update from Github version of CoastSat

master
Kilian Vos 5 years ago
parent b32d7d1239
commit 417fe12923

@ -0,0 +1,31 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: bug
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior (you can also attach your script):
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. iOS]
- CoastSat Version [e.g. 22]
**Additional context**
Add any other context about the problem here.

@ -0,0 +1,20 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

@ -1,5 +1,8 @@
# CoastSat # CoastSat
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3560436.svg)](https://doi.org/10.5281/zenodo.3560436)
[![Join the chat at https://gitter.im/CoastSat/community](https://badges.gitter.im/spyder-ide/spyder.svg)](https://gitter.im/CoastSat/community)<br>
CoastSat is an open-source software toolkit written in Python that enables users to obtain time-series of shoreline position at any coastline worldwide from 30+ years (and growing) of publicly available satellite imagery. CoastSat is an open-source software toolkit written in Python that enables users to obtain time-series of shoreline position at any coastline worldwide from 30+ years (and growing) of publicly available satellite imagery.
![Alt text](https://github.com/kvos/CoastSat/blob/development/examples/doc/example.gif) ![Alt text](https://github.com/kvos/CoastSat/blob/development/examples/doc/example.gif)
@ -49,7 +52,9 @@ To confirm that you have successfully activated CoastSat, your terminal command
### 1.2 Activate Google Earth Engine Python API ### 1.2 Activate Google Earth Engine Python API
With the `coastsat` environment activated, run the following command on the Anaconda Prompt to link your environment to the GEE server: First, you need to request access to Google Earth Engine at https://signup.earthengine.google.com/. It takes about 1 day for Google to approve requests.
Once your request has been approved, with the `coastsat` environment activated, run the following command on the Anaconda Prompt to link your environment to the GEE server:
``` ```
earthengine authenticate earthengine authenticate
@ -124,20 +129,22 @@ Once all the shorelines have been mapped, the output is available in two differe
The figure below shows how the satellite-derived shorelines can be opened in a GIS software (QGIS) using the `.geojson` output. Note that the coordinates in the `.geojson` file are in the spatial reference system defined by the `output_epsg`. The figure below shows how the satellite-derived shorelines can be opened in a GIS software (QGIS) using the `.geojson` output. Note that the coordinates in the `.geojson` file are in the spatial reference system defined by the `output_epsg`.
![gis_output](https://user-images.githubusercontent.com/7217258/49361401-15bd0480-f730-11e8-88a8-a127f87ca64a.jpeg) <p align="center">
<img width="500" height="300" src="https://user-images.githubusercontent.com/7217258/49361401-15bd0480-f730-11e8-88a8-a127f87ca64a.jpeg">
</p>
#### Reference shoreline #### Reference shoreline
Before running the batch shoreline detection, there is the option to manually digitize a reference shoreline on one cloud-free image. This reference shoreline helps to reject outliers and false detections when mapping shorelines as it only considers as valid shorelines the points that are within a defined distance from this reference shoreline. Before running the batch shoreline detection, there is the option to manually digitize a reference shoreline on one cloud-free image. This reference shoreline helps to reject outliers and false detections when mapping shorelines as it only considers as valid shorelines the points that are within a defined distance from this reference shoreline.
The user can manually digitize a reference shoreline on one of the images by calling: The user can manually digitize one or several reference shorelines on one of the images by calling:
``` ```
settings['reference_shoreline'] = SDS_preprocess.get_reference_sl_manual(metadata, settings) settings['reference_shoreline'] = SDS_preprocess.get_reference_sl_manual(metadata, settings)
settings['max_dist_ref'] = 100 # max distance (in meters) allowed from the reference shoreline settings['max_dist_ref'] = 100 # max distance (in meters) allowed from the reference shoreline
``` ```
This function allows the user to click points along the shoreline on one of the satellite images, as shown in the animation below. This function allows the user to click points along the shoreline on cloud-free satellite images, as shown in the animation below.
