1
def slope_from_profile(profile_x, profile_z, top_elevation, btm_elevation, method='end_points'):
def slope_from_profile(
profile_x,
profile_z,
top_elevation,
btm_elevation,
method="end_points",
top_x=None,
btm_x=None,
):
"""
Returns a slope (beta) from a bed profile, given the top and bottom elevations of where the slope should be taken.
:param x: List of x bed profile coordinates
@ -166,23 +309,36 @@ def slope_from_profile(profile_x, profile_z, top_elevation, btm_elevation, metho
:param top_elevation: Top elevation of where to take the slope
:param btm_elevation: Bottom elevation of where to take the slope
:param method: Method used to calculate slope (end_points or least_squares)
:param top_x: x-coordinate of the top end point. May be needed, as there may be multiple crossings of the
top_elevation.
:param btm_x: x-coordinate of the bottom end point
:return:
"""
# Need all data to get the slope
if any([x is None for x in [profile_x, profile_z, top_elevation, btm_elevation]]):
# Check validity of profile arrays and return None if data is not good
for profile in [profile_x, profile_z]:
if all(np.isnan(profile)) or all(x is None for x in profile):
return None
# Check validity of elevation values
for ele in [top_elevation, btm_elevation]:
if np.isnan(ele) or ele is None:
return None
end_points = {
'top': {
'z': top_elevation,
},
'btm': {
'z': btm_elevation,
}}
end_points = {"top": {"z": top_elevation}, "btm": {"z": btm_elevation}}
for end_type in end_points.keys():
elevation = end_points[end_type]['z']
# Add x coordinates if they are specified
if top_x and end_type == "top":
end_points["top"]["x"] = top_x
continue
if btm_x and end_type == "top":
end_points["btm"]["x"] = btm_x
continue
elevation = end_points[end_type]["z"]
intersection_x = crossings(profile_x, profile_z, elevation)
# No intersections found
@ -191,77 +347,110 @@ def slope_from_profile(profile_x, profile_z, top_elevation, btm_elevation, metho
# One intersection
elif len(intersection_x) == 1:
end_points[end_type]['x'] = intersection_x[0]
end_points[end_type]["x"] = intersection_x[0]
# More than on intersection
else:
if end_type == 'top':
if end_type == "top":
# For top elevation, take most seaward intersection
end_points[end_type]['x'] = intersection_x[-1]
end_points[end_type]["x"] = intersection_x[-1]
else:
# For bottom elevation, take most landward intersection that is seaward of top elevation
end_points[end_type]['x'] = [x for x in intersection_x if x > end_points['top']['x']][0]
end_point_btm = [
x for x in intersection_x if x > end_points["top"]["x"]
]
if len(end_point_btm) == 0:
# If there doesn't seem to be an intersection seaward of the top elevation, return none.
logger.warning("No intersections found seaward of top elevation")
return None
else:
end_points[end_type]["x"] = end_point_btm[0]
# Ensure that top point is landward of bottom point
if end_points["top"]["x"] > end_points["btm"]["x"]:
logger.warning("Top point is not landward of bottom point")
return None
if method == 'end_points':
x_top = end_points['top']['x']
x_btm = end_points['btm']['x']
z_top = end_points['top']['z']
z_btm = end_points['btm']['z']
if method == "end_points":
x_top = end_points["top"]["x"]
x_btm = end_points["btm"]["x"]
z_top = end_points["top"]["z"]
z_btm = end_points["btm"]["z"]
return -(z_top - z_btm) / (x_top - x_btm)
elif method == 'least_squares':
profile_mask = [True if end_points['top']['x'] < pts < end_points['btm']['x'] else False for pts in x]
elif method == "least_squares":
profile_mask = [
True if end_points["top"]["x"] < pts < end_points["btm"]["x"] else False
for pts in profile_x
]
# Need at least two points to do linear regression
if sum(profile_mask) < 2:
return None
slope_x = np.array(profile_x)[profile_mask].tolist()
slope_z = np.array(profile_z)[profile_mask].tolist()
slope, _, _, _, _ = stats.linregress(slope_x, slope_z)
return -slope
def crossings(profile_x, profile_z, constant_z):
"""
Finds the x coordinate of a z elevation for a beach profile. Much faster than using shapely to calculate
intersections since we are only interested in intersections of a constant value. Will return multiple
intersections if found. Used in calculating beach slope.
Adapted from https://stackoverflow.com/a/34745789
:param profile_x: List of x coordinates for the beach profile section
:param profile_z: List of z coordinates for the beach profile section
:param constant_z: Float of the elevation to find corresponding x coordinates
:return: List of x coordinates which correspond to the constant_z
"""
# Remove nans to suppress warning messages
valid = ~ma.masked_invalid(profile_z).mask
profile_z = np.array(profile_z)[valid]
profile_x = np.array(profile_x)[valid]
# Normalize the 'signal' to zero.
# Use np.subtract rather than a list comprehension for performance reasons
z = np.subtract(profile_z, constant_z)
# Find all indices right before any crossing.
indicies = np.where(z[:-1] * z[1:] < 0)[0]
# Use linear interpolation to find intersample crossings.
return [profile_x[i] - (profile_x[i] - profile_x[i + 1]) / (z[i] - z[i + 1]) * (z[i]) for i in indicies]
if __name__ == '__main__':
logger.info('Importing data')
data_folder = './data/interim'
df_waves = pd.read_csv(os.path.join(data_folder, 'waves.csv'), index_col=[0, 1])
df_tides = pd.read_csv(os.path.join(data_folder, 'tides.csv'), index_col=[0, 1])
df_profiles = pd.read_csv(os.path.join(data_folder, 'profiles.csv'), index_col=[0, 1, 2])
df_sites = pd.read_csv(os.path.join(data_folder, 'sites.csv'), index_col=[0])
df_profile_features = pd.read_csv(os.path.join(data_folder, 'profile_features.csv'), index_col=[0])
logger.info('Forecasting TWL')
df_twl_foreshore_slope_sto06 = forecast_twl(df_tides, df_profiles, df_waves, df_profile_features,
runup_function=sto06, slope='foreshore')
df_twl_foreshore_slope_sto06.to_csv(os.path.join(data_folder, 'twl_foreshore_slope_sto06.csv'))
df_twl_mean_slope_sto06 = forecast_twl(df_tides, df_profiles, df_waves, df_profile_features,
runup_function=sto06, slope='mean')
df_twl_mean_slope_sto06.to_csv(os.path.join(data_folder, 'twl_mean_slope_sto06.csv'))
logger.info('Done')
@click.command()
@click.option("--waves-csv", required=True, help="")
@click.option("--tides-csv", required=True, help="")
@click.option("--profiles-csv", required=True, help="")
@click.option("--profile-features-csv", required=True, help="")
@click.option(
"--runup-function",
required=True,
help="",
type=click.Choice(["sto06", "hol86", "nie91", "pow18"]),
)
@click.option(
"--slope",
required=True,
help="",
type=click.Choice(["foreshore", "mean", "intertidal"]),
)
@click.option(
"--profile-type",
required=True,
help="",
type=click.Choice(["prestorm", "poststorm"]),
)
@click.option("--output-file", required=True, help="")
@click.option("--grain-size-csv", required=False, help="")
def create_twl_forecast(
waves_csv,
tides_csv,
profiles_csv,
profile_features_csv,
runup_function,
slope,
profile_type,
output_file,
grain_size_csv,
):
logger.info("Creating forecast of total water levels")
logger.info("Importing data")
df_waves = pd.read_csv(waves_csv, index_col=[0, 1])
df_tides = pd.read_csv(tides_csv, index_col=[0, 1])
df_profiles = pd.read_csv(profiles_csv, index_col=[0, 1, 2])
df_profile_features = pd.read_csv(profile_features_csv, index_col=[0, 1])
df_grain_size = pd.read_csv(grain_size_csv, index_col=[0])
logger.info("Forecasting TWL")
df_twl = forecast_twl(
df_tides,
df_profiles,
df_waves,
df_profile_features,
df_grain_size,
runup_function=getattr(runup_models, runup_function),
slope=slope,
profile_type=profile_type,
)
df_twl.to_csv(output_file, float_format="%.4f")
logger.info("Saved to %s", output_file)
logger.info("Done!")

@ -2,13 +2,12 @@
Estimates the forecasted storm impacts based on the forecasted water level and dune crest/toe.
"""
import logging.config
import os
import click
import pandas as pd
logging.config.fileConfig('./src/logging.conf', disable_existing_loggers=False)
logger = logging.getLogger(__name__)
from logs import setup_logging
logger = setup_logging()
def forecasted_impacts(df_profile_features, df_forecasted_twl):
@ -19,22 +18,32 @@ def forecasted_impacts(df_profile_features, df_forecasted_twl):
:param df_forecasted_twl:
:return:
"""
logger.info('Getting forecasted storm regimes')
logger.info("Getting forecasted storm impacts")
df_forecasted_impacts = pd.DataFrame(index=df_profile_features.index)
df_forecasted_impacts = pd.DataFrame(
index=df_profile_features.index.get_level_values("site_id").unique()
)
# For each site, find the maximum R_high value and the corresponding R_low value.
idx = df_forecasted_twl.groupby(level=['site_id'])['R_high'].idxmax().dropna()
df_r_vals = df_forecasted_twl.loc[idx, ['R_high', 'R_low']].reset_index(['datetime'])
df_forecasted_impacts = df_forecasted_impacts.merge(df_r_vals, how='left', left_index=True, right_index=True)
idx = df_forecasted_twl.groupby(level=["site_id"])["R_high"].idxmax().dropna()
df_r_vals = df_forecasted_twl.loc[idx, ["R_high", "R_low"]].reset_index(
["datetime"]
)
df_forecasted_impacts = df_forecasted_impacts.merge(
df_r_vals, how="left", left_index=True, right_index=True
)
# Join with df_profile features to find dune toe and crest elevations
df_forecasted_impacts = df_forecasted_impacts.merge(df_profile_features[['dune_toe_z', 'dune_crest_z']],
how='left',
left_index=True,
right_index=True)
# Compare R_high and R_low wirth dune crest and toe elevations
df_forecasted_impacts = df_forecasted_impacts.merge(
df_profile_features.query("profile_type=='prestorm'").reset_index(
"profile_type"
)[["dune_toe_z", "dune_crest_z"]],
how="left",
left_on=["site_id"],
right_on=["site_id"],
)
# Compare R_high and R_low with dune crest and toe elevations
df_forecasted_impacts = storm_regime(df_forecasted_impacts)
return df_forecasted_impacts
@ -47,27 +56,86 @@ def storm_regime(df_forecasted_impacts):
:param df_forecasted_impacts:
:return:
"""
logger.info('Getting forecasted storm regimes')
logger.info("Getting forecasted storm regimes")
df_forecasted_impacts.loc[
df_forecasted_impacts.R_high <= df_forecasted_impacts.dune_toe_z, "storm_regime"
] = "swash"
df_forecasted_impacts.loc[
df_forecasted_impacts.R_high <= df_forecasted_impacts.dune_toe_z, 'storm_regime'] = 'swash'
df_forecasted_impacts.dune_toe_z <= df_forecasted_impacts.R_high, "storm_regime"
] = "collision"
df_forecasted_impacts.loc[
df_forecasted_impacts.dune_toe_z <= df_forecasted_impacts.R_high, 'storm_regime'] = 'collision'
df_forecasted_impacts.loc[(df_forecasted_impacts.dune_crest_z <= df_forecasted_impacts.R_high) &
(df_forecasted_impacts.R_low <= df_forecasted_impacts.dune_crest_z),
'storm_regime'] = 'overwash'
df_forecasted_impacts.loc[(df_forecasted_impacts.dune_crest_z <= df_forecasted_impacts.R_low) &
(df_forecasted_impacts.dune_crest_z <= df_forecasted_impacts.R_high),
'storm_regime'] = 'inundation'
"storm_regime",
] = "overwash"
df_forecasted_impacts.loc[
(df_forecasted_impacts.dune_crest_z <= df_forecasted_impacts.R_low)
& (df_forecasted_impacts.dune_crest_z <= df_forecasted_impacts.R_high),
"storm_regime",
] = "inundation"
# If there is no dune toe defined, R_high should be compared to dune crest to determine if swash or overwash.
df_forecasted_impacts.loc[
(df_forecasted_impacts.dune_toe_z.isnull())
& (df_forecasted_impacts.R_high <= df_forecasted_impacts.dune_crest_z),
"storm_regime",
] = "swash"
return df_forecasted_impacts
if __name__ == '__main__':
logger.info('Importing existing data')
data_folder = './data/interim'
df_profiles = pd.read_csv(os.path.join(data_folder, 'profiles.csv'), index_col=[0, 1, 2])
df_profile_features = pd.read_csv(os.path.join(data_folder, 'profile_features.csv'), index_col=[0])
df_forecasted_twl = pd.read_csv(os.path.join(data_folder, 'twl_mean_slope_sto06.csv'), index_col=[0, 1])
def twl_exceedence_time(df_profile_features, df_forecasted_twl, z_twl_col="R_high"):
"""
Returns a dataframe of number of hours the twl exceeded a certain z elevation.
May need to use this https://stackoverflow.com/a/53656968 if datetimes are not consistent.
:param df_profile_features:
:param df_forecasted_twl:
:param z_twl_col:
:param z_exceedence_col:
:return:
"""
logger.info("Getting twl exceedence time")
# Get the elevation we want to calculate the time TWL exceedes this level.
# Note it's usually dune toe, but some profiles don't have a dune toe. In these cases, use dune crest value
df_temp = df_profile_features.xs("prestorm", level="profile_type").copy()
df_temp.loc[df_temp.dune_toe_z.isnull(), "dune_toe_z"] = df_temp[
df_temp.dune_toe_z.isnull()
].dune_crest_z
df_dune_toes = df_temp.dune_toe_z.to_frame()
# Merge dune toes into site_id
df_merged = df_forecasted_twl.merge(
df_dune_toes, left_on=["site_id"], right_on=["site_id"]
)
# Return the sum of hours that twl exceeded the level
return (
(df_merged[z_twl_col] >= df_merged["dune_toe_z"])
.groupby("site_id")
.sum()
.rename("twl_{}_exceedance_hrs".format("dune_toe_z"))
.to_frame()
)
@click.command()
@click.option("--profile-features-csv", required=True, help="")
@click.option("--forecasted-twl-csv", required=True, help="")
@click.option("--output-file", required=True, help="")
def create_forecasted_impacts(profile_features_csv, forecasted_twl_csv, output_file):
logger.info("Creating observed wave impacts")
logger.info("Importing existing data")
df_profile_features = pd.read_csv(profile_features_csv, index_col=[0, 1])
df_forecasted_twl = pd.read_csv(forecasted_twl_csv, index_col=[0, 1])
df_forecasted_impacts = forecasted_impacts(df_profile_features, df_forecasted_twl)
df_forecasted_impacts.to_csv(os.path.join(data_folder, 'impacts_forecasted_mean_slope_sto06.csv'))
df_forecasted_impacts = df_forecasted_impacts.merge(
twl_exceedence_time(df_profile_features, df_forecasted_twl),
left_on=["site_id"],
right_on=["site_id"],
)
df_forecasted_impacts.to_csv(output_file, float_format="%.4f")
logger.info("Saved to %s", output_file)
logger.info("Done!")

