|
|
|
@ -2,36 +2,219 @@
|
|
|
|
|
Converts .csv files to .shape files
|
|
|
|
|
"""
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
import numpy.ma as ma
|
|
|
|
|
import click
|
|
|
|
|
import fiona
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pandas as pd
|
|
|
|
|
from fiona.crs import from_epsg
|
|
|
|
|
from shapely.geometry import Point, mapping, LineString
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
from data.parse_shp import convert_coord_systems
|
|
|
|
|
from utils import setup_logging
|
|
|
|
|
|
|
|
|
|
logger = setup_logging()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def R_high_to_geojson(sites_csv, profiles_csv, impacts_csv, output_geojson):
|
|
|
|
|
|
|
|
|
|
sites_csv = './data/interim/sites.csv'
|
|
|
|
|
profiles_csv = './data/interim/profiles.csv'
|
|
|
|
|
impacts_csv = './data/interim/impacts_forecasted_mean_slope_sto06.csv'
|
|
|
|
|
output_geojson = './data/interim/R_high_forecasted_mean_slope_sto06.geojson'
|
|
|
|
|
|
|
|
|
|
df_sites = pd.read_csv(sites_csv, index_col=[0])
|
|
|
|
|
df_profiles = pd.read_csv(profiles_csv, index_col=[0,1,2])
|
|
|
|
|
df_impacts = pd.read_csv(impacts_csv, index_col=[0])
|
|
|
|
|
|
|
|
|
|
# Create geojson file
|
|
|
|
|
schema = {
|
|
|
|
|
'geometry': 'Point',
|
|
|
|
|
'properties': OrderedDict([
|
|
|
|
|
('beach', 'str'),
|
|
|
|
|
('site_id', 'str'),
|
|
|
|
|
('elevation', 'float'),
|
|
|
|
|
])
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
with fiona.open(output_geojson, 'w', driver='GeoJSON', crs=from_epsg(4326), schema=schema) as output:
|
|
|
|
|
for index, row in df_impacts.iterrows():
|
|
|
|
|
|
|
|
|
|
site_id = index
|
|
|
|
|
beach = index[:-4]
|
|
|
|
|
|
|
|
|
|
# Find lat/lon of R_high position
|
|
|
|
|
R_high_z = row['R_high']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Get poststorm profile (or should this be prestorm?)
|
|
|
|
|
df_profile = df_profiles.query('site_id=="{}" & profile_type=="prestorm"'.format(index))
|
|
|
|
|
int_x = crossings(df_profile.index.get_level_values('x').tolist(),
|
|
|
|
|
df_profile.z.tolist(),
|
|
|
|
|
R_high_z)
|
|
|
|
|
|
|
|
|
|
# Take most landward interesection. Continue to next site if there is no intersection
|
|
|
|
|
try:
|
|
|
|
|
int_x = max(int_x)
|
|
|
|
|
except:
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
# Get lat/lon on intercept position
|
|
|
|
|
site = df_sites.loc[site_id]
|
|
|
|
|
center_profile_x = site["profile_x_lat_lon"]
|
|
|
|
|
orientation = site["orientation"]
|
|
|
|
|
center_lat_lon = Point(site['lon'], site['lat']) # Get lat/lon of center of profile
|
|
|
|
|
center_xy = convert_coord_systems(center_lat_lon)
|
|
|
|
|
center_x, center_y = center_xy.xy
|
|
|
|
|
|
|
|
|
|
# Calculate xy position of point and convert to lat/lon
|
|
|
|
|
point_x = center_x + (center_profile_x - int_x) * np.cos(np.deg2rad(orientation))
|
|
|
|
|
point_y = center_y + (center_profile_x - int_x) * np.sin(np.deg2rad(orientation))
|
|
|
|
|
point_xy = Point(point_x, point_y)
|
|
|
|
|
point_lat_lon = convert_coord_systems(point_xy,
|
|
|
|
|
in_coord_system="EPSG:28356",
|
|
|
|
|
out_coord_system="EPSG:4326")
|
|
|
|
|
|
|
|
|
|
prop = OrderedDict([
|
|
|
|
|
('beach', beach),
|
|
|
|
|
('site_id', site_id),
|
|
|
|
|
('elevation', R_high_z),
|
|
|
|
|
])
|
|
|
|
|
output.write({"geometry": mapping(point_lat_lon), "properties": prop})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def crossings(profile_x, profile_z, constant_z):
|
|
|
|
|
"""
|
|
|
|
|
Finds the x coordinate of a z elevation for a beach profile. Much faster than using shapely to calculate
|
|
|
|
|
intersections since we are only interested in intersections of a constant value. Will return multiple
|
|
|
|
|
intersections if found. Used in calculating beach slope.