![reference_shoreline](https://user-images.githubusercontent.com/7217258/60766913-6c8a2280-a0f3-11e9-89e5-865e11aa26cd.gif) ![ref_shoreline](https://user-images.githubusercontent.com/7217258/70408922-063c6e00-1a9e-11ea-8775-fc62e9855774.gif)
The maximum distance (in metres) allowed from the reference shoreline is defined by the parameter `max_dist_ref`. This parameter is set to a default value of 100 m. If you think that 100 m buffer from the reference shoreline will not capture the shoreline variability at your site, increase the value of this parameter. This may be the case for large nourishments or eroding/accreting coastlines. The maximum distance (in metres) allowed from the reference shoreline is defined by the parameter `max_dist_ref`. This parameter is set to a default value of 100 m. If you think that 100 m buffer from the reference shoreline will not capture the shoreline variability at your site, increase the value of this parameter. This may be the case for large nourishments or eroding/accreting coastlines.
@ -150,6 +157,9 @@ As mentioned above, there are some additional parameters that can be modified to
- `cloud_mask_issue`: the cloud mask algorithm applied to Landsat images by USGS, namely CFMASK, does have difficulties sometimes with very bright features such as beaches or white-water in the ocean. This may result in pixels corresponding to a beach being identified as clouds and appear as masked pixels on your images. If this issue seems to be present in a large proportion of images from your local beach, you can switch this parameter to `True` and CoastSat will remove from the cloud mask the pixels that form very thin linear features, as often these are beaches and not clouds. Only activate this parameter if you observe this very specific cloud mask issue, otherwise leave to the default value of `False`. - `cloud_mask_issue`: the cloud mask algorithm applied to Landsat images by USGS, namely CFMASK, does have difficulties sometimes with very bright features such as beaches or white-water in the ocean. This may result in pixels corresponding to a beach being identified as clouds and appear as masked pixels on your images. If this issue seems to be present in a large proportion of images from your local beach, you can switch this parameter to `True` and CoastSat will remove from the cloud mask the pixels that form very thin linear features, as often these are beaches and not clouds. Only activate this parameter if you observe this very specific cloud mask issue, otherwise leave to the default value of `False`.
- `sand_color`: this parameter can take 3 values: `default`, `dark` or `bright`. Only change this parameter if you are seing that with the `default` the sand pixels are not being classified as sand (in orange). If your beach has dark sand (grey/black sand beaches), you can set this parameter to `dark` and the classifier will be able to pick up the dark sand. On the other hand, if your beach has white sand and the `default` classifier is not picking it up, switch this parameter to `bright`. At this stage this option is only available for Landsat images (soon for Sentinel-2 as well). - `sand_color`: this parameter can take 3 values: `default`, `dark` or `bright`. Only change this parameter if you are seing that with the `default` the sand pixels are not being classified as sand (in orange). If your beach has dark sand (grey/black sand beaches), you can set this parameter to `dark` and the classifier will be able to pick up the dark sand. On the other hand, if your beach has white sand and the `default` classifier is not picking it up, switch this parameter to `bright`. At this stage this option is only available for Landsat images (soon for Sentinel-2 as well).
#### Re-training the classifier
CoastSat's shoreline mapping alogorithm uses an image classification scheme to label each pixel into 4 classes: sand, water, white-water and other land features. While this classifier has been trained using a wide range of different beaches, it may be that it does not perform very well at specific sites that it has never seen before. You can train a new classifier with site-specific training data in a few minutes by following the Jupyter notebook in [re-train CoastSat classifier](https://github.com/kvos/CoastSat/blob/master/classification/train_new_classifier.md).