@ -1,12 +1,18 @@
import logging.config
import os
import click
import numpy as np
import pandas as pd
from scipy.integrate import simps
from scipy.signal import savgol_filter
from scipy.interpolate import interp1d
from numpy import ma as ma
from itertools import groupby
from tqdm import tqdm
from logs import setup_logging
from utils import crossings, get_i_or_default
from analysis.forecast_twl import get_mean_slope, get_intertidal_slope
logging.config.fileConfig('./src/logging.conf', disable_existing_loggers=False)
logger = logging.getLogger(__name__)
logger = setup_logging()
def return_first_or_nan(l):
@ -21,66 +27,208 @@ def return_first_or_nan(l):
return l[0]
def volume_change(df_profiles, df_profile_features, zone):
def round_up_to_odd(f):
"""
https://stackoverflow.com/a/31648815
:param f:
:return:
"""
return int(np.ceil(f) // 2 * 2 + 1)
def volume_change(df_profiles, df_profile_features):
"""
Calculates how much the volume change there is between prestrom and post storm profiles.
:param df_profiles:
:param df_profile_features:
:param zone: Either 'swash' or 'dune_face'
:return:
"""
logger.info('Calculating change in beach volume in {} zone'.format(zone))
logger.info("Calculating change in beach volume")
df_vol_changes = pd.DataFrame(
index=df_profile_features.index.get_level_values("site_id").unique()
)
df_vol_changes = pd.DataFrame(index=df_profile_features.index)
df_profiles = df_profiles.dropna(subset=["z"])
df_profiles = df_profiles.sort_index()
sites = df_profiles.groupby(level=['site_id'])
for site_id, df_site in sites:
logger.debug('Calculating change in beach volume at {} in {} zone'.format(site_id, zone))
prestorm_dune_toe_x = df_profile_features.loc[df_profile_features.index == site_id].dune_toe_x.tolist()
prestorm_dune_crest_x = df_profile_features.loc[df_profile_features.index == site_id].dune_crest_x.tolist()
# We may not have a dune toe or crest defined, or there may be multiple defined.
prestorm_dune_crest_x = return_first_or_nan(prestorm_dune_crest_x)
prestorm_dune_toe_x = return_first_or_nan(prestorm_dune_toe_x)
# If no dune to has been defined, Dlow = Dhigh. Refer to Sallenger (2000).
if np.isnan(prestorm_dune_toe_x):
prestorm_dune_toe_x = prestorm_dune_crest_x
# Find last x coordinate where we have both prestorm and poststorm measurements. If we don't do this,
# the prestorm and poststorm values are going to be calculated over different lengths.
df_zone = df_site.dropna(subset=['z'])
x_last_obs = min([max(df_zone.query("profile_type == '{}'".format(profile_type)).index.get_level_values('x'))
for profile_type in ['prestorm', 'poststorm']])
# Where we want to measure pre and post storm volume is dependant on the zone selected
if zone == 'swash':
x_min = prestorm_dune_toe_x
x_max = x_last_obs
elif zone == 'dune_face':
x_min = prestorm_dune_crest_x
x_max = prestorm_dune_toe_x
sites = df_profiles.groupby(level=["site_id"])
for site_id, df_site in tqdm(sites):
params = {}
# Calculate pre and post storm volume seawards of our profile change point
# and store in dictionary and dataframe.
df_prestorm = df_profiles.loc[(site_id, "prestorm")]
df_poststorm = df_profiles.loc[(site_id, "poststorm")]
# Calculate total subaerial volume change
# Calculate difference between pre and post storm profiles
z_diff = (
df_profiles.loc[(site_id, "poststorm")].z
- df_profiles.loc[(site_id, "prestorm")].z
)
# There are no common points between pre and poststorm values, so we have to
# skip this
if z_diff.dropna().size == 0:
continue
# # # Debug
# import matplotlib.pyplot as plt
# plt.plot(z_diff)
# plt.plot(df_profiles.loc[(site_id, "prestorm")].z)
# plt.plot(df_profiles.loc[(site_id, "poststorm")].z)
# plt.show()
# First, find locations where we have a good match between pre and post storm
# profiles.
lidar_accuracy = 0.2 # m
good_match = start_stop(
(abs(z_diff) < lidar_accuracy).values, trigger_val=True, len_thresh=20
)
# If entire profile has changed (usually at lagoon entrance), take change
# point as the first x-coord where we have both pre and poststorm profiles
if good_match.size == 0:
x_change_point = min(
set(df_prestorm.z.dropna().index.get_level_values("x"))
& set(df_poststorm.z.dropna().index.get_level_values("x"))
)
z_change_point = df_prestorm.loc[x_change_point].z
else:
logger.warning('Zone argument not properly specified. Please check')
x_min = None
x_max = None
# Now, compute the volume of sand between the x-coordinates prestorm_dune_toe_x and x_swash_last for both prestorm
# and post storm profiles.
prestorm_vol = beach_volume(x=df_zone.query("profile_type=='prestorm'").index.get_level_values('x'),
z=df_zone.query("profile_type=='prestorm'").z,
x_min=x_min,
x_max=x_max)
poststorm_vol = beach_volume(x=df_zone.query("profile_type=='poststorm'").index.get_level_values('x'),
z=df_zone.query("profile_type=='poststorm'").z,
x_min=x_min,
x_max=x_max)
df_vol_changes.loc[site_id, 'prestorm_{}_vol'.format(zone)] = prestorm_vol
df_vol_changes.loc[site_id, 'poststorm_{}_vol'.format(zone)] = poststorm_vol
df_vol_changes.loc[site_id, '{}_vol_change'.format(zone)] = prestorm_vol - poststorm_vol
# Minimum idx_change_points should be the first place where we have a good match
idx_change_point_min = good_match[0][0]
# Identify locations where z_diff is negative, i.e. profile has been
# eroded by the storm. Then group them by the number of consecutive
# values.
grouped = start_stop((z_diff < 0).values, trigger_val=True, len_thresh=1)
# Sort by streaklength, then get the start index of the longest streak
# of true values. x_change_point is then the x-coordinate where our pre and
# post storm profiles start to change.
idx_change_points = sorted(
[x for x in grouped if x[0] > idx_change_point_min],
key=lambda x: x[1] - x[0],
reverse=True,
)
if len(idx_change_points) == 0:
continue
else:
idx_change_point = idx_change_points[0][0]
x_change_point = z_diff.index[idx_change_point]
z_change_point = df_prestorm.loc[x_change_point].z
# Landward of the change point, set difference in pre/post storm profiles
# equal to zero
z_diff[z_diff.index < x_change_point] = 0
params["prestorm_total_subaerial_vol"] = beach_volume(
x=df_prestorm.index.get_level_values("x"),
z=df_prestorm.z.values,
x_min=x_change_point,
)
params["poststorm_total_subaerial_vol"] = beach_volume(
x=df_poststorm.index.get_level_values("x"),
z=df_poststorm.z.values,
x_min=x_change_point,
)
params["total_vol_change"] = (
params["poststorm_total_subaerial_vol"]
- params["prestorm_total_subaerial_vol"]
)
params["x_change_point"] = x_change_point
params["z_change_point"] = z_change_point
df_vol_changes.loc[site_id, "total_vol_change"] = params["total_vol_change"]
df_vol_changes.loc[site_id, "x_change_point"] = params["x_change_point"]
df_vol_changes.loc[site_id, "z_change_point"] = params["z_change_point"]
for zone in ["dune", "swash"]:
params[zone] = {}
for profile_type in ["prestorm", "poststorm"]:
# Store zone/profile_type results in a dictionary, then append at the
# end to the params dictionary.
d = {}
# Get variables, this helps simplify the below code
df_profile_feature = df_profile_features.loc[(site_id, profile_type)]
df_profile = df_profiles.loc[(site_id, profile_type)]
# Define the edges of the swash and dunes where we want to calculate subaeraial volume.
if zone == "swash":
d["x_min"] = df_profile_feature.dune_toe_x
d["x_max"] = max(df_profile.index.get_level_values("x"))
# For profiles with no Dlow value, we take Dhigh as the minimum value to calculate swash
if np.isnan(d["x_min"]):
d["x_min"] = df_profile_feature.dune_crest_x
elif zone == "dune":
d["x_min"] = df_profile_feature.dune_crest_x
if np.isnan(df_profile_feature.dune_toe_x):
# If there's no dune toe, take most seaward value
d["x_max"] = max(df_profile.index.get_level_values("x"))
else:
d["x_max"] = df_profile_feature.dune_toe_x
# For profiles with no Dlow value, the dune is undefined and we cannot calculate a dune volume.
# Calculate subaerial volume based on our x min and maxes
d["subaerial_vol"] = beach_volume(
x=df_profile.index.get_level_values("x"),
z=df_profile.z.values,
x_min=d["x_min"],
x_max=d["x_max"],
)
params[zone][profile_type] = d
# Calculate change in volumes. Use the z_diff array which has been
# zero'ed out landward of the x_change_point
# Zero out nans so we can calculate change in beach volume.
z_diff.loc[np.isnan(z_diff)] = 0
params[zone]["vol_change"] = beach_volume(
x=z_diff.index.values,
z=z_diff.values,
x_min=params[zone]["prestorm"]["x_min"],
x_max=params[zone]["prestorm"]["x_max"],
)
if (zone == 'dune') & (np.isnan(params[zone]['vol_change'])):
print(site_id)
params[zone]["pct_change"] = (
params[zone]["vol_change"] / params[zone]["prestorm"]["subaerial_vol"]
)
# params[zone]["vol_loss"] = (params[zone]["prestorm"]["subaerial_vol"] -
# params[zone]["poststorm"]["subaerial_vol"])
# params[zone]["pct_loss"] = \
# params[zone]["vol_loss"] / params[zone]["prestorm"]["subaerial_vol"]
# Save results in our data frame
df_vol_changes.loc[site_id, "prestorm_{}_vol".format(zone)] = params[zone][
"prestorm"
]["subaerial_vol"]
df_vol_changes.loc[site_id, "poststorm_{}_vol".format(zone)] = params[zone][
"poststorm"
]["subaerial_vol"]
df_vol_changes.loc[site_id, "{}_vol_change".format(zone)] = params[zone][
"vol_change"
]
df_vol_changes.loc[site_id, "{}_pct_change".format(zone)] = params[zone][
"pct_change"
]
return df_vol_changes
@ -110,28 +258,221 @@ def storm_regime(df_observed_impacts):
:param df_observed_impacts:
:return:
"""
logger.info('Getting observed storm regimes')
df_observed_impacts.loc[df_observed_impacts.swash_vol_change < 3, 'storm_regime'] = 'swash'
df_observed_impacts.loc[df_observed_impacts.dune_face_vol_change > 3, 'storm_regime'] = 'collision'
logger.info("Getting observed storm regimes")
swash = df_observed_impacts.dune_vol_change > -3
collision = df_observed_impacts.dune_vol_change < -3
df_observed_impacts.loc[swash, "storm_regime"] = "swash"
df_observed_impacts.loc[collision, "storm_regime"] = "collision"
# TODO We may be able to identify observed regimes by looking at the change in crest and toe elevation. This would be useful for
# locations where we have overwash and cannot calculate the change in volume correctly. Otherwise, maybe it's better to put it in manually.
return df_observed_impacts
def overwrite_impacts(df_observed_impacts, df_raw_features):
"""
Overwrites calculated impacts with impacts manually specified in profile_features file
:param df_raw_profile_features:
:return:
"""
# Get manually specified impacts from the profile features ./data/raw/ folder. Note that sites which need to be
# overwritten with a NaN, use the string 'none' in the csv. This is because when we use the df.update() command,
# it doesn't overwrite NaN values. So we'll put in the 'none' string, then overwrite that with the NaN.
df_overwritten_impacts = df_raw_features.rename(
columns={"observed_storm_regime": "storm_regime"}
).storm_regime.to_frame()
df_observed_impacts.update(df_overwritten_impacts)
# Replace 'none' with nan
df_observed_impacts.loc[
df_observed_impacts.storm_regime == "unknown", "storm_regime"
] = np.nan
return df_observed_impacts
if __name__ == '__main__':
logger.info('Importing existing data')
data_folder = './data/interim'
df_profiles = pd.read_csv(os.path.join(data_folder, 'profiles.csv'), index_col=[0, 1, 2])
df_profile_features = pd.read_csv(os.path.join(data_folder, 'profile_features.csv'), index_col=[0])
@click.command()
@click.option("--profiles-csv", required=True, help="")
@click.option("--profile-features-crest-toes-csv", required=True, help="")
@click.option("--raw-profile-features-csv", required=True, help="")
@click.option("--output-file", required=True, help="")
def create_observed_impacts(
profiles_csv, profile_features_crest_toes_csv, raw_profile_features_csv, output_file
):
logger.info("Creating observed wave impacts")
logger.info("Importing data")
df_profiles = pd.read_csv(profiles_csv, index_col=[0, 1, 2])
df_profile_features = pd.read_csv(profile_features_crest_toes_csv, index_col=[0, 1])
logger.info("Creating new dataframe for observed impacts")
df_observed_impacts = pd.DataFrame(
index=df_profile_features.index.get_level_values("site_id").unique()
)
logger.info('Creating new dataframe for observed impacts')
df_observed_impacts = pd.DataFrame(index=df_profile_features.index)
# TODO Review volume change with changing dune toe/crests
logger.info("Getting pre/post storm volumes")
logger.info('Getting pre/post storm volumes')
df_swash_vol_changes = volume_change(df_profiles, df_profile_features, zone='swash')
df_dune_face_vol_changes = volume_change(df_profiles, df_profile_features, zone='dune_face')
df_observed_impacts = df_observed_impacts.join([df_swash_vol_changes, df_dune_face_vol_changes])
df_vol_changes = volume_change(df_profiles, df_profile_features)
df_observed_impacts = df_observed_impacts.join(df_vol_changes)
# Classify regime based on volume changes
df_observed_impacts = storm_regime(df_observed_impacts)
# Overwrite storm impacts with manually picked impacts
df_raw_features = pd.read_csv(raw_profile_features_csv, index_col=[0])
df_observed_impacts = overwrite_impacts(df_observed_impacts, df_raw_features)
# Calculate change in mean slope
df_prestorm_mean_slopes = get_mean_slope(
df_profile_features, df_profiles, profile_type="prestorm"
)
df_poststorm_mean_slopes = get_mean_slope(
df_profile_features, df_profiles, profile_type="poststorm"
)
df_diff_mean_slopes = df_poststorm_mean_slopes - df_prestorm_mean_slopes
# Calculate change in intertidal slope
df_prestorm_intertidal_slopes = get_intertidal_slope(
df_profiles, profile_type="prestorm"
)
df_poststorm_intertidal_slopes = get_intertidal_slope(
df_profiles, profile_type="poststorm"
)
df_diff_intertidal_slopes = (
df_poststorm_intertidal_slopes - df_prestorm_intertidal_slopes
)
# Rename slope columns and merge into observed impacts
renames = [
{"df": df_prestorm_mean_slopes, "new_col_name": "beta_prestorm_mean"},
{"df": df_poststorm_mean_slopes, "new_col_name": "beta_poststorm_mean"},
{"df": df_diff_mean_slopes, "new_col_name": "beta_diff_mean"},
{
"df": df_prestorm_intertidal_slopes,
"new_col_name": "beta_prestorm_intertidal",
},
{
"df": df_poststorm_intertidal_slopes,
"new_col_name": "beta_poststorm_intertidal",
},
{"df": df_diff_intertidal_slopes, "new_col_name": "beta_diff_intertidal"},
]
for rename in renames:
rename["df"].rename(
{"beta": rename["new_col_name"]}, axis="columns", inplace=True
)
# Join all our slopes into the observed impacts
df_observed_impacts = pd.concat(
[
df_prestorm_mean_slopes,
df_poststorm_mean_slopes,
df_diff_mean_slopes,
df_prestorm_intertidal_slopes,
df_poststorm_intertidal_slopes,
df_diff_intertidal_slopes,
df_observed_impacts,
],
axis=1,
)
# Calculate change in beach width
df_width_msl_prestorm = get_beach_width(
df_profile_features,
df_profiles,
profile_type="prestorm",
ele=0,
col_name="width_msl_prestorm",
)
df_width_msl_poststorm = get_beach_width(
df_profile_features,
df_profiles,
profile_type="poststorm",
ele=0,
col_name="width_msl_poststorm",
)
df_width_msl_change_m = (df_width_msl_poststorm - df_width_msl_prestorm).rename(
"width_msl_change_m"
)
df_width_msl_change_pct = (
df_width_msl_change_m / df_width_msl_prestorm * 100
).rename("width_msl_change_pct")
# Join beach width change onto observed impacts dataframe
df_observed_impacts = pd.concat(
[
df_observed_impacts,
df_width_msl_prestorm,
df_width_msl_poststorm,
df_width_msl_change_m,
df_width_msl_change_pct,
],
axis=1,
)
# Save dataframe to csv
df_observed_impacts.to_csv(os.path.join(data_folder, 'impacts_observed.csv'))
df_observed_impacts.to_csv(output_file, float_format="%.4f")
logger.info("Saved to %s", output_file)
logger.info("Done!")
def get_beach_width(df_profile_features, df_profiles, profile_type, ele, col_name):
df_x_position = (
df_profiles.xs(profile_type, level="profile_type")
.dropna(subset=["z"])
.groupby("site_id")
.apply(
lambda x: get_i_or_default(
crossings(
profile_x=x.index.get_level_values("x").tolist(),
profile_z=x.z.tolist(),
constant_z=ele,
),
-1,
default=np.nan,
)
)
.rename("x_position")
)
df_x_prestorm_dune_toe = df_profile_features.xs(
"prestorm", level="profile_type"
).dune_toe_x
df_width = (df_x_position - df_x_prestorm_dune_toe).rename(col_name)
return df_width
def start_stop(a, trigger_val, len_thresh=2):
"""
https://stackoverflow.com/a/51259253
In [47]: myArray
Out[47]: array([1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1])
In [48]: start_stop(myArray, trigger_val=1, len_thresh=2)
Out[48]:
array([[ 5, 8],
[13, 15]])
:param a:
:param trigger_val:
:param len_thresh:
:return:
"""
# "Enclose" mask with sentients to catch shifts later on
mask = np.r_[False, np.equal(a, trigger_val), False]
# Get the shifting indices
idx = np.flatnonzero(mask[1:] != mask[:-1])
# Get lengths
lens = idx[1::2] - idx[::2]
return idx.reshape(-1, 2)[lens > len_thresh] - [0, 1]