|
|
|
|
|
Adapted from https://stackoverflow.com/a/34745789
|
|
|
|
|
:param profile_x: List of x coordinates for the beach profile section
|
|
|
|
|
:param profile_z: List of z coordinates for the beach profile section
|
|
|
|
|
:param constant_z: Float of the elevation to find corresponding x coordinates
|
|
|
|
|
:return: List of x coordinates which correspond to the constant_z
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Remove nans to suppress warning messages
|
|
|
|
|
valid = ~ma.masked_invalid(profile_z).mask
|
|
|
|
|
profile_z = np.array(profile_z)[valid]
|
|
|
|
|
profile_x = np.array(profile_x)[valid]
|
|
|
|
|
|
|
|
|
|
# Normalize the 'signal' to zero.
|
|
|
|
|
# Use np.subtract rather than a list comprehension for performance reasons
|
|
|
|
|
z = np.subtract(profile_z, constant_z)
|
|
|
|
|
|
|
|
|
|
# Find all indices right before any crossing.
|
|
|
|
|
# TODO Sometimes this can give a runtime warning https://stackoverflow.com/a/36489085
|
|
|
|
|
indicies = np.where(z[:-1] * z[1:] < 0)[0]
|
|
|
|
|
|
|
|
|
|
# Use linear interpolation to find intersample crossings.
|
|
|
|
|
return [profile_x[i] - (profile_x[i] - profile_x[i + 1]) / (z[i] - z[i + 1]) * (z[i]) for i in indicies]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
|
@click.option("--sites-csv", required=True, help=".csv file to convert")
|
|
|
|
|
@click.option("--profile-features-csv", required=True, help=".csv file to convert")
|
|
|
|
|
@click.option("--output-geojson", required=True, help="where to store .geojson file")
|
|
|
|
|
def profile_features_to_geojson(sites_csv, profile_features_csv, output_geojson):
|
|
|
|
|
"""
|
|
|
|
|
Converts profile_features containing dune toes and crest locations to a geojson we can load into QGIS
|
|
|
|
|
:param sites_csv:
|
|
|
|
|
:param profiles_csv:
|
|
|
|
|
:param profile_features_csv:
|
|
|
|
|
:param output_geojson:
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
logger.info("Creating profile features geojson")
|
|
|
|
|
|
|
|
|
|
# Read files from interim folder
|
|
|
|
|
df_sites = pd.read_csv(sites_csv, index_col=[0])
|
|
|
|
|
df_profile_features = pd.read_csv(profile_features_csv, index_col=[0])
|
|
|
|
|
|
|
|
|
|
# Create geojson file
|
|
|
|
|
schema = {
|
|
|
|
|
'geometry': 'Point',
|
|
|
|
|
'properties': OrderedDict([
|
|
|
|
|
('beach', 'str'),
|
|
|
|
|
('site_id', 'str'),
|
|
|
|
|
('point_type', 'str'), # prestorm_dune_toe, prestorm_dune_crest, poststorm_dune_toe, poststorm_dune_crest
|
|
|
|
|
('profile_type', 'str'),
|
|
|
|
|
('elevation', 'float'),
|
|
|
|
|
])
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
with fiona.open(output_geojson, 'w', driver='GeoJSON', crs=from_epsg(4326), schema=schema) as output:
|
|
|
|
|
for index, row in df_profile_features.iterrows():
|
|
|
|
|
beach = index[:-4]
|
|
|
|
|
site_id = index
|
|
|
|
|
profile_type = row['profile_type']
|
|
|
|
|
|
|
|
|
|
