|
|
@ -2040,7 +2040,7 @@ class SpecData1D(PlotData):
|
|
|
|
# end %ENDIF
|
|
|
|
# end %ENDIF
|
|
|
|
# waitTxt = sprintf('%s Ready: %d of %d',datestr(now),Ntd,Ntime)
|
|
|
|
# waitTxt = sprintf('%s Ready: %d of %d',datestr(now),Ntd,Ntime)
|
|
|
|
# fwaitbar(Ntd/Ntime,h11,waitTxt)
|
|
|
|
# fwaitbar(Ntd/Ntime,h11,waitTxt)
|
|
|
|
|
|
|
|
|
|
|
|
# end %do
|
|
|
|
# end %do
|
|
|
|
# close(h11)
|
|
|
|
# close(h11)
|
|
|
|
err = sqrt(err)
|
|
|
|
err = sqrt(err)
|
|
|
@ -2102,7 +2102,7 @@ class SpecData1D(PlotData):
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
# 5, gives level u separated Max2min and wave period from
|
|
|
|
# 5, gives level u separated Max2min and wave period from
|
|
|
|
# the crossing of level u to the min (M,m,Tdm).
|
|
|
|
# the crossing of level u to the min (M,m,Tdm).
|
|
|
|
|
|
|
|
|
|
|
|
IJ = 0
|
|
|
|
IJ = 0
|
|
|
|
for i in range(1, Nx1): # = 2:Nx1
|
|
|
|
for i in range(1, Nx1): # = 2:Nx1
|
|
|
|
J = IJ + Nx1
|
|
|
|
J = IJ + Nx1
|
|
|
@ -2282,9 +2282,9 @@ class SpecData1D(PlotData):
|
|
|
|
# Cov(Xd,Xc)
|
|
|
|
# Cov(Xd,Xc)
|
|
|
|
BIG[tn - 1, N] = R2[ts] # %cov(X''(t1),X(ts))
|
|
|
|
BIG[tn - 1, N] = R2[ts] # %cov(X''(t1),X(ts))
|
|
|
|
BIG[tn, N] = R2[tn - ts] # %cov(X''(tn),X(ts))
|
|
|
|
BIG[tn, N] = R2[tn - ts] # %cov(X''(tn),X(ts))
|
|
|
|
|
|
|
|
|
|
|
|
# ADD a level u crossing at ts
|
|
|
|
# ADD a level u crossing at ts
|
|
|
|
|
|
|
|
|
|
|
|
# Cov(Xt,Xd)
|
|
|
|
# Cov(Xt,Xd)
|
|
|
|
# for
|
|
|
|
# for
|
|
|
|
i = np.arange(tn - 2) # 1:tn-2
|
|
|
|
i = np.arange(tn - 2) # 1:tn-2
|
|
|
@ -2326,17 +2326,17 @@ class SpecData1D(PlotData):
|
|
|
|
# N = tn+4
|
|
|
|
# N = tn+4
|
|
|
|
shft = 0
|
|
|
|
shft = 0
|
|
|
|
# end %if
|
|
|
|
# end %if
|
|
|
|
|
|
|
|
|
|
|
|
if (tn > 2):
|
|
|
|
if (tn > 2):
|
|
|
|
# for i=1:tn-2
|
|
|
|
# for i=1:tn-2
|
|
|
|
# cov(Xt)
|
|
|
|
# cov(Xt)
|
|
|
|
# for j=i:tn-2
|
|
|
|
# for j=i:tn-2
|
|
|
|
# BIG(i,j) = -R2(j-i+1) % cov(X'(ti+1),X'(tj+1))
|
|
|
|
# BIG(i,j) = -R2(j-i+1) % cov(X'(ti+1),X'(tj+1))
|
|
|
|
# end %do
|
|
|
|
# end %do
|
|
|
|
|
|
|
|
|
|
|
|
# % cov(Xt) = % cov(X'(ti+1),X'(tj+1))
|
|
|
|
# % cov(Xt) = % cov(X'(ti+1),X'(tj+1))
|
|
|
|
BIG[:tn - 2, :tn - 2] = toeplitz(-R2[:tn - 2])