@ -1,51 +1,220 @@
import numpy as np
import pandas as pd
from logs import setup_logging
def sto06_individual(Hs0, Tp, beta):
logger = setup_logging()
Lp = 9.8 * Tp ** 2 / 2 / np.pi
S_ig = 0.06 * np.sqrt(Hs0 * Lp)
S_inc = 0.75 * beta * np.sqrt(Hs0 * Lp)
# Dissipative conditions
if beta / (Hs0/Lp)**(0.5) <= 0.3:
setup = 0.016 * (Hs0 * Lp) ** 0.5
S_total = 0.046 * (Hs0 * Lp) ** 0.5
R2 = 0.043 * (Hs0 * Lp) ** 0.5
else:
setup = 0.35 * beta * (Hs0 * Lp) ** 0.5
S_total = np.sqrt(S_inc ** 2 + S_ig **2)
R2 = 1.1 * (setup + S_total / 2)
return R2, setup, S_total, S_inc, S_ig
def sto06(df, Hs0_col, Tp_col, beta_col):
def sto06(Hs0, Tp, beta, **kwargs):
"""
Vectorized version of Stockdon06 which can be used with dataframes
:param df:
:param Hs0_col:
:param Tp_col:
:param beta_col:
:return:
:param Hs0: List or float of offshore significant wave height values
:param Tp: List or float of peak wave period
:param beta: List of float of beach slope
:return: Float or list of R2, setup, S_total, S_inc and S_ig values
"""
Lp = 9.8 * df[Tp_col] ** 2 / 2 / np.pi
df = pd.DataFrame(
{"Hs0": Hs0, "Tp": Tp, "beta": beta}, index=[x for x in range(0, np.size(Hs0))]
)
df["Lp"] = 9.8 * df["Tp"] ** 2 / 2 / np.pi
# General equation
S_ig = pd.to_numeric(0.06 * np.sqrt(df[Hs0_col] * Lp), errors='coerce')
S_inc = pd.to_numeric(0.75 * df[beta_col] * np.sqrt(df[Hs0_col] * Lp), errors='coerce')
setup = pd.to_numeric(0.35 * df[beta_col] * np.sqrt(df[Hs0_col] * Lp), errors='coerce')
S_total = np.sqrt(S_inc ** 2 + S_ig ** 2)
R2 = 1.1 * (setup + S_total / 2)
df["S_ig"] = pd.to_numeric(0.06 * np.sqrt(df["Hs0"] * df["Lp"]), errors="coerce")
df["S_inc"] = pd.to_numeric(
0.75 * df["beta"] * np.sqrt(df["Hs0"] * df["Lp"]), errors="coerce"
)
df["setup"] = pd.to_numeric(
0.35 * df["beta"] * np.sqrt(df["Hs0"] * df["Lp"]), errors="coerce"
)
df["S_total"] = np.sqrt(df["S_inc"] ** 2 + df["S_ig"] ** 2)
df["R2"] = 1.1 * (df["setup"] + df["S_total"] / 2)
# Dissipative conditions
dissipative = df[beta_col] / (df[Hs0_col] / Lp)**(0.5) <= 0.3
setup.loc[dissipative,:] = 0.016 * (df[Hs0_col] * Lp) ** (0.5) # eqn 16
S_total.loc[dissipative,:] = 0.046 * (df[Hs0_col] * Lp) ** (0.5) # eqn 17
R2.loc[dissipative,:] = 0.043 * (df[Hs0_col] * Lp) ** (0.5) # eqn 18
dissipative = df["beta"] / (df["Hs0"] / df["Lp"]) ** (0.5) <= 0.3
df.loc[dissipative, "setup"] = 0.016 * (df["Hs0"] * df["Lp"]) ** (0.5) # eqn 16
df.loc[dissipative, "S_total"] = 0.046 * (df["Hs0"] * df["Lp"]) ** (0.5) # eqn 17
df.loc[dissipative, "R2"] = 0.043 * (df["Hs0"] * df["Lp"]) ** (0.5) # eqn 18
return (
float_or_list(df["R2"].tolist()),
float_or_list(df["setup"].tolist()),
float_or_list(df["S_total"].tolist()),
float_or_list(df["S_inc"].tolist()),
float_or_list(df["S_ig"].tolist()),
)
def hol86(Hs0, Tp, beta, **kwargs):
df = pd.DataFrame(
{"Hs0": Hs0, "Tp": Tp, "beta": beta}, index=[x for x in range(0, np.size(Hs0))]
)
df["Lp"] = 9.8 * df["Tp"] ** 2 / 2 / np.pi
df["setup"] = 0.2 * df["Hs0"]
df["R2"] = 0.83 * df["beta"] * np.sqrt(df["Hs0"] * df["Lp"]) + df["setup"]
df["S_ig"] = np.nan
df["S_inc"] = np.nan
df["S_total"] = np.nan
return (
float_or_list(df["R2"].tolist()),
float_or_list(df["setup"].tolist()),
float_or_list(df["S_total"].tolist()),
float_or_list(df["S_inc"].tolist()),
float_or_list(df["S_ig"].tolist()),
)
def nie91(Hs0, Tp, beta, **kwargs):
df = pd.DataFrame(
{"Hs0": Hs0, "Tp": Tp, "beta": beta}, index=[x for x in range(0, np.size(Hs0))]
)
df["Lp"] = 9.8 * df["Tp"] ** 2 / 2 / np.pi
df["Ls"] = df["Lp"] # Need to make this approximation, refer to Atkinson 2017
df["Hrms"] = df["Hs0"] / np.sqrt(
2
) # Acceptable approximation, refer to Atkinson 2017
df.loc[df.beta >= 0.1, "LR"] = 0.6 * df["beta"] * np.sqrt(df["Hrms"] * df["Ls"])
df.loc[df.beta < 0.1, "LR"] = 0.06 * np.sqrt(df["Hrms"] * df["Ls"])
df["R2"] = 1.98 * df["LR"]
# Note that this should be the level above Z100%, which in this case is taken as the time varying tide level,
# even though minimum run-down can still occur below tide SWL.
df["setup"] = np.nan
df["S_ig"] = np.nan
df["S_inc"] = np.nan
df["S_total"] = np.nan
return (
float_or_list(df["R2"].tolist()),
float_or_list(df["setup"].tolist()),
float_or_list(df["S_total"].tolist()),
float_or_list(df["S_inc"].tolist()),
float_or_list(df["S_ig"].tolist()),
)
def atk18(Hs0, Tp, beta):
pass
def pow18(Hs0, Tp, beta, r, **kwargs):
logger.info("Calculating runup using Power et al. (2018)")
df = pd.DataFrame(
{"Hs0": Hs0, "Tp": Tp, "beta": beta, "r": r},
index=[x for x in range(0, np.size(Hs0))],
)
df["Lp"] = 9.8 * df["Tp"] ** 2 / 2 / np.pi
df["x1"] = df["Hs0"] / df["Lp"]
df["x2"] = df["beta"]
df["x3"] = df["r"] / df["Hs0"]
df["R2"] = df.Hs0 * (
(df.x2 + (((df.x3 * 3) / np.exp(-5)) * ((3 * df.x3) * df.x3)))
+ ((((df.x1 + df.x3) - 2) - (df.x3 - df.x2)) + ((df.x2 - df.x1) - df.x3))
+ (((df.x3 ** df.x1) - (df.x3 ** (1 / 3))) - (np.exp(df.x2) ** (df.x1 * 3)))
+ np.sqrt((((df.x3 + df.x1) - df.x2) - (df.x2 + np.log10(df.x3))))
+ ((((df.x2 ** 2) / (df.x1 ** (1 / 3))) ** (df.x1 ** (1 / 3))) - np.sqrt(df.x3))
+ (
(df.x2 + ((df.x3 / df.x1) ** (1 / 3)))
+ (np.log(2) - (1 / (1 + np.exp(-(df.x2 + df.x3)))))
)
+ ((np.sqrt(df.x3) - (((3 ** 2) + 3) * (df.x2 ** 2))) ** 2)
+ ((((df.x3 * -5) ** 2) ** 2) + (((df.x3 + df.x3) * df.x1) / (df.x2 ** 2)))
+ np.log(
(np.sqrt(((df.x2 ** 2) + (df.x3 ** (1 / 3)))) + ((df.x2 + 3) ** (1 / 3)))
)
+ (
(((df.x1 / df.x3) * (-5 ** 2)) * (df.x3 ** 2))
- np.log10((1 / (1 + np.exp(-(df.x2 + df.x3)))))
)
+ (df.x1 ** df.x3)
+ np.exp(-((((df.x3 / df.x1) ** np.exp(4)) + (np.exp(df.x3) ** 3)) ** 2))
+ np.exp((np.log((df.x2 - df.x3)) - np.log(np.exp(-((-1 + df.x1) ** 2)))))
+ ((np.sqrt(4) * (((df.x3 / df.x2) - df.x2) - (0 - df.x1))) ** 2)
+ (2 * ((((-5 * df.x3) + df.x1) * (2 - df.x3)) - 2))
+ ((np.sqrt(4) * (((df.x3 / df.x2) - df.x2) - (0 - df.x1))) ** 2)
+ ((((-5 + df.x1) - df.x2) * (df.x2 - df.x3)) * ((df.x1 - df.x2) - (-4 ** -5)))
+ (np.exp(-((df.x2 + (-5 - df.x1)) ** 2)) + ((df.x2 + 5) * (df.x3 ** 2)))
+ np.sqrt(
1
/ (
1
+ np.exp(
-(
(np.exp(df.x1) - np.exp(-((df.x3 + df.x3) ** 2)))
+ ((df.x1 ** df.x3) - (df.x3 * 4))
)
)
)
)
+ (
(
np.exp(
-(
(
(
(
np.exp(
-(
(
(np.sqrt(df.x3) * 4)
+ (1 / (1 + np.exp(-(df.x2 + 2))))
)
** 2
)
)
)
** 2
)
+ df.x1
)
** 2
)
)
)
** 3
)
)
df["setup"] = np.nan
df["S_ig"] = np.nan
df["S_inc"] = np.nan
df["S_total"] = np.nan
return (
float_or_list(df["R2"].tolist()),
float_or_list(df["setup"].tolist()),
float_or_list(df["S_total"].tolist()),
float_or_list(df["S_inc"].tolist()),
float_or_list(df["S_ig"].tolist()),
)
def beu(Hs0, Tp, beta):
pass
def float_or_list(a):
"""
If only one value in the array, return the float, else return a list
:param a:
:return:
"""
if len(a) == 1:
return a[0]
else:
return list(a)
return R2, setup, S_total, S_inc, S_ig
if __name__ == '__main__':
if __name__ == "__main__":
pass