for point_type in ['crest', 'toe']:
|
|
|
|
|
# point_type='crest'
|
|
|
|
|
elevation = row['dune_{}_z'.format(point_type)]
|
|
|
|
|
x = row['dune_{}_x'.format(point_type)]
|
|
|
|
|
|
|
|
|
|
if np.isnan(x):
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
# Geojsons need to use 'null' instead of 'nan'
|
|
|
|
|
if np.isnan(elevation):
|
|
|
|
|
elevation = None
|
|
|
|
|
|
|
|
|
|
# Convert x position to lat/lon
|
|
|
|
|
site = df_sites.loc[site_id]
|
|
|
|
|
center_profile_x = site["profile_x_lat_lon"]
|
|
|
|
|
orientation = site["orientation"]
|
|
|
|
|
center_lat_lon = Point(site['lon'], site['lat']) # Get lat/lon of center of profile
|
|
|
|
|
center_xy = convert_coord_systems(center_lat_lon)
|
|
|
|
|
center_x, center_y = center_xy.xy
|
|
|
|
|
|
|
|
|
|
# Calculate xy position of point and convert to lat/lon
|
|
|
|
|
point_x = center_x + (center_profile_x - x) * np.cos(np.deg2rad(orientation))
|
|
|
|
|
point_y = center_y + (center_profile_x - x) * np.sin(np.deg2rad(orientation))
|
|
|
|
|
point_xy = Point(point_x, point_y)
|
|
|
|
|
point_lat_lon = convert_coord_systems(point_xy,
|
|
|
|
|
in_coord_system="EPSG:28356",
|
|
|
|
|
out_coord_system="EPSG:4326")
|
|
|
|
|
|
|
|
|
|
prop = OrderedDict([
|
|
|
|
|
('beach', beach),
|
|
|
|
|
('site_id',site_id),
|
|
|
|
|
('point_type', point_type),
|
|
|
|
|
('profile_type', profile_type),
|
|
|
|
|
('elevation', elevation),
|
|
|
|
|
])
|
|
|
|
|
output.write({"geometry": mapping(point_lat_lon), "properties": prop})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
|
@click.option("--input-csv", required=True, help=".csv file to convert")
|
|
|
|
|
@click.option("--output-shp", required=True, help="where to store .shp file")
|
|
|
|
|
def sites_csv_to_shp(input_csv, output_shp):
|
|
|
|
|
@click.option("--output-geojson", required=True, help="where to store .geojson file")
|
|
|
|
|
def sites_csv_to_geojson(input_csv, output_geojson):
|
|
|
|
|
"""
|
|
|
|
|
Converts our dataframe of sites to .shp to load in QGis
|
|
|
|
|
Converts our dataframe of sites to .geojson to load in QGis. Sites are loaded as linestrings of the profile
|
|
|
|
|
cross-sections
|
|
|
|
|
:param input_csv:
|
|
|
|
|
:param output_shp:
|
|
|
|
|
:param output_geojson:
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
logger.info("Converting %s to %s", input_csv, output_shp)
|
|
|
|
|
logger.info("Converting %s to %s", input_csv, output_geojson)
|
|
|
|
|
df_sites = pd.read_csv(input_csv, index_col=[0])
|
|
|
|
|
logger.info(os.environ.get("GDAL_DATA", None))
|
|
|
|
|
|
|
|
|
|
schema = {"geometry": "LineString", "properties": {"beach": "str", "site_id": "str"}}
|
|
|
|
|
with fiona.open(output_shp, "w", crs=from_epsg(4326), driver="ESRI Shapefile", schema=schema) as output:
|
|
|
|
|
schema = {
|
|
|
|
|
'geometry': 'LineString',
|
|
|
|
|
'properties': OrderedDict([
|
|
|
|
|
('beach','str'),
|
|
|
|
|
('site_id', 'str'),