|
|
|
|
BIG[:tn - 2, :tn - 2] = toeplitz(-R2[:tn - 2])
|
|
|
|
|
|
|
|
|
|
|
|
# cov(Xt,Xc)
|
|
|
|
# cov(Xt,Xc)
|
|
|
|
BIG[:tn - 2, tn + shft] = -R2[1:tn - 1] # cov(X'(ti+1),X'(t1))
|
|
|
|
BIG[:tn - 2, tn + shft] = -R2[1:tn - 1] # cov(X'(ti+1),X'(t1))
|
|
|
|
# cov(X'(ti+1),X'(tn))
|
|
|
|
# cov(X'(ti+1),X'(tn))
|
|
|
@ -2344,7 +2344,7 @@ class SpecData1D(PlotData):
|
|
|
|
BIG[:tn - 2, tn + shft + 2] = R1[1:tn - 1] # cov(X'(ti+1),X(t1))
|
|
|
|
BIG[:tn - 2, tn + shft + 2] = R1[1:tn - 1] # cov(X'(ti+1),X(t1))
|
|
|
|
# cov(X'(ti+1),X(tn))
|
|
|
|
# cov(X'(ti+1),X(tn))
|
|
|
|
BIG[:tn - 2, tn + shft + 3] = -R1[tn - 2:0:-1]
|
|
|
|
BIG[:tn - 2, tn + shft + 3] = -R1[tn - 2:0:-1]
|
|
|
|
|
|
|
|
|
|
|
|
# Cov(Xt,Xd)
|
|
|
|
# Cov(Xt,Xd)
|
|
|
|
BIG[:tn - 2, tn - 2] = R3[1:tn - 1] # cov(X'(ti+1),X''(t1))
|
|
|
|
BIG[:tn - 2, tn - 2] = R3[1:tn - 1] # cov(X'(ti+1),X''(t1))
|
|
|
|
BIG[:tn - 2, tn - 1] = -R3[tn - 2:0:-1] # cov(X'(ti+1),X''(tn))
|
|
|
|
BIG[:tn - 2, tn - 1] = -R3[tn - 2:0:-1] # cov(X'(ti+1),X''(tn))
|
|
|
@ -2354,7 +2354,7 @@ class SpecData1D(PlotData):
|
|
|
|
BIG[tn - 2, tn - 2] = R4[0]
|
|
|
|
BIG[tn - 2, tn - 2] = R4[0]
|
|
|
|
BIG[tn - 2, tn - 1] = R4[tn - 1] # cov(X''(t1),X''(tn))
|
|
|
|
BIG[tn - 2, tn - 1] = R4[tn - 1] # cov(X''(t1),X''(tn))
|
|
|
|
BIG[tn - 1, tn - 1] = R4[0]
|
|
|
|
BIG[tn - 1, tn - 1] = R4[0]
|
|
|
|
|
|
|
|
|
|
|
|
# cov(Xc)
|
|
|
|
# cov(Xc)
|
|
|
|
BIG[tn + shft + 2, tn + shft + 2] = R0[0] # cov(X(t1),X(t1))
|
|
|
|
BIG[tn + shft + 2, tn + shft + 2] = R0[0] # cov(X(t1),X(t1))
|
|
|
|
# cov(X(t1),X(tn))
|
|
|
|
# cov(X(t1),X(tn))
|
|
|
@ -2929,8 +2929,8 @@ class SpecData1D(PlotData):
|
|
|
|
# 1'st order + 2'nd order component.
|
|
|
|
# 1'st order + 2'nd order component.
|
|
|
|
x2[:, 1::] = x[:, 1::] + x2o[0:ns, :].real
|
|
|
|
x2[:, 1::] = x[:, 1::] + x2o[0:ns, :].real
|
|
|
|
if output == 'timeseries':
|
|
|
|
if output == 'timeseries':
|
|
|
|
xx2 = mat2timeseries(x2[:, 1::], x2[:, 0].ravel())
|
|
|
|
xx2 = mat2timeseries(x2)
|
|
|
|
xx = mat2timeseries(x[:, 1::], x[:, 0].ravel())
|
|
|
|
xx = mat2timeseries(x)
|
|
|
|
return xx2, xx
|
|
|
|
return xx2, xx
|
|
|
|
return x2, x
|
|
|
|
return x2, x
|
|
|
|
|
|
|
|
|
|
|
|