@ -0,0 +1,37 @@
"""
Entry point to run data processing and analysis commands.
"""
# Disable numpy warnings
import warnings
import click
import analysis.forecast_twl as forecast_twl
import analysis.forecasted_storm_impacts as forecasted_storm_impacts
import analysis.observed_storm_impacts as observed_storm_impacts
import data.csv_to_geojson as csv_to_geojson
import data.parse_mat as parse_mat
warnings.simplefilter(action="ignore", category=FutureWarning)
@click.group()
def cli():
pass
if __name__ == "__main__":
cli.add_command(csv_to_geojson.impacts_to_geojson)
cli.add_command(csv_to_geojson.profile_features_crest_toes_to_geojson)
cli.add_command(csv_to_geojson.R_high_to_geojson)
cli.add_command(csv_to_geojson.sites_csv_to_geojson)
cli.add_command(forecast_twl.create_twl_forecast)
cli.add_command(forecasted_storm_impacts.create_forecasted_impacts)
cli.add_command(observed_storm_impacts.create_observed_impacts)
cli.add_command(parse_mat.create_crest_toes)
cli.add_command(parse_mat.create_sites_and_profiles_csv)
cli.add_command(parse_mat.create_tides_csv)
cli.add_command(parse_mat.create_waves_csv)
cli.add_command(parse_mat.create_grain_size_csv)
cli()

@ -1,19 +1,39 @@
% Calculate orientation the beach profile at each unique site and save to .mat file
% Calculate orientation the beach profile at each unique site and save to .mat file. Orientation is
% the number of degrees, anticlockwise from east, perpendicular to the shoreline (pointing towards
% land).
%% Setup
% Needs the following coastal tools:
% J:\Coastal\Tools\MALT Logspiral Transformation
% J:\Coastal\Tools\Coordinate Transformations
addpath('J:\Coastal\Tools\MALT Logspiral Transformation')
addpath('J:\Coastal\Tools\Coordinate Transformations')
clear
clc
%% Options
% Where is the profiles file located? This should contain a structure including the .lat and .lon
% for each analysed cross section
profilesFile = '..\..\data\raw\processed_shorelines\profiles.mat';
% Where should we store the processed beach orientations?
outputFile = '..\..\data\raw\processed_shorelines\orientations.mat';
% How far in meters does the profile extend towards land and sea? Used to provide end points of the
% cross section
distance = 200;
%% Script
% Load profile data, this is where we want to calculate orientations.
warning('off','all')
data = load('C:\Users\z5189959\Desktop\nsw_2016_storm_impact\data\raw\processed_shorelines\profiles.mat');
data = load(profilesFile);
data = data.data;
% Save results to variable
output = [];
for ii = 1:n
for ii = 1:length(data)
disp(num2str(ii))
lat = data(ii).lat;
lon = data(ii).lon;
@ -21,15 +41,42 @@ for ii = 1:n
[x,y,utmzone] = deg2utm(lat,lon);
if strcmp(beach, 'BOOM') == 1 || strcmp(beach, 'HARGn') == 1 || strcmp(beach, 'BILG') == 1 || strcmp(beach, 'HARGs') == 1 || strcmp(beach, 'DEEWHYn') == 1
% log spiral transformation file is out of date. Talk to Mitch
continue
end
% These are straight beaches, load the transformation file directly and read the rotation angle.
parameterDir = 'J:\Coastal\Tools\MALT Logspiral Transformation';
parameterFile = [parameterDir, filesep, beach, '.mat'];
parameterMat = load(parameterFile);
fields = fieldnames(parameterMat);
field = fields(1,1);
site = getfield(parameterMat, field{1});
rot_angle = site.rot_angle; % Angle of the shoreline counter clockwise from east
% Figure out end points in utm coordinates
x_land = x - distance * cos(deg2rad(rot_angle));
y_land = y + distance * sin(deg2rad(rot_angle));
x_sea = x + distance * cos(deg2rad(rot_angle));
y_sea = y - distance * sin(deg2rad(rot_angle));
[lat_land,lon_land] = utm2deg(x_land,y_land,utmzone);
[lat_sea,lon_sea] = utm2deg(x_land,y_land,utmzone);
if strcmp(beach, 'AVOCAs') == 1
% negative solution. Talk to Mitch
row.lat_center = lat;
row.lon_center = lon;
row.lat_land = lat_land;
row.lon_land = lat_land;
row.lat_sea = lat_sea;
row.lon_sea = lon_sea;
row.orientation = rot_angle + 90; % Tangent to shoreline towards line
row.beach = beach;
output = [output; row];
continue
end
% if strcmp(beach, 'AVOCAs') == 1
% % negative solution. Talk to Mitch
% continue
% end
% Get the sp log spiral transformed coordinates
xyz.x = x;
xyz.y = y;
@ -56,7 +103,12 @@ for ii = 1:n
[lat_sea,lon_sea] = utm2deg(xyz_sea.x,xyz_sea.y,utmzone);
% Orientation in degrees anticlockwise from east, pointing towards land
try
orientation = radtodeg(atan2((xyz_land.y - xyz_sea.y), (xyz_land.x - xyz_sea.x)));
catch
disp(['Cannot calculate orientation: ' beach])
continue
end
row.lat_center = lat;
row.lon_center = lon;
@ -70,4 +122,4 @@ for ii = 1:n
end
warning('on','all')
save('orientations.mat','output','-v7')
save(outputFile','output','-v7')