### 2.3 Shoreline change analysis ### 2.3 Shoreline change analysis
This section shows how to obtain time-series of shoreline change along shore-normal transects. Each transect is defined by two points, its origin and a second point that defines its length and orientation. There are 3 options to define the coordinates of the transects: This section shows how to obtain time-series of shoreline change along shore-normal transects. Each transect is defined by two points, its origin and a second point that defines its length and orientation. There are 3 options to define the coordinates of the transects:

@ -0,0 +1,436 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train a new classifier for CoastSat\n",
"\n",
"In this notebook the CoastSat classifier is trained using satellite images from new sites. This can improve the accuracy of the shoreline detection if the users are experiencing issues with the default classifier."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Initial settings"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"run_control": {
"marked": false
}
},
"outputs": [],
"source": [
"# load modules\n",
"%load_ext autoreload\n",
"%autoreload 2\n",
"import os, sys\n",
"import numpy as np\n",
"import pickle\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# sklearn modules\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.neural_network import MLPClassifier\n",
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.externals import joblib\n",
"\n",
"# coastsat modules\n",
"sys.path.insert(0, os.pardir)\n",
"from coastsat import SDS_download, SDS_preprocess, SDS_shoreline, SDS_tools, SDS_classify\n",
"\n",
"# plotting params\n",
"plt.rcParams['font.size'] = 14\n",
"plt.rcParams['xtick.labelsize'] = 12\n",
"plt.rcParams['ytick.labelsize'] = 12\n",
"plt.rcParams['axes.titlesize'] = 12\n",
"plt.rcParams['axes.labelsize'] = 12\n",
"\n",
"# filepaths \n",
"filepath_images = os.path.join(os.getcwd(), 'data')\n",
"filepath_train = os.path.join(os.getcwd(), 'training_data')\n",
"filepath_models = os.path.join(os.getcwd(), 'models')\n",
"\n",
"# settings\n",
"settings ={'filepath_train':filepath_train, # folder where the labelled images will be stored\n",
" 'cloud_thresh':0.9, # percentage of cloudy pixels accepted on the image\n",
" 'cloud_mask_issue':True, # set to True if problems with the default cloud mask \n",
" 'inputs':{'filepath':filepath_images}, # folder where the images are stored\n",
" 'labels':{'sand':1,'white-water':2,'water':3,'other land features':4}, # labels for the classifier\n",
" 'colors':{'sand':[1, 0.65, 0],'white-water':[1,0,1],'water':[0.1,0.1,0.7],'other land features':[0.8,0.8,0.1]},\n",
" 'tolerance':0.01, # this is the pixel intensity tolerance, when using flood fill for sandy pixels\n",
" # set to 0 to select one pixel at a time\n",
" }\n",
" \n",
"# read kml files for the training sites\n",
"filepath_sites = os.path.join(os.getcwd(), 'training_sites')\n",
"train_sites = os.listdir(filepath_sites)\n",
"print('Sites for training:\\n%s\\n'%train_sites)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 1. Download images\n",
"\n",
"For each site on which you want to train the classifier, save a .kml file with the region of interest (5 vertices clockwise, first and last points are the same, can be created from Google myMaps) in the folder *\\training_sites*.\n",
"\n",
"You only need a few images (~10) to train the classifier."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": []
},
"outputs": [],
"source": [
"# dowload images at the sites\n",
"dates = ['2019-01-01', '2019-07-01']\n",
"sat_list = 'L8'\n",
"for site in train_sites:\n",
" polygon = SDS_tools.polygon_from_kml(os.path.join(filepath_sites,site))\n",
" sitename = site[:site.find('.')] \n",
" inputs = {'polygon':polygon, 'dates':dates, 'sat_list':sat_list,\n",
" 'sitename':sitename, 'filepath':filepath_images}\n",
" print(sitename)\n",
" metadata = SDS_download.retrieve_images(inputs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 2. Label images\n",
"\n",
"Label the images into 4 classes: sand, white-water, water and other land features.\n",
"\n",
"The labelled images are saved in the *filepath_train* and can be visualised afterwards for quality control. If yo make a mistake, don't worry, this can be fixed later by deleting the labelled image."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"run_control": {
"marked": true
}
},
"outputs": [],
"source": [
"# label the images with an interactive annotator\n",
"%matplotlib qt\n",
"for site in train_sites:\n",
" settings['inputs']['sitename'] = site[:site.find('.')] \n",
" # load metadata\n",
" metadata = SDS_download.get_metadata(settings['inputs'])\n",
" # label images\n",
