Fixed failing tests.

master
pbrod 9 years ago
parent ea8ece06f8
commit 139cc27730

@ -2929,8 +2929,8 @@ class SpecData1D(PlotData):
# 1'st order + 2'nd order component.
x2[:, 1::] = x[:, 1::] + x2o[0:ns, :].real
if output == 'timeseries':
xx2 = mat2timeseries(x2[:, 1::], x2[:, 0].ravel())
xx = mat2timeseries(x[:, 1::], x[:, 0].ravel())
xx2 = mat2timeseries(x2)
xx = mat2timeseries(x)
return xx2, xx
return x2, x

@ -3,6 +3,7 @@ import wafo.transform.models as wtm
import wafo.objects as wo
from wafo.spectrum import SpecData1D
import numpy as np
from numpy.testing import assert_array_almost_equal
import unittest
@ -93,10 +94,10 @@ def test_sim_nl():
funs = [np.mean, np.std, st.skew, st.kurtosis]
for fun, trueval in zip(funs, truth1):
res = fun(x2[:, 1::], axis=0)
res = fun(x2.data, axis=0)
m = res.mean()
sa = res.std()
#trueval, m, sa
# trueval, m, sa
assert(np.abs(m - trueval) < 2 * sa)
@ -107,9 +108,9 @@ def test_stats_nl():
S = Sj.tospecdata()
me, va, sk, ku = S.stats_nl(moments='mvsk')
assert(me == 0.0)
assert(va == 3.0608203389019537)
assert(sk == 0.18673120577479801)
assert(ku == 3.0619885212624176)
assert_array_almost_equal(va, 3.0608203389019537)
assert_array_almost_equal(sk, 0.18673120577479801)
assert_array_almost_equal(ku, 3.0619885212624176)
def test_testgaussian():
@ -127,7 +128,7 @@ def test_testgaussian():
ys = wo.mat2timeseries(S.sim(ns=2 ** 13))
g0, _gemp = ys.trdata()
t0 = g0.dist2gauss()
t1 = S0.testgaussian(ns=2 ** 13, t0=t0, cases=50)
t1 = S0.testgaussian(ns=2 ** 13, test0=t0, cases=50)
assert(sum(t1 > t0) < 5)
@ -138,9 +139,9 @@ def test_moment():
true_vals = [1.5614600345079888, 0.95567089481941048]
true_txt = ['m0', 'm0tt']
for tv, v in zip(true_vals, vals):
assert(tv == v)
assert_array_almost_equal(tv, v)
for tv, v in zip(true_txt, txt):
assert(tv == v)
assert(tv==v)
def test_nyquist_freq():
@ -163,7 +164,7 @@ def test_normalize():
vals, _txt = S.moment(2)
true_vals = [1.5614600345079888, 0.95567089481941048]
for tv, v in zip(true_vals, vals):
assert(tv == v)
assert_array_almost_equal(tv, v)
Sn = S.copy()
Sn.normalize()

Loading…
Cancel
Save