|
|
|
|
|
])
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
with fiona.open(output_geojson, 'w', driver='GeoJSON', crs=from_epsg(4326), schema=schema) as output:
|
|
|
|
|
for index, row in df_sites.iterrows():
|
|
|
|
|
# Work out where center of profile is
|
|
|
|
|
orientation = row["orientation"]
|
|
|
|
@ -46,7 +229,8 @@ def sites_csv_to_shp(input_csv, output_shp):
|
|
|
|
|
land_x = center_x + center_profile_x * np.cos(np.deg2rad(orientation))
|
|
|
|
|
land_y = center_y + center_profile_x * np.sin(np.deg2rad(orientation))
|
|
|
|
|
land_xy = Point(land_x, land_y)
|
|
|
|
|
land_lat_lon = convert_coord_systems(land_xy, in_coord_system="EPSG:28356", out_coord_system="EPSG:4326")
|
|
|
|
|
land_lat_lon = convert_coord_systems(land_xy, in_coord_system="EPSG:28356",
|
|
|
|
|
out_coord_system="EPSG:4326")
|
|
|
|
|
|
|
|
|
|
# Work out where seaward profile limit is
|
|
|
|
|
sea_x = center_x - center_profile_x * np.cos(np.deg2rad(orientation))
|
|
|
|
@ -55,7 +239,95 @@ def sites_csv_to_shp(input_csv, output_shp):
|
|
|
|
|
sea_lat_lon = convert_coord_systems(sea_xy, in_coord_system="EPSG:28356", out_coord_system="EPSG:4326")
|
|
|
|
|
|
|
|
|
|
line_string = LineString([land_lat_lon, center_lat_lon, sea_lat_lon])
|
|
|
|
|
prop = {"beach": row["beach"], "site_id": index}
|
|
|
|
|
prop = OrderedDict([("beach", row["beach"]),
|
|
|
|
|
("site_id", index)])
|
|
|
|
|
output.write({"geometry": mapping(line_string), "properties": prop})
|
|
|
|
|
|
|
|
|
|
logger.info("Done!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
|
@click.option("--sites-csv", required=True, help="sites.csv file to convert")
|
|
|
|
|
@click.option("--observed-impacts-csv", required=True, help="impacts-observed.csv file to convert")
|
|
|
|
|
@click.option("--forecast-impacts-csv", required=True, help="impacts-forecast.csv file to convert")
|
|
|
|
|
@click.option("--output-geojson", required=True, help="where to store .geojson file")
|
|
|
|
|
def impacts_to_geojson(sites_csv, observed_impacts_csv, forecast_impacts_csv, output_geojson):
|
|
|
|
|
"""
|
|
|
|
|
Converts impacts observed and forecasted to a geojson for visualization in QGIS
|
|
|
|
|
:param sites_csv:
|
|
|
|
|
:param observed_impacts_csv:
|
|
|
|
|
:param forecast_impacts_csv:
|
|
|
|
|
:param output_geojson:
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
# Get information from .csv and read into pandas dataframe
|
|
|
|
|
df_sites = pd.read_csv(sites_csv, index_col=[0])
|
|
|
|
|
df_observed = pd.read_csv(observed_impacts_csv, index_col=[0])
|
|
|
|
|
df_forecast = pd.read_csv(forecast_impacts_csv, index_col=[0]).rename({'storm_regime': 'forecast_storm_regime'})
|
|
|
|
|
|
|
|
|
|
# Rename columns, so we can distinguish between forecast and observed
|
|
|
|
|
df_observed = df_observed.rename(columns={'storm_regime': 'observed_storm_regime'})
|
|
|
|
|