@ -0,0 +1,339 @@
"""
Converts .csv files to .shape files
"""
import os
import numpy.ma as ma
import click
import fiona
import numpy as np
import pandas as pd
from fiona.crs import from_epsg
from shapely.geometry import Point, mapping, LineString
from collections import OrderedDict
from utils import crossings, convert_coord_systems
from logs import setup_logging
logger = setup_logging()
def lat_lon_from_profile_x_coord(
center_lat_lon, orientation, center_profile_x, x_coord
):
"""
Returns the lat/lon of a point on a profile with the given x_coord
:param center_lat_lon: Shapely point of lat/lon of profile center
:param orientation: Orientation of the profile (positive east, counterclockwise)
:param center_profile_x: x value of the center of the profile
:param x_coord: X coordinate of the point to get a lat lon from
:return:
"""
center_xy = convert_coord_systems(center_lat_lon)
center_x, center_y = center_xy.xy
point_x = center_x + (center_profile_x - x_coord) * np.cos(np.deg2rad(orientation))
point_y = center_y + (center_profile_x - x_coord) * np.sin(np.deg2rad(orientation))
point_xy = Point(point_x, point_y)
point_lat_lon = convert_coord_systems(
point_xy, in_coord_system="EPSG:28356", out_coord_system="EPSG:4326"
)
return point_lat_lon
@click.command()
@click.option("--sites-csv", required=True, help=".csv file to convert")
@click.option("--profiles-csv", required=True, help=".csv file to convert")
@click.option("--crest-toes-csv", required=True, help=".csv file to convert")
@click.option("--impacts-csv", required=True, help=".csv file to convert")
@click.option("--output-geojson", required=True, help="where to store .geojson file")
def R_high_to_geojson(
sites_csv, profiles_csv, crest_toes_csv, impacts_csv, output_geojson
):
"""
Converts impact R_high into a lat/lon geojson that we can plot in QGIS
:param sites_csv:
:param profiles_csv:
:param impacts_csv:
:param output_geojson:
:return:
"""
df_sites = pd.read_csv(sites_csv, index_col=[0])
df_profiles = pd.read_csv(profiles_csv, index_col=[0, 1, 2])
df_crest_toes = pd.read_csv(crest_toes_csv, index_col=[0, 1])
df_impacts = pd.read_csv(impacts_csv, index_col=[0])
# Create geojson file
schema = {
"geometry": "Point",
"properties": OrderedDict(
[("beach", "str"), ("site_id", "str"), ("elevation", "float")]
),
}
with fiona.open(
output_geojson, "w", driver="GeoJSON", crs=from_epsg(4326), schema=schema
) as output:
for index, row in df_impacts.iterrows():
site_id = index
beach = index[:-4]
# Find lat/lon of R_high position
R_high_z = row["R_high"]
# Get poststorm profile
df_profile = df_profiles.loc[(site_id, "prestorm")]
int_x = crossings(
df_profile.index.get_level_values("x").tolist(),
df_profile.z.tolist(),
R_high_z,
)
# Take the intersection closest to the dune face.
try:
x_cols = [x for x in df_crest_toes.columns if "_x" in x]
dune_face_x = np.mean(
df_crest_toes.loc[(site_id, "prestorm"), x_cols].tolist()
)
int_x = min(int_x, key=lambda x: abs(x - dune_face_x))
except:
continue
# Get lat/lon on intercept position
site = df_sites.loc[site_id]
point_lat_lon = lat_lon_from_profile_x_coord(
center_lat_lon=Point(site["lon"], site["lat"]),
orientation=site["orientation"],
center_profile_x=site["profile_x_lat_lon"],
x_coord=int_x,
)
prop = OrderedDict(
[("beach", beach), ("site_id", site_id), ("elevation", R_high_z)]
)
output.write({"geometry": mapping(point_lat_lon), "properties": prop})
@click.command()
@click.option("--sites-csv", required=True, help=".csv file to convert")
@click.option("--profile-features-csv", required=True, help=".csv file to convert")
@click.option("--output-geojson", required=True, help="where to store .geojson file")
def profile_features_crest_toes_to_geojson(
sites_csv, profile_features_csv, output_geojson
):
"""
Converts profile_features containing dune toes and crest locations to a geojson we can load into QGIS
:param sites_csv:
:param profiles_csv:
:param profile_features_csv:
:param output_geojson:
:return:
"""
logger.info("Creating profile features geojson")
# Read files from interim folder
df_sites = pd.read_csv(sites_csv, index_col=[0])
df_profile_features = pd.read_csv(profile_features_csv, index_col=[0])
# Create geojson file
schema = {
"geometry": "Point",
"properties": OrderedDict(
[
("beach", "str"),
("site_id", "str"),
(
"point_type",
"str",
), # prestorm_dune_toe, prestorm_dune_crest, poststorm_dune_toe, poststorm_dune_crest
("profile_type", "str"),
("elevation", "float"),
]
),
}
with fiona.open(
output_geojson, "w", driver="GeoJSON", crs=from_epsg(4326), schema=schema
) as output:
for index, row in df_profile_features.iterrows():
beach = index[:-4]
site_id = index
profile_type = row["profile_type"]
for point_type in ["crest", "toe"]:
# point_type='crest'
elevation = row["dune_{}_z".format(point_type)]
x = row["dune_{}_x".format(point_type)]
if np.isnan(x):
continue
# Geojsons need to use 'null' instead of 'nan'
if np.isnan(elevation):
elevation = None
# Convert x position to lat/lon
site = df_sites.loc[site_id]
point_lat_lon = lat_lon_from_profile_x_coord(
center_lat_lon=Point(site["lon"], site["lat"]),
orientation=site["orientation"],
center_profile_x=site["profile_x_lat_lon"],
x_coord=x,
)
prop = OrderedDict(
[
("beach", beach),
("site_id", site_id),
("point_type", point_type),
("profile_type", profile_type),
("elevation", elevation),
]
)
output.write({"geometry": mapping(point_lat_lon), "properties": prop})
@click.command()
@click.option("--input-csv", required=True, help=".csv file to convert")
@click.option("--output-geojson", required=True, help="where to store .geojson file")
def sites_csv_to_geojson(input_csv, output_geojson):
"""
Converts our dataframe of sites to .geojson to load in QGis. Sites are loaded as linestrings of the profile
cross-sections
:param input_csv:
:param output_geojson:
:return:
"""
logger.info("Converting %s to %s", input_csv, output_geojson)
df_sites = pd.read_csv(input_csv, index_col=[0])
logger.info(os.environ.get("GDAL_DATA", None))
schema = {
"geometry": "LineString",
"properties": OrderedDict([("beach", "str"), ("site_id", "str")]),
}
with fiona.open(
output_geojson, "w", driver="GeoJSON", crs=from_epsg(4326), schema=schema
) as output:
for index, row in df_sites.iterrows():
center_lat_lon = Point(row["lon"], row["lat"])
# Work out where landward profile limit is
land_lat_lon = lat_lon_from_profile_x_coord(
center_lat_lon=center_lat_lon,
orientation=row["orientation"],
center_profile_x=row["profile_x_lat_lon"],
x_coord=0,
)
# Work out where seaward profile limit is
sea_lat_lon = lat_lon_from_profile_x_coord(
center_lat_lon=center_lat_lon,
orientation=row["orientation"],
center_profile_x=row["profile_x_lat_lon"],
x_coord=2 * row["profile_x_lat_lon"],
)
line_string = LineString([land_lat_lon, center_lat_lon, sea_lat_lon])
prop = OrderedDict([("beach", row["beach"]), ("site_id", index)])
output.write({"geometry": mapping(line_string), "properties": prop})
logger.info("Done!")
@click.command()
@click.option("--sites-csv", required=True, help="sites.csv file to convert")
@click.option(
"--observed-impacts-csv", required=True, help="impacts-observed.csv file to convert"
)
@click.option(
"--forecast-impacts-csv", required=True, help="impacts-forecast.csv file to convert"
)
@click.option("--output-geojson", required=True, help="where to store .geojson file")
def impacts_to_geojson(
sites_csv, observed_impacts_csv, forecast_impacts_csv, output_geojson
):
"""
Converts impacts observed and forecasted to a geojson for visualization in QGIS
:param sites_csv:
:param observed_impacts_csv:
:param forecast_impacts_csv:
:param output_geojson:
:return:
"""
# Get information from .csv and read into pandas dataframe
df_sites = pd.read_csv(sites_csv, index_col=[0])
df_observed = pd.read_csv(observed_impacts_csv, index_col=[0])
df_forecast = pd.read_csv(forecast_impacts_csv, index_col=[0]).rename(
{"storm_regime": "forecast_storm_regime"}
)
# Rename columns, so we can distinguish between forecast and observed
df_observed = df_observed.rename(columns={"storm_regime": "observed_storm_regime"})
df_forecast = df_forecast.rename(columns={"storm_regime": "forecast_storm_regime"})
# Concat into one big dataframe
df = pd.concat([df_sites, df_observed, df_forecast], sort=True, axis=1)
# Make new column for accuracy of forecast. Use underpredict/correct/overpredict classes
df.loc[
df.observed_storm_regime == df.forecast_storm_regime, "forecast_accuray"
] = "correct"
# Observed/Forecasted/Class for each combination
classes = [
("swash", "collision", "overpredict"),
("swash", "swash", "correct"),
("swash", "overwash", "overpredict"),
("collision", "swash", "underpredict"),
("collision", "collision", "correct"),
("collision", "overwash", "overpredict"),
("overwash", "swash", "underpredict"),
("overwash", "collision", "underpredict"),
("overwash", "overwash", "correct"),
]
for c in classes:
df.loc[
(df.observed_storm_regime == c[0]) & (df.forecast_storm_regime == c[1]),
"forecast_accuracy",
] = c[2]
schema = {
"geometry": "Point",
"properties": OrderedDict(
[
("beach", "str"),
("site_id", "str"),
("forecast_storm_regime", "str"),
("observed_storm_regime", "str"),
("forecast_accuracy", "str"),
]
),
}
with fiona.open(
output_geojson, "w", driver="GeoJSON", crs=from_epsg(4326), schema=schema
) as output:
for index, row in df.iterrows():
# Locate the marker at the seaward end of the profile to avoid cluttering the coastline.
# Work out where seaward profile limit is
sea_lat_lon = lat_lon_from_profile_x_coord(
center_lat_lon=Point(row["lon"], row["lat"]),
orientation=row["orientation"],
center_profile_x=row["profile_x_lat_lon"],
x_coord=2 * row["profile_x_lat_lon"],
)
prop = OrderedDict(
[
("beach", row["beach"]),
("site_id", index),
("forecast_storm_regime", row["forecast_storm_regime"]),
("observed_storm_regime", row["observed_storm_regime"]),
("forecast_accuracy", row["forecast_accuracy"]),
]
)
output.write({"geometry": mapping(sea_lat_lon), "properties": prop})
logger.info("Done!")

@ -1,48 +0,0 @@
"""
Converts .csv files to .shape files
"""
import click
import fiona
import pandas as pd
from fiona.crs import from_epsg
from shapely.geometry import Point, mapping
@click.command()
@click.argument('input_csv')
@click.argument('output_shp')
def sites_csv_to_shp(input_csv, output_shp):
"""
Converts our dataframe of sites to .shp to load in QGis
:param input_csv:
:param output_shp:
:return:
"""
df_sites = pd.read_csv(input_csv, index_col=[0])
schema = {
'geometry': 'Point',
'properties': {
'beach': 'str',
'site_id': 'str'
}
}
with fiona.open(output_shp, 'w', crs=from_epsg(4326), driver='ESRI Shapefile', schema=schema) as output:
for index, row in df_sites.iterrows():
point = Point(row['lon'], row['lat'])
prop = {
'beach': row['beach'],
'site_id': index,
}
output.write({'geometry': mapping(point), 'properties': prop})
@click.group()
def cli():
pass
if __name__ == '__main__':
cli.add_command(sites_csv_to_shp)
cli()

