|
|
|
@ -3,6 +3,7 @@ import wafo.transform.models as wtm
|
|
|
|
|
import wafo.objects as wo
|
|
|
|
|
from wafo.spectrum import SpecData1D
|
|
|
|
|
import numpy as np
|
|
|
|
|
from numpy.testing import assert_array_almost_equal
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -93,7 +94,7 @@ def test_sim_nl():
|
|
|
|
|
|
|
|
|
|
funs = [np.mean, np.std, st.skew, st.kurtosis]
|
|
|
|
|
for fun, trueval in zip(funs, truth1):
|
|
|
|
|
res = fun(x2[:, 1::], axis=0)
|
|
|
|
|
res = fun(x2.data, axis=0)
|
|
|
|
|
m = res.mean()
|
|
|
|
|
sa = res.std()
|
|
|
|
|
# trueval, m, sa
|
|
|
|
@ -107,9 +108,9 @@ def test_stats_nl():
|
|
|
|
|
S = Sj.tospecdata()
|
|
|
|
|
me, va, sk, ku = S.stats_nl(moments='mvsk')
|
|
|
|
|
assert(me == 0.0)
|
|
|
|
|
assert(va == 3.0608203389019537)
|
|
|
|
|
assert(sk == 0.18673120577479801)
|
|
|
|
|
assert(ku == 3.0619885212624176)
|
|
|
|
|
assert_array_almost_equal(va, 3.0608203389019537)
|
|
|
|
|
assert_array_almost_equal(sk, 0.18673120577479801)
|
|
|
|
|
assert_array_almost_equal(ku, 3.0619885212624176)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_testgaussian():
|
|
|
|
@ -127,7 +128,7 @@ def test_testgaussian():
|
|
|
|
|
ys = wo.mat2timeseries(S.sim(ns=2 ** 13))
|
|
|
|
|
g0, _gemp = ys.trdata()
|
|
|
|
|
t0 = g0.dist2gauss()
|
|
|
|
|
t1 = S0.testgaussian(ns=2 ** 13, t0=t0, cases=50)
|
|
|
|
|
t1 = S0.testgaussian(ns=2 ** 13, test0=t0, cases=50)
|
|
|
|
|
assert(sum(t1 > t0) < 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -138,7 +139,7 @@ def test_moment():
|
|
|
|
|
true_vals = [1.5614600345079888, 0.95567089481941048]
|
|
|
|
|
true_txt = ['m0', 'm0tt']
|
|
|
|
|
for tv, v in zip(true_vals, vals):
|
|
|
|
|
assert(tv == v)
|
|
|
|
|
assert_array_almost_equal(tv, v)
|
|
|
|
|
for tv, v in zip(true_txt, txt):
|
|
|
|
|
assert(tv==v)
|
|
|
|
|
|
|
|
|
@ -163,7 +164,7 @@ def test_normalize():
|
|
|
|
|
vals, _txt = S.moment(2)
|
|
|
|
|
true_vals = [1.5614600345079888, 0.95567089481941048]
|
|
|
|
|
for tv, v in zip(true_vals, vals):
|
|
|
|
|
assert(tv == v)
|
|
|
|
|
assert_array_almost_equal(tv, v)
|
|
|
|
|
|
|
|
|
|
Sn = S.copy()
|
|
|
|
|
Sn.normalize()
|
|
|
|
|