" SDS_classify.label_images(metadata,settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 3. Train Classifier\n",
"\n",
"A Multilayer Perceptron is trained with *scikit-learn*. To train the classifier, the training data needs to be loaded.\n",
"\n",
"You can use the data that was labelled here and/or the original CoastSat training data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# load labelled images\n",
"features = SDS_classify.load_labels(train_sites, settings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# you can also load the original CoastSat training data (and optionally merge it with your labelled data)\n",
"with open(os.path.join(settings['filepath_train'], 'CoastSat_training_set_L8.pkl'), 'rb') as f:\n",
" features_original = pickle.load(f)\n",
"for key in features_original.keys():\n",
" print('%s : %d pixels'%(key,len(features_original[key])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Run this section to combine the original training data with your labelled data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": []
},
"outputs": [],
"source": [
"# add the white-water data from the original training data\n",
"features['white-water'] = np.append(features['white-water'], features_original['white-water'], axis=0)\n",
"# or merge all the classes\n",
"# for key in features.keys():\n",
"# features[key] = np.append(features[key], features_original[key], axis=0)\n",
"# features = features_original \n",
"for key in features.keys():\n",
" print('%s : %d pixels'%(key,len(features[key])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[OPTIONAL] As the classes do not have the same number of pixels, it is good practice to subsample the very large classes (in this case 'water' and 'other land features'):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# subsample randomly the land and water classes\n",
"# as the most important class is 'sand', the number of samples should be close to the number of sand pixels\n",
"n_samples = 5000\n",
"for key in ['water', 'other land features']:\n",
" features[key] = features[key][np.random.choice(features[key].shape[0], n_samples, replace=False),:]\n",
"# print classes again\n",
"for key in features.keys():\n",
" print('%s : %d pixels'%(key,len(features[key])))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When the labelled data is ready, format it into X, a matrix of features, and y, a vector of labels:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"run_control": {
"marked": true
}
},
"outputs": [],
"source": [
"# format into X (features) and y (labels) \n",
"classes = ['sand','white-water','water','other land features']\n",
"labels = [1,2,3,0]\n",
"X,y = SDS_classify.format_training_data(features, classes, labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Divide the dataset into train and test: train on 70% of the data and evaluate on the other 30%:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"run_control": {
"marked": true
}
},
"outputs": [],
"source": [
"# divide in train and test and evaluate the classifier\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=True, random_state=0)\n",
"classifier = MLPClassifier(hidden_layer_sizes=(100,50), solver='adam')\n",
"classifier.fit(X_train,y_train)\n",
"print('Accuracy: %0.4f' % classifier.score(X_test,y_test))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[OPTIONAL] A more robust evaluation is 10-fold cross-validation (may take a few minutes to run):"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": [],
"run_control": {
"marked": true
}
},
"outputs": [],
"source": [
"# cross-validation\n",
"scores = cross_val_score(classifier, X, y, cv=10)\n",
"print('Accuracy: %0.4f (+/- %0.4f)' % (scores.mean(), scores.std() * 2))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Plot a confusion matrix:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"code_folding": []
},
"outputs": [],
"source": [
"# plot confusion matrix\n",
"%matplotlib inline\n",
"y_pred = classifier.predict(X_test)\n",
"SDS_classify.plot_confusion_matrix(y_test, y_pred,\n",
" classes=['other land features','sand','white-water','water'],\n",
" normalize=False);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When satisfied with the accuracy and confusion matrix, train the model using ALL the training data and save it:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# train with all the data and save the final classifier\n",
"classifier = MLPClassifier(hidden_layer_sizes=(100,50), solver='adam')\n",
"classifier.fit(X,y)\n",
"joblib.dump(classifier, os.path.join(filepath_models, 'NN_4classes_Landsat_test.pkl'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### 4. Evaluate the classifier\n",
"\n",
"Load a classifier that you have trained (specify the classifiers filename) and evaluate it on the satellite images.\n",