@ -1,263 +0,0 @@
"""
Converts raw .mat files into a flattened .csv structure which can be imported into python pandas.
"""
import logging.config
from datetime import datetime, timedelta
import pandas as pd
from mat4py import loadmat
import numpy as np
logging.config.fileConfig('./src/logging.conf', disable_existing_loggers=False)
logger = logging.getLogger(__name__)
def parse_orientations(orientations_mat):
"""
Parses the raw orientations.mat file and returns a pandas dataframe. Note that orientations are the direction
towards land measured in degrees anti-clockwise from east.
:param orientations_mat:
:return:
"""
logger.info('Parsing %s', orientations_mat)
mat_data = loadmat(orientations_mat)['output']
rows = []
for i in range(0, len(mat_data['beach'])):
rows.append({
'beach': mat_data['beach'][i],
'orientation': mat_data['orientation'][i],
'lat_center': mat_data['lat_center'][i],
'lon_center': mat_data['lon_center'][i],
'lat_land': mat_data['lat_land'][i],
'lon_land': mat_data['lon_land'][i],
'lat_sea': mat_data['lat_sea'][i],
'lon_sea': mat_data['lon_sea'][i],
})
df = pd.DataFrame(rows)
return df
def combine_sites_and_orientaions(df_sites, df_orientations):
"""
Replaces beach/lat/lon columns with the unique site_id.
:param dfs:
:param df_sites:
:return:
"""
df_merged_sites = df_sites.merge(df_orientations[['beach', 'lat_center', 'lon_center', 'orientation']],
left_on=['beach', 'lat', 'lon'],
right_on=['beach', 'lat_center', 'lon_center'])
# Check that all our records have a unique site identifier
n_unmatched = len(df_sites) - len(df_merged_sites)
if n_unmatched > 0:
logger.warning('Not all records (%d of %d) matched with an orientation', n_unmatched, len(df_sites))
# Drop extra columns
df_merged_sites = df_merged_sites.drop(columns = ['lat_center', 'lon_center'])
return df_merged_sites
def specify_lat_lon_profile_center(df_sites, x_val=200):
"""
Specify which x-coordinate in the beach profile cross section the lat/lon corresponds to
:param df_sites:
:return:
"""
df_sites['profile_x_lat_lon'] = x_val
return df_sites
def parse_waves(waves_mat):
"""
Parses the raw waves.mat file and returns a pandas dataframe
:param waves_mat:
:return:
"""
logger.info('Parsing %s', waves_mat)
mat_data = loadmat(waves_mat)['data']
rows = []
for i in range(0, len(mat_data['site'])):
for j in range(0, len(mat_data['dates'][i])):
rows.append({
'beach': mat_data['site'][i],
'lon': mat_data['lon'][i],
'lat': mat_data['lat'][i],
'datetime': matlab_datenum_to_datetime(mat_data['dates'][i][j][0]),
'Hs': mat_data['H'][i][j][0],
'Hs0': mat_data['Ho'][i][j][0],
'Tp': mat_data['T'][i][j][0],
'dir': mat_data['D'][i][j][0],
'E': mat_data['E'][i][j][0],
'P': mat_data['P'][i][j][0],
'Exs': mat_data['Exs'][i][j][0],
'Pxs': mat_data['Pxs'][i][j][0],
})
df = pd.DataFrame(rows)
df['datetime'] = df['datetime'].dt.round('1s')
return df
def parse_tides(tides_mat):
"""
Parses the raw tides.mat file and returns a pandas dataframe
:param tides_mat:
:return:
"""
logger.info('Parsing %s', tides_mat)
mat_data = loadmat(tides_mat)['data']
rows = []
for i in range(0, len(mat_data['site'])):
for j in range(0, len(mat_data['time'])):
rows.append({
'beach': mat_data['site'][i][0],
'lon': mat_data['lons'][i][0],
'lat': mat_data['lats'][i][0],
'datetime': matlab_datenum_to_datetime(mat_data['time'][j][0]),
'tide': mat_data['tide'][i][j]
})
df = pd.DataFrame(rows)
df['datetime'] = df['datetime'].dt.round('1s')
return df
def parse_profiles(profiles_mat):
"""
Parses the raw profiles.mat file and returns a pandas dataframe
:param tides_mat:
:return:
"""
logger.info('Parsing %s', profiles_mat)
mat_data = loadmat(profiles_mat)['data']
rows = []
for i in range(0, len(mat_data['site'])):
for j in range(0, len(mat_data['pfx'][i])):
for profile_type in ['prestorm', 'poststorm']:
if profile_type == 'prestorm':
z = mat_data['pf1'][i][j][0]
if profile_type == 'poststorm':
z = mat_data['pf2'][i][j][0]
rows.append({
'beach': mat_data['site'][i],
'lon': mat_data['lon'][i],
'lat': mat_data['lat'][i],
'profile_type': profile_type,
'x': mat_data['pfx'][i][j][0],
'z': z,
})
df = pd.DataFrame(rows)
return df
def remove_zeros(df_profiles):
"""
When parsing the pre/post storm profiles, the end of some profiles have constant values of zero. Let's change
these to NaNs for consistancy. Didn't use pandas fillnan because 0 may still be a valid value.
:param df:
:return:
"""
df_profiles = df_profiles.sort_index()
groups = df_profiles.groupby(level=['site_id','profile_type'])
for key, _ in groups:
logger.debug('Removing zeros from {} profile at {}'.format(key[1], key[0]))
idx_site = (df_profiles.index.get_level_values('site_id') == key[0]) & \
(df_profiles.index.get_level_values('profile_type') == key[1])
df_profile = df_profiles[idx_site]
x_last_ele = df_profile[df_profile.z!=0].index.get_level_values('x')[-1]
df_profiles.loc[idx_site & (df_profiles.index.get_level_values('x')>x_last_ele), 'z'] = np.nan
return df_profiles
def matlab_datenum_to_datetime(matlab_datenum):
# https://stackoverflow.com/a/13965852
return datetime.fromordinal(int(matlab_datenum)) + timedelta(days=matlab_datenum % 1) - timedelta(
days=366)
def get_unique_sites(dfs, cols=['beach', 'lat', 'lon']):
"""
Generates a dataframe of unique sites based on beach names, lats and lons. Creates a unique site ID for each.
:param dfs:
:param cols:
:return:
"""
rows = []
df_all = pd.concat([df[cols] for df in dfs])
beach_groups = df_all.groupby(['beach'])
for beach_name, beach_group in beach_groups:
site_groups = beach_group.groupby(['lat', 'lon'])
siteNo = 1
for site_name, site_group in site_groups:
site = '{}{:04d}'.format(beach_name, siteNo)
rows.append({'site_id': site,
'lat': site_name[0],
'lon': site_name[1],
'beach': beach_name})
siteNo += 1
df = pd.DataFrame(rows)
return df
def replace_unique_sites(df, df_sites, cols=['beach', 'lat', 'lon']):
"""
Replaces beach/lat/lon columns with the unique site_id
:param dfs:
:param df_sites:
:return:
"""
df_merged = df.merge(df_sites, on=cols)
# Check that all our records have a unique site identifier
n_unmatched = len(df) - len(df_merged)
if n_unmatched > 0:
logger.warning('Not all records (%d of %d) matched with a unique site', n_unmatched, len(df))
df_merged = df_merged.drop(columns=cols)
return df_merged
def main():
df_waves = parse_waves(waves_mat='./data/raw/processed_shorelines/waves.mat')
df_tides = parse_tides(tides_mat='./data/raw/processed_shorelines/tides.mat')
df_profiles = parse_profiles(profiles_mat='./data/raw/processed_shorelines/profiles.mat')
df_sites = get_unique_sites(dfs=[df_waves, df_tides, df_profiles])
df_orientations = parse_orientations(orientations_mat='./data/raw/processed_shorelines/orientations.mat')
logger.info('Identifying unique sites')
df_waves = replace_unique_sites(df_waves, df_sites)
df_tides = replace_unique_sites(df_tides, df_sites)
df_profiles = replace_unique_sites(df_profiles, df_sites)
logger.info('Combine orientations into sites')
df_sites = combine_sites_and_orientaions(df_sites, df_orientations)
df_sites = specify_lat_lon_profile_center(df_sites)
logger.info('Setting pandas index')
df_profiles.set_index(['site_id', 'profile_type', 'x'], inplace=True)
df_waves.set_index(['site_id', 'datetime'], inplace=True)
df_tides.set_index(['site_id', 'datetime'], inplace=True)
df_sites.set_index(['site_id'], inplace=True)
logger.info('Nanning profile zero elevations')
df_profiles = remove_zeros(df_profiles)
logger.info('Outputting .csv files')
df_profiles.to_csv('./data/interim/profiles.csv')
df_tides.to_csv('./data/interim/tides.csv')
df_waves.to_csv('./data/interim/waves.csv')
df_sites.to_csv('./data/interim/sites.csv')
logger.info('Done!')
if __name__ == '__main__':
main()

