Fixed failing tests.

master
pbrod 9 years ago
parent ea8ece06f8
commit 139cc27730

@ -2040,7 +2040,7 @@ class SpecData1D(PlotData):
# end %ENDIF
# waitTxt = sprintf('%s Ready: %d of %d',datestr(now),Ntd,Ntime)
# fwaitbar(Ntd/Ntime,h11,waitTxt)
# end %do
# close(h11)
err = sqrt(err)
@ -2102,7 +2102,7 @@ class SpecData1D(PlotData):
else:
# 5, gives level u separated Max2min and wave period from
# the crossing of level u to the min (M,m,Tdm).
IJ = 0
for i in range(1, Nx1): # = 2:Nx1
J = IJ + Nx1
@ -2282,9 +2282,9 @@ class SpecData1D(PlotData):
# Cov(Xd,Xc)
BIG[tn - 1, N] = R2[ts] # %cov(X''(t1),X(ts))
BIG[tn, N] = R2[tn - ts] # %cov(X''(tn),X(ts))
# ADD a level u crossing at ts
# Cov(Xt,Xd)
# for
i = np.arange(tn - 2) # 1:tn-2
@ -2326,17 +2326,17 @@ class SpecData1D(PlotData):
# N = tn+4
shft = 0
# end %if
if (tn > 2):
# for i=1:tn-2
# cov(Xt)
# for j=i:tn-2
# BIG(i,j) = -R2(j-i+1) % cov(X'(ti+1),X'(tj+1))
# end %do
# % cov(Xt) = % cov(X'(ti+1),X'(tj+1))
BIG[:tn - 2, :tn - 2] = toeplitz(-R2[:tn - 2])
# cov(Xt,Xc)
BIG[:tn - 2, tn + shft] = -R2[1:tn - 1] # cov(X'(ti+1),X'(t1))
# cov(X'(ti+1),X'(tn))
@ -2344,7 +2344,7 @@ class SpecData1D(PlotData):
BIG[:tn - 2, tn + shft + 2] = R1[1:tn - 1] # cov(X'(ti+1),X(t1))
# cov(X'(ti+1),X(tn))
BIG[:tn - 2, tn + shft + 3] = -R1[tn - 2:0:-1]
# Cov(Xt,Xd)
BIG[:tn - 2, tn - 2] = R3[1:tn - 1] # cov(X'(ti+1),X''(t1))
BIG[:tn - 2, tn - 1] = -R3[tn - 2:0:-1] # cov(X'(ti+1),X''(tn))
@ -2354,7 +2354,7 @@ class SpecData1D(PlotData):
BIG[tn - 2, tn - 2] = R4[0]
BIG[tn - 2, tn - 1] = R4[tn - 1] # cov(X''(t1),X''(tn))
BIG[tn - 1, tn - 1] = R4[0]
# cov(Xc)
BIG[tn + shft + 2, tn + shft + 2] = R0[0] # cov(X(t1),X(t1))
# cov(X(t1),X(tn))
@ -2929,8 +2929,8 @@ class SpecData1D(PlotData):
# 1'st order + 2'nd order component.
x2[:, 1::] = x[:, 1::] + x2o[0:ns, :].real
if output == 'timeseries':
xx2 = mat2timeseries(x2[:, 1::], x2[:, 0].ravel())
xx = mat2timeseries(x[:, 1::], x[:, 0].ravel())
xx2 = mat2timeseries(x2)
xx = mat2timeseries(x)
return xx2, xx
return x2, x

@ -3,6 +3,7 @@ import wafo.transform.models as wtm
import wafo.objects as wo
from wafo.spectrum import SpecData1D
import numpy as np
from numpy.testing import assert_array_almost_equal
import unittest
@ -93,10 +94,10 @@ def test_sim_nl():
funs = [np.mean, np.std, st.skew, st.kurtosis]
for fun, trueval in zip(funs, truth1):
res = fun(x2[:, 1::], axis=0)
res = fun(x2.data, axis=0)
m = res.mean()
sa = res.std()
#trueval, m, sa
# trueval, m, sa
assert(np.abs(m - trueval) < 2 * sa)
@ -107,9 +108,9 @@ def test_stats_nl():
S = Sj.tospecdata()
me, va, sk, ku = S.stats_nl(moments='mvsk')
assert(me == 0.0)
assert(va == 3.0608203389019537)
assert(sk == 0.18673120577479801)
assert(ku == 3.0619885212624176)
assert_array_almost_equal(va, 3.0608203389019537)
assert_array_almost_equal(sk, 0.18673120577479801)
assert_array_almost_equal(ku, 3.0619885212624176)
def test_testgaussian():
@ -127,7 +128,7 @@ def test_testgaussian():
ys = wo.mat2timeseries(S.sim(ns=2 ** 13))
g0, _gemp = ys.trdata()
t0 = g0.dist2gauss()
t1 = S0.testgaussian(ns=2 ** 13, t0=t0, cases=50)
t1 = S0.testgaussian(ns=2 ** 13, test0=t0, cases=50)
assert(sum(t1 > t0) < 5)
@ -138,9 +139,9 @@ def test_moment():
true_vals = [1.5614600345079888, 0.95567089481941048]
true_txt = ['m0', 'm0tt']
for tv, v in zip(true_vals, vals):
assert(tv == v)
assert_array_almost_equal(tv, v)
for tv, v in zip(true_txt, txt):
assert(tv == v)
assert(tv==v)
def test_nyquist_freq():
@ -163,7 +164,7 @@ def test_normalize():
vals, _txt = S.moment(2)
true_vals = [1.5614600345079888, 0.95567089481941048]
for tv, v in zip(true_vals, vals):
assert(tv == v)
assert_array_almost_equal(tv, v)
Sn = S.copy()
Sn.normalize()

Loading…
Cancel
Save