"\n",
"This section will save the output of the classification for each site in a directory named \\evaluation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# load and evaluate a classifier\n",
"%matplotlib qt\n",
"classifier = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_test.pkl'))\n",
"settings['output_epsg'] = 3857\n",
"settings['min_beach_area'] = 4500\n",
"settings['buffer_size'] = 200\n",
"settings['min_length_sl'] = 200\n",
"settings['cloud_thresh'] = 0.5\n",
"# visualise the classified images\n",
"for site in train_sites:\n",
" settings['inputs']['sitename'] = site[:site.find('.')] \n",
" # load metadata\n",
" metadata = SDS_download.get_metadata(settings['inputs'])\n",
" # plot the classified images\n",
" SDS_classify.evaluate_classifier(classifier,metadata,settings)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
},
"toc": {
"base_numbering": 1,
"nav_menu": {},
"number_sections": false,
"sideBar": true,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
},
"varInspector": {
"cols": {
"lenName": 16,
"lenType": 16,
"lenVar": 40
},
"kernels_config": {
"python": {
"delete_cmd_postfix": "",
"delete_cmd_prefix": "del ",
"library": "var_list.py",
"varRefreshCmd": "print(var_dic_list())"
},
"r": {
"delete_cmd_postfix": ") ",
"delete_cmd_prefix": "rm(",
"library": "var_list.r",
"varRefreshCmd": "cat(var_dic_list()) "
}
},
"types_to_exclude": [
"module",
"function",
"builtin_function_or_method",
"instance",
"_Feature"
],
"window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -0,0 +1,36 @@
### Train a new CoastSat classifier
CoastSat's shoreline mapping alogorithm uses an image classification scheme to label each pixel into 4 classes: sand, water, white-water and other land features. While this classifier has been trained using a wide range of different beaches, it may be that it does not perform very well at specific sites that it has never seen before.
For this reason, we provide the possibility to re-train the classifier by adding labelled data from new sites. This can be done very quickly and easily by using this [Jupyter Notebook](https://github.com/kvos/CoastSat/blob/CoastSat-classifier/classification/train_new_classifier.ipynb).
Let's take this example, Playa Chañaral in the Atacama desert, Chile. At this beach, the sand is extremely white and the default classifier is not able to label correctly the sand pixels:
![CHANARAL2019-01-14-14-37-41](https://user-images.githubusercontent.com/7217258/69404574-bb0e2580-0d51-11ea-8c85-1f19a4c63e7f.jpg)
To overcome this issue, we can generate training data for this site by labelling new images.
Download the new images to be labelled and then call the function `SDS_classify.label_images(metadata,settings)`, an interactive tool will pop up for quick and efficient labelling:
![animation_labelling](https://user-images.githubusercontent.com/7217258/69405673-6c15bf80-0d54-11ea-927d-4c54198bf4d5.gif)
You only need to label sand pixels, as water and white-water looks the same everywhere in the world. You can label 2-3 images in a few minutes with the interactive tool and then the new labels can be used to re-train the classifier. The labelling tool uses *flood fill* to speed up the selection of sand pixels and you can tune the tolerance of the *flood fill* function in `settings['tolerance']`.
You can then train a classifier with the newly labelled data.
Different classification schemes exist, in this example we use a Multilayer Perceptron (Neural Network) with 2 layers, one of 100 neurons and one of 50 neurons. The training data is first divided in train and split, so that we can evaluate the accuracy of the classifier and plot a confusion matrix.
```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=True, random_state=0)
classifier = MLPClassifier(hidden_layer_sizes=(100,50), solver='adam')
classifier.fit(X_train,y_train)
print('Accuracy: %0.4f' % classifier.score(X_test,y_test))
y_pred = classifier.predict(X_test)
label_names = ['other land features','sand','white-water','water']
SDS_classify.plot_confusion_matrix(y_test, y_pred,classes=label_names,normalize=False);
```
<img src="https://user-images.githubusercontent.com/7217258/69406723-d9c2eb00-0d56-11ea-9eff-4422dc377638.png" alt="confusion_matrix" width="400"/>
Finally, the new classifier can be applied to the satellite images, for visual inspection by calling the function `SDS_classify.evaluate_classifier(classifier,metadata,settings)` which will save the classified images in */evaluation*:
![CHANARAL2019-01-14-14-37-41](https://user-images.githubusercontent.com/7217258/69407090-cb290380-0d57-11ea-8d4b-bff091ce2201.jpg)
Now, this new classifier labels correctly the sandy pixels of the Atacama desert and will provide more accurate satellite-derived shorelines at this beach!