df_forecast = df_forecast.rename(columns={'storm_regime': 'forecast_storm_regime'})
|
|
|
|
|
|
|
|
|
|
# Concat into one big dataframe
|
|
|
|
|
df = pd.concat([df_sites, df_observed, df_forecast], sort=True,axis=1)
|
|
|
|
|
|
|
|
|
|
# Make new column for accuracy of forecast. Use underpredict/correct/overpredict classes
|
|
|
|
|
df.loc[df.observed_storm_regime == df.forecast_storm_regime, 'forecast_accuray'] = 'correct'
|
|
|
|
|
|
|
|
|
|
# Observed/Forecasted/Class for each combination
|
|
|
|
|
classes = [('swash', 'collision', 'overpredict'),
|
|
|
|
|
('swash', 'swash', 'correct'),
|
|
|
|
|
('swash', 'overwash', 'overpredict'),
|
|
|
|
|
('collision', 'swash', 'underpredict'),
|
|
|
|
|
('collision', 'collision', 'correct'),
|
|
|
|
|
('collision', 'overwash', 'overpredict'),
|
|
|
|
|
('overwash', 'swash', 'underpredict'),
|
|
|
|
|
('overwash', 'collision', 'underpredict'),
|
|
|
|
|
('overwash', 'overwash', 'correct')]
|
|
|
|
|
for c in classes:
|
|
|
|
|
df.loc[(df.observed_storm_regime == c[0])&(df.forecast_storm_regime == c[1]), 'forecast_accuracy'] = c[2]
|
|
|
|
|
|
|
|
|
|
schema = {
|
|
|
|
|
'geometry': 'Point',
|
|
|
|
|
'properties': OrderedDict([
|
|
|
|
|
('beach','str'),
|
|
|
|
|
('site_id', 'str'),
|
|
|
|
|
('forecast_storm_regime', 'str'),
|
|
|
|
|
('observed_storm_regime', 'str',),
|
|
|
|
|
('forecast_accuracy', 'str')
|
|
|
|
|
])
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# TODO Impact marker location should be at the seaward end of the profile
|
|
|
|
|
with fiona.open(output_geojson, 'w', driver='GeoJSON', crs=from_epsg(4326), schema=schema) as output:
|
|
|
|
|
for index, row in df.iterrows():
|
|
|
|
|
|
|
|
|
|
# Locate the marker at the seaward end of the profile to avoid cluttering the coastline.
|
|
|
|
|
# Work out where seaward profile limit is
|
|
|
|
|
orientation = row["orientation"]
|
|
|
|
|
center_profile_x = row["profile_x_lat_lon"]
|
|
|
|
|
center_lon = row["lon"]
|
|
|
|
|
center_lat = row["lat"]
|
|
|
|
|
center_lat_lon = Point(center_lon, center_lat)
|
|
|
|
|
center_xy = convert_coord_systems(center_lat_lon)
|
|
|
|
|
center_x, center_y = center_xy.xy
|
|
|
|
|
|
|
|
|
|
sea_x = center_x - center_profile_x * np.cos(np.deg2rad(orientation))
|
|
|
|
|
sea_y = center_y - center_profile_x * np.sin(np.deg2rad(orientation))
|
|
|
|
|
sea_xy = Point(sea_x, sea_y)
|
|
|
|
|
sea_lat_lon = convert_coord_systems(sea_xy, in_coord_system="EPSG:28356", out_coord_system="EPSG:4326")
|
|
|
|
|
|
|
|
|
|
prop = OrderedDict([
|
|
|
|
|
('beach',row["beach"]),
|
|
|
|
|
('site_id', index),
|
|
|
|
|
('forecast_storm_regime', row["forecast_storm_regime"]),
|
|
|
|
|
('observed_storm_regime', row["observed_storm_regime"],),
|
|
|
|
|
('forecast_accuracy', row["forecast_accuracy"])
|
|
|
|
|
])
|
|
|
|
|
|
|
|
|
|
output.write({"geometry": mapping(sea_lat_lon), "properties": prop})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("Done!")
|
|
|
|
|