Fixed failing tests.

master
pbrod 9 years ago
parent ea8ece06f8
commit 139cc27730

@ -2929,8 +2929,8 @@ class SpecData1D(PlotData):
# 1'st order + 2'nd order component. # 1'st order + 2'nd order component.
x2[:, 1::] = x[:, 1::] + x2o[0:ns, :].real x2[:, 1::] = x[:, 1::] + x2o[0:ns, :].real
if output == 'timeseries': if output == 'timeseries':
xx2 = mat2timeseries(x2[:, 1::], x2[:, 0].ravel()) xx2 = mat2timeseries(x2)
xx = mat2timeseries(x[:, 1::], x[:, 0].ravel()) xx = mat2timeseries(x)
return xx2, xx return xx2, xx
return x2, x return x2, x

@ -3,6 +3,7 @@ import wafo.transform.models as wtm
import wafo.objects as wo import wafo.objects as wo
from wafo.spectrum import SpecData1D from wafo.spectrum import SpecData1D
import numpy as np import numpy as np
from numpy.testing import assert_array_almost_equal
import unittest import unittest
@ -93,10 +94,10 @@ def test_sim_nl():
funs = [np.mean, np.std, st.skew, st.kurtosis] funs = [np.mean, np.std, st.skew, st.kurtosis]
for fun, trueval in zip(funs, truth1): for fun, trueval in zip(funs, truth1):
res = fun(x2[:, 1::], axis=0) res = fun(x2.data, axis=0)
m = res.mean() m = res.mean()
sa = res.std() sa = res.std()
#trueval, m, sa # trueval, m, sa
assert(np.abs(m - trueval) < 2 * sa) assert(np.abs(m - trueval) < 2 * sa)
@ -107,9 +108,9 @@ def test_stats_nl():
S = Sj.tospecdata() S = Sj.tospecdata()
me, va, sk, ku = S.stats_nl(moments='mvsk') me, va, sk, ku = S.stats_nl(moments='mvsk')
assert(me == 0.0) assert(me == 0.0)
assert(va == 3.0608203389019537) assert_array_almost_equal(va, 3.0608203389019537)
assert(sk == 0.18673120577479801) assert_array_almost_equal(sk, 0.18673120577479801)
assert(ku == 3.0619885212624176) assert_array_almost_equal(ku, 3.0619885212624176)
def test_testgaussian(): def test_testgaussian():
@ -127,7 +128,7 @@ def test_testgaussian():
ys = wo.mat2timeseries(S.sim(ns=2 ** 13)) ys = wo.mat2timeseries(S.sim(ns=2 ** 13))
g0, _gemp = ys.trdata() g0, _gemp = ys.trdata()
t0 = g0.dist2gauss() t0 = g0.dist2gauss()
t1 = S0.testgaussian(ns=2 ** 13, t0=t0, cases=50) t1 = S0.testgaussian(ns=2 ** 13, test0=t0, cases=50)
assert(sum(t1 > t0) < 5) assert(sum(t1 > t0) < 5)
@ -138,9 +139,9 @@ def test_moment():
true_vals = [1.5614600345079888, 0.95567089481941048] true_vals = [1.5614600345079888, 0.95567089481941048]
true_txt = ['m0', 'm0tt'] true_txt = ['m0', 'm0tt']
for tv, v in zip(true_vals, vals): for tv, v in zip(true_vals, vals):
assert(tv == v) assert_array_almost_equal(tv, v)
for tv, v in zip(true_txt, txt): for tv, v in zip(true_txt, txt):
assert(tv == v) assert(tv==v)
def test_nyquist_freq(): def test_nyquist_freq():
@ -163,7 +164,7 @@ def test_normalize():
vals, _txt = S.moment(2) vals, _txt = S.moment(2)
true_vals = [1.5614600345079888, 0.95567089481941048] true_vals = [1.5614600345079888, 0.95567089481941048]
for tv, v in zip(true_vals, vals): for tv, v in zip(true_vals, vals):
assert(tv == v) assert_array_almost_equal(tv, v)
Sn = S.copy() Sn = S.copy()
Sn.normalize() Sn.normalize()

Loading…
Cancel
Save