@ -0,0 +1,565 @@
"""
Converts raw .mat files into a flattened .csv structure which can be imported into python pandas.
"""
import math
from datetime import datetime, timedelta
import click
import numpy as np
import pandas as pd
from mat4py import loadmat
from shapely.geometry import Point
from utils import convert_coord_systems
from logs import setup_logging
logger = setup_logging()
def parse_crest_toes(df_raw_features, df_profiles):
"""
Parses profile_features_chris_leaman.csv
:param profile_features_csv:
:return:
"""
# Puts profiles_features_csv into format expected by rest of analysis
df_crest_toes = df_raw_features.reset_index().melt(
id_vars=["site_id"],
value_vars=[
"prestorm_dune_crest_x",
"prestorm_dune_toe_x",
"poststorm_dune_crest_x",
"poststorm_dune_toe_x",
],
)
df_crest_toes["profile_type"] = df_crest_toes.variable.str.extract(
r"(prestorm|poststorm)"
)
df_crest_toes["point_type"] = df_crest_toes.variable.str.extract(
r"(dune_crest_x|dune_toe_x)"
)
df_crest_toes = df_crest_toes.drop(columns=["variable"])
df_crest_toes = df_crest_toes.sort_values("site_id")
df_crest_toes = df_crest_toes.set_index(["site_id", "profile_type", "point_type"])
df_crest_toes = df_crest_toes.unstack()
df_crest_toes.columns = df_crest_toes.columns.droplevel()
# Now let's calculate the corresponding z elevations for each of our x coordinates
for site_id in df_crest_toes.index.get_level_values("site_id").unique():
logger.info("Calculating dune toe/crest z elevations for {}".format(site_id))
# Get profile for this site
idx = pd.IndexSlice
df_profile = df_profiles.loc[idx[site_id, :, :], :]
for param in ["prestorm", "poststorm"]:
for loc in ["crest", "toe"]:
# Get x value to find corresponding z value
x_val = df_crest_toes.loc[(site_id, param), "dune_{}_x".format(loc)]
if np.isnan(x_val):
df_crest_toes.loc[
(site_id, param), "dune_{}_z".format(loc)
] = np.nan
continue
# Try get the value from the other profile if we return nan or empty dataframe
df_z = df_profile.loc[idx[site_id, param, x_val], :]
if np.isnan(df_z.z):
if param == "prestorm":
new_param = "poststorm"
elif param == "poststorm":
new_param = "prestorm"
z_val = df_profile.loc[idx[site_id, new_param, x_val], :].z
else:
z_val = df_z.z
# Put results back into merged dataframe
df_crest_toes.loc[(site_id, param), "dune_{}_z".format(loc)] = z_val
return df_crest_toes
def parse_dune_crest_toes(df_sites, crest_mat, toe_mat):
"""
:param df_sites:
:param crest_mat:
:param toe_mat:
:return:
"""
logger.info("Parsing dune crests and toes")
rows = []
crest_data = loadmat(crest_mat)
toe_data = loadmat(toe_mat)
for n, _ in enumerate(crest_data["xc1"]):
rows.extend(
[
{
"dune_crest_x": crest_data["xc1"][n],
"dune_crest_z": crest_data["zc1"][n],
"dune_toe_x": toe_data["xt1"][n],
"dune_toe_z": toe_data["zt1"][n],
"profile_type": "prestorm",
"site_no": n + 1,
},
{
"dune_crest_x": crest_data["xc2"][n],
"dune_crest_z": crest_data["zc2"][n],
"dune_toe_x": toe_data["xt2"][n],
"dune_toe_z": toe_data["zt2"][n],
"profile_type": "poststorm",
"site_no": n + 1,
},
]
)
df_profile_features = pd.DataFrame(rows)
# Want the site_id instead of the site_no, so merge in df_sites
df_sites.reset_index(inplace=True)
df_profile_features = df_sites[["site_no", "site_id"]].merge(
df_profile_features, how="outer", on=["site_no"]
)
df_profile_features.drop(columns=["site_no"], inplace=True)
df_profile_features.set_index(["site_id", "profile_type"], inplace=True)
df_profile_features.sort_index(inplace=True)
df_profile_features = df_profile_features.round(3)
return df_profile_features
def parse_waves(waves_mat):
"""
Parses the raw waves.mat file and returns a pandas dataframe
:param waves_mat:
:return:
"""
logger.info("Parsing %s", waves_mat)
mat_data = loadmat(waves_mat)["data"]
rows = []
for i in range(0, len(mat_data["site"])):
for j in range(0, len(mat_data["dates"][i])):
rows.append(
{
"beach": mat_data["site"][i],
"lon": mat_data["lon"][i],
"lat": mat_data["lat"][i],
"datetime": matlab_datenum_to_datetime(mat_data["dates"][i][j][0]),
"Hs": mat_data["H"][i][j][0],
"Hs0": mat_data["Ho"][i][j][0],
"Tp": mat_data["T"][i][j][0],
"dir": mat_data["D"][i][j][0],
"E": mat_data["E"][i][j][0],
"P": mat_data["P"][i][j][0],
"Exs": mat_data["Exs"][i][j][0],
"Pxs": mat_data["Pxs"][i][j][0],
"Ecum": mat_data["Ecum"][i],
"Exscum": mat_data["Exscum"][i],
"Pcum": mat_data["Pxscum"][i],
"Pxscum": mat_data["Pxscum"][i],
}
)
df = pd.DataFrame(rows)
df["datetime"] = df["datetime"].dt.round("1s")
return df
def parse_tides(tides_mat):
"""
Parses the raw tides.mat file and returns a pandas dataframe
:param tides_mat:
:return:
"""
logger.info("Parsing %s", tides_mat)
mat_data = loadmat(tides_mat)["data"]
rows = []
for i in range(0, len(mat_data["site"])):
for j in range(0, len(mat_data["time"])):
rows.append(
{
"beach": mat_data["site"][i][0],
"lon": mat_data["lons"][i][0],
"lat": mat_data["lats"][i][0],
"datetime": matlab_datenum_to_datetime(mat_data["time"][j][0]),
"tide": mat_data["tide"][i][j],
}
)
df = pd.DataFrame(rows)
df["datetime"] = df["datetime"].dt.round("1s")
return df
def parse_profiles_and_sites(profiles_mat):
"""
Parses the raw profiles.mat file and returns a pandas dataframe
:param tides_mat:
:return:
"""
logger.info("Parsing %s", profiles_mat)
mat_data = loadmat(profiles_mat)["data"]
profile_rows = []
site_rows = []
site_counter = 0
# Our z values can come from these columns, depending on the isgood flag.
# Let's reoganise them into a list of list
z_names = ["Zpre", "Zpost", "Zrec1", "Zrec2", "Zrec3", "Zrec4"]
z_cols = [mat_data[col] for col in z_names]
z_sites = []
for cols in zip(*z_cols):
z_vals = []
for z_vector in zip(*cols):
z_vals.append([z[0] for z in z_vector])
z_sites.append(z_vals)
for i, site in enumerate(mat_data["site"]):
logger.debug("Processing site {} of {}".format(i + 1, len(mat_data["site"])))
# Give each site a unique id
if len(site_rows) == 0 or site_rows[-1]["beach"] != site:
site_counter = 1
else:
site_counter += 1
site_id = "{}{:04d}".format(site, site_counter)
# Initalize location of x=200m latitude and longitude
x_200_lat = np.nan
x_200_lon = np.nan
# Want to calculation the orientation
orientation = {}
for x, lat, lon, z_site, easting, northing in zip(
mat_data["x"][i],
mat_data["lats"][i],
mat_data["lons"][i],
z_sites[i],
mat_data["eastings"][i],
mat_data["northings"][i],
):
profile_type = None
for j, is_good in enumerate([1] + mat_data["isgood"][i]):
# Assumes the first profile is always good and is the prestorm profike
if j == 0:
profile_type = "prestorm"
z = z_site[j]
land_lim = np.nan
# Skips bad profiles
elif is_good == 0:
continue
# Takes the first isgood profile as the post storm profile
else:
profile_type = "poststorm"
z = z_site[j]
land_lim = mat_data["landlims"][i][j]
survey_datetime = matlab_datenum_to_datetime(
mat_data["surveydates"][i][j]
)
# Keep a record of the where the center of the profile is located, and the locations of the land
# and sea
# TODO: This code isn't very transferrable. What if we don't have lat/lons at 200 m? Relook at this
if x[0] == 200:
x_200_lat = lat[0]
x_200_lon = lon[0]
elif x[0] == 0:
orientation["land_easting"] = easting[0]
orientation["land_northing"] = northing[0]
elif x[0] == 400:
orientation["sea_easting"] = easting[0]
orientation["sea_northing"] = northing[0]
profile_rows.append(
{
"site_id": site_id,
"lon": lon[0],
"lat": lat[0],
"profile_type": profile_type,
"x": x[0],
"z": z,
"land_lim": land_lim,
"survey_datetime": survey_datetime,
}
)
# Stop looking at profiles if we've got our post-storm profile
if profile_type == "poststorm":
break
orientation = math.degrees(
math.atan2(
orientation["land_northing"] - orientation["sea_northing"],
orientation["land_easting"] - orientation["sea_easting"],
)
)
site_rows.append(
{
"site_id": site_id,
"site_no": i + 1,
"beach": site,
"lat": x_200_lat,
"lon": x_200_lon,
"orientation": orientation,
"profile_x_lat_lon": 200,
}
)
df_profiles = pd.DataFrame(profile_rows)
df_sites = pd.DataFrame(site_rows)
logger.info("Parsed profiles and sites")
return df_profiles, df_sites
def remove_zeros(df_profiles):
"""
When parsing the pre/post storm profiles, the end of some profiles have constant values of zero. Let's change
these to NaNs for consistancy. Didn't use pandas fillnan because 0 may still be a valid value.
:param df_profiles:
:return:
"""
logger.info("Removing zeros from end of profiles")
df_profiles = df_profiles.sort_index()
groups = df_profiles.groupby(level=["site_id", "profile_type"])
for key, _ in groups:
logger.debug("Removing zeros from {} profile at {}".format(key[1], key[0]))
idx_site = (df_profiles.index.get_level_values("site_id") == key[0]) & (
df_profiles.index.get_level_values("profile_type") == key[1]
)
df_profile = df_profiles[idx_site]
x_last_ele = df_profile[df_profile.z == 0].index.get_level_values("x")[0]
df_profiles.loc[
idx_site & (df_profiles.index.get_level_values("x") > x_last_ele), "z"
] = np.nan
logger.info("Removed zeros from end of profiles")
return df_profiles
def matlab_datenum_to_datetime(matlab_datenum):
"""
Adapted from https://stackoverflow.com/a/13965852
:param matlab_datenum:
:return:
"""
return (
datetime.fromordinal(int(matlab_datenum))
+ timedelta(days=matlab_datenum % 1)
- timedelta(days=366)
)
def replace_unique_sites(df, df_sites):
"""
Replaces beach/lat/lon columns with the unique site_id
:param dfs:
:param df_sites:
:return:
"""
# Make the sites index a column, so it can be merged into df
df_sites["site_id"] = df_sites.index.get_level_values("site_id")
# Create eastings and northings so we can calculate distances
site_points = [
convert_coord_systems(Point(lon, lat)).xy
for lon, lat in zip(df_sites["lon"], df_sites["lat"])
]
df_sites["easting"] = [x[0][0] for x in site_points]
df_sites["northing"] = [x[1][0] for x in site_points]
# Process each unique combination lat/lons in groups
groups = df.groupby(["lat", "lon"])
for (lat, lon), df_group in groups:
# Calculate distances from each point to each site and determine closest site
easting, northing = [x[0] for x in convert_coord_systems(Point(lon, lat)).xy]
distances_to_sites = np.sqrt(
(df_sites["easting"] - easting) ** 2
+ (df_sites["northing"] - northing) ** 2
)
min_distance = distances_to_sites.min()
closest_site = distances_to_sites.idxmin()
# Do some logging so we can check later.
if min_distance > 1:
logger.warning(
"Closest site to (%.4f,%.4f) is %s (%.2f m away)",
lat,
lon,
closest_site,
min_distance,
)
else:
logger.info(
"Closest site to (%.4f,%.4f) is %s (%.2f m away)",
lat,
lon,
closest_site,
min_distance,
)
# Assign site_id based on closest site
df.loc[df_group.index, "site_id"] = closest_site
nan_count = df.site_id.isna().sum()
if nan_count > 0:
logger.warning(
"Not all records (%d of %d) matched with a unique site", nan_count, len(df)
)
df = df.drop(columns=["lat", "lon", "beach"])
return df
def split_site_wave_params(df_waves):
"""
When we parse the waves.mat file, the cumulative wave energy and power properties are given for each time step.
This is unnecessary, so let's extract them out of our dataframe and put them in their own seperate dataframe.
:param df_waves:
:return:
"""
cols_to_extract = ["Ecum", "Exscum", "Pcum", "Pxscum"]
df_sites_waves = df_waves.loc[:, cols_to_extract].groupby(["site_id"]).first()
df_waves = df_waves.drop(columns=cols_to_extract, errors="ignore")
return df_waves, df_sites_waves
@click.command(short_help="create waves.csv")
@click.option("--waves-mat", required=True, help=".mat file containing wave records")
@click.option(
"--sites-csv", required=True, help=".csv file description of cross section sites"
)
@click.option("--waves-output-file", required=True, help="where to save waves.csv")
@click.option(
"--sites-waves-output-file", required=True, help="where to save sites_waves.csv"
)
def create_waves_csv(waves_mat, sites_csv, waves_output_file, sites_waves_output_file):
logger.info("Creating %s", waves_output_file)
df_waves = parse_waves(waves_mat=waves_mat)
df_sites = pd.read_csv(sites_csv, index_col=[0])
df_waves = replace_unique_sites(df_waves, df_sites)
df_waves.set_index(["site_id", "datetime"], inplace=True)
df_waves.sort_index(inplace=True)
df_waves, df_sites_waves = split_site_wave_params(df_waves)
df_waves.to_csv(waves_output_file, float_format="%.4f")
df_sites_waves.to_csv(sites_waves_output_file, float_format="%.4f")
logger.info("Created %s", waves_output_file)
logger.info("Created %s", sites_waves_output_file)
# @click.command(short_help="create profile_features.csv")
# @click.option("--crest-mat", required=True, help=".mat file containing wave records")
# @click.option("--toe-mat", required=True, help=".mat file containing wave records")
# @click.option("--sites-csv", required=True, help=".csv file description of cross section sites")
# @click.option("--output-file", required=True, help="where to save waves.csv")
# def create_profile_features(crest_mat, toe_mat, sites_csv, output_file):
# logger.info("Creating %s", output_file)
# df_sites = pd.read_csv(sites_csv, index_col=[0])
# df_profile_features = parse_dune_crest_toes(df_sites, crest_mat, toe_mat)
# df_profile_features.to_csv(output_file)
# logger.info("Created %s", output_file)
@click.command(short_help="create profile_features.csv")
@click.option(
"--profile-features-csv", required=True, help=".mat file containing wave records"
)
@click.option("--profiles-csv", required=True, help=".mat file containing wave records")
@click.option("--output-file", required=True, help="where to save waves.csv")
def create_crest_toes(profile_features_csv, profiles_csv, output_file):
logger.info("Creating %s", output_file)
df_raw_features = pd.read_csv(profile_features_csv, index_col=[0])
df_profiles = pd.read_csv(profiles_csv, index_col=[0, 1, 2])
df_crest_toes = parse_crest_toes(df_raw_features, df_profiles)
df_crest_toes.to_csv(output_file, float_format="%.3f")
logger.info("Created %s", output_file)
@click.command(short_help="create profiles.csv")
@click.option(
"--profiles-mat", required=True, help=".mat file containing beach profiles"
)
@click.option(
"--profiles-output-file", required=True, help="where to save profiles.csv"
)
@click.option("--sites-output-file", required=True, help="where to save sites.csv")
def create_sites_and_profiles_csv(
profiles_mat, profiles_output_file, sites_output_file
):
logger.info("Creating sites and profiles csvs")
df_profiles, df_sites = parse_profiles_and_sites(profiles_mat=profiles_mat)
df_profiles.set_index(["site_id", "profile_type", "x"], inplace=True)
df_profiles.sort_index(inplace=True)
df_profiles = remove_zeros(df_profiles)
df_sites.set_index(["site_id"], inplace=True)
df_sites.sort_index(inplace=True)
df_profiles.to_csv(profiles_output_file, float_format="%.8f")
logger.info("Created %s", profiles_output_file)
df_sites.to_csv(sites_output_file, float_format="%.8f")
logger.info("Created %s", sites_output_file)
@click.command(short_help="create profiles.csv")
@click.option("--tides-mat", required=True, help=".mat file containing tides")
@click.option(
"--sites-csv", required=True, help=".csv file description of cross section sites"
)
@click.option("--output-file", required=True, help="where to save tides.csv")
def create_tides_csv(tides_mat, sites_csv, output_file):
logger.info("Creating %s", output_file)
df_tides = parse_tides(tides_mat=tides_mat)
df_sites = pd.read_csv(sites_csv, index_col=[0])
df_tides = replace_unique_sites(df_tides, df_sites)
df_tides.set_index(["site_id", "datetime"], inplace=True)
df_tides.sort_index(inplace=True)
df_tides.to_csv(output_file, float_format="%.4f")
logger.info("Created %s", output_file)
@click.command(short_help="create sites_grain_size.csv")
@click.option(
"--grain-size-csv",
required=True,
help=".csv file description of cross section sites",
)
@click.option("--output-file", required=True, help="where to save sites_grain_size.csv")
def create_grain_size_csv(grain_size_csv, output_file):
logger.info("Creating %s", output_file)
df_sites_grain_size = pd.read_csv(grain_size_csv, index_col=[0])
# Calculate roughness, refer to Power et al (2018)
df_sites_grain_size["r"] = 2.5 * df_sites_grain_size["d_50"]
df_sites_grain_size.to_csv(output_file)
logger.info("Created %s", output_file)
@click.group()
def cli():
pass
if __name__ == "__main__":
cli.add_command(create_waves_csv)
cli.add_command(create_sites_and_profiles_csv)
cli.add_command(create_tides_csv)
cli()