@ -0,0 +1,62 @@
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>site5</name>
<Style id="poly-000000-1200-77-nodesc-normal">
<LineStyle>
<color>ff000000</color>
<width>1.2</width>
</LineStyle>
<PolyStyle>
<color>4d000000</color>
<fill>1</fill>
<outline>1</outline>
</PolyStyle>
<BalloonStyle>
<text><![CDATA[<h3>$[name]</h3>]]></text>
</BalloonStyle>
</Style>
<Style id="poly-000000-1200-77-nodesc-highlight">
<LineStyle>
<color>ff000000</color>
<width>1.8</width>
</LineStyle>
<PolyStyle>
<color>4d000000</color>
<fill>1</fill>
<outline>1</outline>
</PolyStyle>
<BalloonStyle>
<text><![CDATA[<h3>$[name]</h3>]]></text>
</BalloonStyle>
</Style>
<StyleMap id="poly-000000-1200-77-nodesc">
<Pair>
<key>normal</key>
<styleUrl>#poly-000000-1200-77-nodesc-normal</styleUrl>
</Pair>
<Pair>
<key>highlight</key>
<styleUrl>#poly-000000-1200-77-nodesc-highlight</styleUrl>
</Pair>
</StyleMap>
<Placemark>
<name>Polygon</name>
<styleUrl>#poly-000000-1200-77-nodesc</styleUrl>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<tessellate>1</tessellate>
<coordinates>
153.6170468,-28.6510018,0
153.6134419,-28.6621487,0
153.6297498,-28.6665921,0
153.6333547,-28.655295,0
153.6170468,-28.6510018,0
</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</Placemark>
</Document>
</kml>

@ -0,0 +1,62 @@
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>site2</name>
<Style id="poly-000000-1200-77-nodesc-normal">
<LineStyle>
<color>ff000000</color>
<width>1.2</width>
</LineStyle>
<PolyStyle>
<color>4d000000</color>
<fill>1</fill>
<outline>1</outline>
</PolyStyle>
<BalloonStyle>
<text><![CDATA[<h3>$[name]</h3>]]></text>
</BalloonStyle>
</Style>
<Style id="poly-000000-1200-77-nodesc-highlight">
<LineStyle>
<color>ff000000</color>
<width>1.8</width>
</LineStyle>
<PolyStyle>
<color>4d000000</color>
<fill>1</fill>
<outline>1</outline>
</PolyStyle>
<BalloonStyle>
<text><![CDATA[<h3>$[name]</h3>]]></text>
</BalloonStyle>
</Style>
<StyleMap id="poly-000000-1200-77-nodesc">
<Pair>
<key>normal</key>
<styleUrl>#poly-000000-1200-77-nodesc-normal</styleUrl>
</Pair>
<Pair>
<key>highlight</key>
<styleUrl>#poly-000000-1200-77-nodesc-highlight</styleUrl>
</Pair>
</StyleMap>
<Placemark>
<name>Polygon</name>
<styleUrl>#poly-000000-1200-77-nodesc</styleUrl>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<tessellate>1</tessellate>
<coordinates>
151.7604354,-32.9330576,0
151.7480758,-32.9411254,0
151.7612079,-32.953226,0
151.7750266,-32.9451592,0
151.7604354,-32.9330576,0
</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</Placemark>
</Document>
</kml>

@ -0,0 +1,62 @@
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>site4</name>
<Style id="poly-000000-1200-77-nodesc-normal">
<LineStyle>
<color>ff000000</color>
<width>1.2</width>
</LineStyle>
<PolyStyle>
<color>4d000000</color>
<fill>1</fill>
<outline>1</outline>
</PolyStyle>
<BalloonStyle>
<text><![CDATA[<h3>$[name]</h3>]]></text>
</BalloonStyle>
</Style>
<Style id="poly-000000-1200-77-nodesc-highlight">
<LineStyle>
<color>ff000000</color>
<width>1.8</width>
</LineStyle>
<PolyStyle>
<color>4d000000</color>
<fill>1</fill>
<outline>1</outline>
</PolyStyle>
<BalloonStyle>
<text><![CDATA[<h3>$[name]</h3>]]></text>
</BalloonStyle>
</Style>
<StyleMap id="poly-000000-1200-77-nodesc">
<Pair>
<key>normal</key>
<styleUrl>#poly-000000-1200-77-nodesc-normal</styleUrl>
</Pair>
<Pair>
<key>highlight</key>
<styleUrl>#poly-000000-1200-77-nodesc-highlight</styleUrl>
</Pair>
</StyleMap>