@ -0,0 +1,168 @@
"""
This file can probably be removed since we are not reading from shp files any more
"""
import click
import fiona
import numpy as np
import pandas as pd
from shapely.geometry import LineString, Point
from shapely.geometry import shape
from logs import setup_logging
from utils import convert_coord_systems
logger = setup_logging()
def shapes_from_shp(shp_file):
"""
Parses a shape file and returns a list of shapely shapes, ids and properties
:param shp_file:
:return:
"""
shapes = []
ids = []
properties = []
for feat in fiona.open(shp_file, "r"):
shapes.append(shape(feat["geometry"]))
ids.append(feat["id"])
properties.append(feat["properties"])
return shapes, ids, properties
def distance_to_intersection(
lat, lon, landward_orientation, beach, line_strings, line_properties
):
"""
Returns the distance at whjch a line drawn from a lat/lon at an orientation intersects a line stinrg
:param lat:
:param lon:
:param landward_orientation: Angle, anticlockwise positive from east in degrees, towards the land
towards the
land.
:param line_string:
:return:
"""
start_point = Point(lon, lat)
start_point = convert_coord_systems(start_point)
distance = 1000 # m look up to 1000m for an intersection
landward_point = Point(
start_point.coords.xy[0] + distance * np.cos(np.deg2rad(landward_orientation)),
start_point.coords.xy[1] + distance * np.sin(np.deg2rad(landward_orientation)),
)
landward_line = LineString([start_point, landward_point])
seaward_point = Point(
start_point.coords.xy[0] - distance * np.cos(np.deg2rad(landward_orientation)),
start_point.coords.xy[1] - distance * np.sin(np.deg2rad(landward_orientation)),
)
seaward_line = LineString([start_point, seaward_point])
# Look at relevant line_strings which have the same beach property in order to reduce computation time
line_strings = [
s for s, p in zip(line_strings, line_properties) if p["beach"] == beach
]
# Check whether profile_line intersects with any lines in line_string. If intersection point is landwards,
# consider this negative, otherwise seawards is positive.
for line_string in line_strings:
land_intersect_points = landward_line.intersection(line_string)
if not land_intersect_points.is_empty:
return -land_intersect_points.distance(start_point)
sea_intersect_points = seaward_line.intersection(line_string)
if not sea_intersect_points.is_empty:
return sea_intersect_points.distance(start_point)
# If no intersections are found, return nothing.
return None
def beach_profile_elevation(x_coord, df_profiles, profile_type, site_id):
"""
Returns the beach profile elevation at a particular x-coordinate
:param x_coord:
:param df_profiles:
:param profile_type: "prestorm" or "poststorm"
:param site_id:
:return:
"""
if np.isnan(x_coord):
return None
# Get profile
df_profile = df_profiles.query(
'profile_type == "{}" and site_id =="{}"'.format(profile_type, site_id)
)
return np.interp(x_coord, df_profile.index.get_level_values("x"), df_profile["z"])
def parse_profile_features(df_sites, df_profiles, dune_crest_shp, dune_toe_shp):
"""
Reads dune crest and toe files and creates a pandas dataframe with crest/toe locations at each site
:return:
"""
# Get site information. Base our profile features on each site
df_profile_features = df_sites
features = {
"dune_crest": {"file": dune_crest_shp},
"dune_toe": {"file": dune_toe_shp},
}
# Import our dune crest and toes
for feat in features.keys():
shapes, _, properties = shapes_from_shp(features[feat]["file"])
shapes = [convert_coord_systems(x) for x in shapes]
# Figure out the x coordinates of our crest and toes, by looking at where our beach sections intersect our
# shape files.
col_name = "{}_x".format(feat)
df_profile_features[col_name] = df_profile_features[
"profile_x_lat_lon"
] + df_profile_features.apply(
lambda row: distance_to_intersection(
row["lat"],
row["lon"],
row["orientation"],
row["beach"],
shapes,
properties,
),
axis=1,
)
# Get the elevations of the crest and toe
col_name = "{}_z".format(feat)
df_profile_features[col_name] = df_profile_features.apply(
lambda row: beach_profile_elevation(
row["{}_x".format(feat)], df_profiles, "prestorm", row.name
),
axis=1,
)
df_profile_features = df_profile_features.drop(
columns=["beach", "lat", "lon", "orientation", "profile_x_lat_lon"]
)
return df_profile_features
@click.command(short_help="create .csv of dune toe and crest positions")
@click.option("--dune-crest-shp", required=True, help=".csv file to convert")
@click.option("--dune-toe-shp", required=True, help="where to store .shp file")
@click.option("--sites-csv", required=True, help="where to store .shp file")
@click.option("--profiles-csv", required=True, help="where to store .shp file")
@click.option("--output-csv", required=True, help="where to store .shp file")
def create_profile_features(
dune_crest_shp, dune_toe_shp, sites_csv, profiles_csv, output_csv
):
logger.info("Creating .csv of dune crests and toes")
df_sites = pd.read_csv(sites_csv, index_col=[0])
df_profiles = pd.read_csv(profiles_csv, index_col=[0, 1, 2])
df_profile_features = parse_profile_features(
df_sites, df_profiles, dune_crest_shp, dune_toe_shp
)
df_profile_features.to_csv(output_csv)
logger.info("Done!")

@ -1,161 +0,0 @@
import os
from functools import partial
import fiona
import numpy as np
import pandas as pd
import pyproj
from shapely.geometry import LineString, Point
from shapely.geometry import shape
from shapely.ops import transform
def shapes_from_shp(shp_file):
"""
Parses a shape file and returns a list of shapely shapes, ids and properties
:param shp_file:
:return:
"""
shapes = []
ids = []
properties = []
for feat in fiona.open(shp_file, 'r'):
shapes.append(shape(feat['geometry']))
ids.append(feat['id'])
properties.append(feat['properties'])
return shapes, ids, properties
def convert_coord_systems(g1, in_coord_system='EPSG:4326', out_coord_system='EPSG:28356'):
"""
Converts coordinates from one coordinates system to another. Needed because shapefiles are usually defined in
lat/lon but should be converted to GDA to calculated distances.
https://gis.stackexchange.com/a/127432
:param in_coord_system: Default is lat/lon WGS84
:param out_coord_system: Default is GDA56 for NSW coastline
:return:
"""
project = partial(
pyproj.transform,
pyproj.Proj(init=in_coord_system), # source coordinate system
pyproj.Proj(init=out_coord_system)) # destination coordinate system
g2 = transform(project, g1) # apply projection
return g2
def distance_to_intersection(lat, lon, landward_orientation, beach, line_strings, line_properties):
"""
Returns the distance at whjch a line drawn from a lat/lon at an orientation intersects a line stinrg
:param lat:
:param lon:
:param landward_orientation: Angle, anticlockwise positive from east in degrees, towards the land
towards the
land.
:param line_string:
:return:
"""
start_point = Point(lon, lat)
start_point = convert_coord_systems(start_point)
distance = 1000 # m look up to 1000m for an intersection
landward_point = Point(start_point.coords.xy[0] + distance * np.cos(np.deg2rad(landward_orientation)),
start_point.coords.xy[1] + distance * np.sin(np.deg2rad(landward_orientation)))
landward_line = LineString([start_point, landward_point])
seaward_point = Point(start_point.coords.xy[0] - distance * np.cos(np.deg2rad(landward_orientation)),
start_point.coords.xy[1] - distance * np.sin(np.deg2rad(landward_orientation)))
seaward_line = LineString([start_point, seaward_point])
# Look at relevant line_strings which have the same beach property in order to reduce computation time
line_strings = [s for s, p in zip(line_strings, line_properties) if p['beach'] == beach]
# Check whether profile_line intersects with any lines in line_string. If intersection point is landwards,
# consider this negative, otherwise seawards is positive.
for line_string in line_strings:
land_intersect_points = landward_line.intersection(line_string)
if not land_intersect_points.is_empty:
return -land_intersect_points.distance(start_point)
sea_intersect_points = seaward_line.intersection(line_string)
if not sea_intersect_points.is_empty:
return sea_intersect_points.distance(start_point)
# If no intersections are found, return nothing.
return None
def beach_profile_elevation(x_coord, df_profiles, profile_type, site_id):
"""
Returns the beach profile elevation at a particular x-coordinate
:param x_coord:
:param df_profiles:
:param profile_type: "prestorm" or "poststorm"
:param site_id:
:return:
"""
if np.isnan(x_coord):
return None
# Get profile
df_profile = df_profiles.query('profile_type == "{}" and site_id =="{}"'.format(profile_type, site_id))
return np.interp(x_coord, df_profile.index.get_level_values('x'), df_profile['z'])
def parse_profile_features(df_sites, df_profiles, dune_crest_shp, dune_toe_shp):
"""
Reads dune crest and toe files and creates a pandas dataframe with crest/toe locations at each site
:return:
"""
# Get site information. Base our profile features on each site
df_profile_features = df_sites
features = {
'dune_crest':
{
'file': dune_crest_shp
},
'dune_toe':
{
'file': dune_toe_shp
},
}
# Import our dune crest and toes
for feat in features.keys():
shapes, _, properties = shapes_from_shp(features[feat]['file'])
shapes = [convert_coord_systems(x) for x in shapes]
# Figure out the x coordinates of our crest and toes, by looking at where our beach sections intersect our
# shape files.
col_name = '{}_x'.format(feat)
df_profile_features[col_name] = df_profile_features['profile_x_lat_lon'] + \
df_profile_features.apply(lambda row:
distance_to_intersection(
row['lat'], row['lon'], row['orientation'],
row['beach'], shapes, properties),
axis=1)
# Get the elevations of the crest and toe
col_name = '{}_z'.format(feat)
df_profile_features[col_name] = df_profile_features.apply(lambda row:
beach_profile_elevation(
row['{}_x'.format(feat)],
df_profiles,
'prestorm',
row.name),
axis=1)
df_profile_features = df_profile_features.drop(columns=['beach', 'lat', 'lon', 'orientation'])
return df_profile_features
if __name__ == '__main__':
data_folder = './data/interim'
df_sites = pd.read_csv(os.path.join(data_folder, 'sites.csv'), index_col=[0])
df_profiles = pd.read_csv(os.path.join(data_folder, 'profiles.csv'), index_col=[0, 1, 2])
dune_crest_shp = './data/raw/profile_features/dune_crests.shp'
dune_toe_shp = './data/raw/profile_features/dune_toes.shp'
df_profile_features = parse_profile_features(df_sites, df_profiles, dune_crest_shp, dune_toe_shp)
df_profile_features.to_csv('./data/interim/profile_features.csv')

@ -1,27 +0,0 @@
[loggers]
keys=root, matplotlib
[handlers]
keys=consoleHandler
[formatters]
keys=simpleFormatter
[logger_root]
level=DEBUG
handlers=consoleHandler
[logger_matplotlib]
level=WARNING
handlers=consoleHandler
qualname=matplotlib
[handler_consoleHandler]
class=StreamHandler
level=DEBUG
formatter=simpleFormatter
args=(sys.stdout,)
[formatter_simpleFormatter]
format=%(asctime)s %(name)-17s %(levelname)-8s %(message)s
datefmt=%a, %d %b %Y %H:%M:%S

@ -0,0 +1,51 @@
---
version: 1
disable_existing_loggers: False
formatters:
simple:
format: "[%(asctime)s] [%(filename)15.15s:%(lineno)4.4s %(funcName)15.15s] [%(levelname)-4.4s] %(message)s"
datefmt: "%Y-%m-%d %H:%M:%S"
handlers:
console:
class: logging.StreamHandler
level: INFO
formatter: simple
stream: ext://sys.stdout
info_file_handler:
class: logging.handlers.RotatingFileHandler
level: INFO
formatter: simple
filename: info.log
maxBytes: 10485760 # 10MB
backupCount: 3
encoding: utf8
warning_file_handler:
class: logging.handlers.RotatingFileHandler
level: WARNING
formatter: simple
filename: warning.log
maxBytes: 10485760 # 10MB
backupCount: 3
encoding: utf8
error_file_handler:
class: logging.handlers.RotatingFileHandler
level: ERROR
formatter: simple
filename: error.log
maxBytes: 10485760 # 10MB
backupCount: 3
encoding: utf8
loggers:
my_module:
level: ERROR
handlers: [console]
propagate: no
root:
level: DEBUG
handlers: [console, info_file_handler, error_file_handler, warning_file_handler]

@ -0,0 +1,17 @@
import logging.config
import os
import yaml
def setup_logging(path="./src/logging.yaml", default_level=logging.INFO):
"""
Setup logging configuration
"""
if os.path.exists(path):
with open(path, "rt") as f:
config = yaml.safe_load(f.read())
logging.config.dictConfig(config)
else:
logging.basicConfig(level=default_level)
return logging.getLogger(__name__)

@ -0,0 +1,80 @@
from functools import partial
import numpy as np
import pyproj
from numpy import ma as ma
from shapely.ops import transform
def crossings(profile_x, profile_z, constant_z):
"""
Finds the x coordinate of a z elevation for a beach profile. Much faster than using shapely to calculate
intersections since we are only interested in intersections of a constant value. Will return multiple
intersections if found. Used in calculating beach slope.
Adapted from https://stackoverflow.com/a/34745789
:param profile_x: List of x coordinates for the beach profile section
:param profile_z: List of z coordinates for the beach profile section
:param constant_z: Float of the elevation to find corresponding x coordinates
:return: List of x coordinates which correspond to the constant_z
"""
# Remove nans to suppress warning messages
valid = ~ma.masked_invalid(profile_z).mask
profile_z = np.array(profile_z)[valid]
profile_x = np.array(profile_x)[valid]
# Return empty list if mask removes all values
if profile_x.size == 0:
return []
# Normalize the 'signal' to zero.
# Use np.subtract rather than a list comprehension for performance reasons
z = np.subtract(profile_z, constant_z)
# Find all indices right before any crossing.
# TODO Sometimes this can give a runtime warning https://stackoverflow.com/a/36489085
indicies = np.where(z[:-1] * z[1:] < 0)[0]
# Use linear interpolation to find intersample crossings.
x_crossings = [
profile_x[i] - (profile_x[i] - profile_x[i + 1]) / (z[i] - z[i + 1]) * (z[i])
for i in indicies
]
# Also need to check the end points as the above will not include them if they are close
x_crossings += [
profile_x[i]
for i in [0, len(profile_z) - 1]
if np.isclose(constant_z, profile_z[i])
]
return sorted(x_crossings)
# TODO Think of a better way to do this than having to manually specify the coordinate systems
def convert_coord_systems(
g1, in_coord_system="EPSG:4326", out_coord_system="EPSG:28356"
):
"""
Converts coordinates from one coordinates system to another. Needed because shapefiles are usually defined in
lat/lon but should be converted to GDA to calculated distances.
https://gis.stackexchange.com/a/127432
:param in_coord_system: Default is lat/lon WGS84
:param out_coord_system: Default is GDA56 for NSW coastline
:return:
"""
project = partial(
pyproj.transform,
pyproj.Proj(init=in_coord_system), # source coordinate system
pyproj.Proj(init=out_coord_system),
) # destination coordinate system
g2 = transform(project, g1) # apply projection
return g2
def get_i_or_default(l, i, default=None):
try:
return l[i]
except IndexError:
return default
Loading…
Cancel
Save