<Placemark>
<name>Polygon</name>
<styleUrl>#poly-000000-1200-77-nodesc</styleUrl>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<tessellate>1</tessellate>
<coordinates>
153.0949026,-30.3586611,0
153.0927568,-30.3715099,0
153.1108242,-30.3727688,0
153.1124979,-30.3600312,0
153.0949026,-30.3586611,0
</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</Placemark>
</Document>
</kml>

@ -0,0 +1,624 @@
"""
This module contains functions to label satellite images, use the labels to
train a pixel-wise classifier and evaluate the classifier
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
"""
# load modules
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.widgets import LassoSelector
from matplotlib import path
import pickle
import pdb
import warnings
warnings.filterwarnings("ignore")
# image processing modules
from skimage.segmentation import flood
from skimage import morphology
from pylab import ginput
from sklearn.metrics import confusion_matrix
np.set_printoptions(precision=2)
# CoastSat modules
from coastsat import SDS_preprocess, SDS_shoreline, SDS_tools
class SelectFromImage(object):
"""
Class used to draw the lassos on the images with two methods:
- onselect: save the pixels inside the selection
- disconnect: stop drawing lassos on the image
"""
# initialize lasso selection class
def __init__(self, ax, implot, color=[1,1,1]):
self.canvas = ax.figure.canvas
self.implot = implot
self.array = implot.get_array()
xv, yv = np.meshgrid(np.arange(self.array.shape[1]),np.arange(self.array.shape[0]))
self.pix = np.vstack( (xv.flatten(), yv.flatten()) ).T
self.ind = []
self.im_bool = np.zeros((self.array.shape[0], self.array.shape[1]))
self.color = color
self.lasso = LassoSelector(ax, onselect=self.onselect)
def onselect(self, verts):
# find pixels contained in the lasso
p = path.Path(verts)
self.ind = p.contains_points(self.pix, radius=1)
# color selected pixels
array_list = []
for k in range(self.array.shape[2]):
array2d = self.array[:,:,k]
lin = np.arange(array2d.size)
new_array2d = array2d.flatten()
new_array2d[lin[self.ind]] = self.color[k]
array_list.append(new_array2d.reshape(array2d.shape))
self.array = np.stack(array_list,axis=2)
self.implot.set_data(self.array)
self.canvas.draw_idle()
# update boolean image with selected pixels
vec_bool = self.im_bool.flatten()
vec_bool[lin[self.ind]] = 1
self.im_bool = vec_bool.reshape(self.im_bool.shape)
def disconnect(self):
self.lasso.disconnect_events()
def label_images(metadata,settings):
"""
Load satellite images and interactively label different classes (hard-coded)
KV WRL 2019
Arguments:
-----------
metadata: dict
contains all the information about the satellite images that were downloaded
settings: dict with the following keys
'cloud_thresh': float
value between 0 and 1 indicating the maximum cloud fraction in
the cropped image that is accepted
'cloud_mask_issue': boolean
True if there is an issue with the cloud mask and sand pixels
are erroneously being masked on the images
'labels': dict
list of label names (key) and label numbers (value) for each class
'flood_fill': boolean
True to use the flood_fill functionality when labelling sand pixels
'tolerance': float
tolerance value for flood fill when labelling the sand pixels
'filepath_train': str
directory in which to save the labelled data
'inputs': dict
input parameters (sitename, filepath, polygon, dates, sat_list)
Returns:
-----------
Stores the labelled data in the specified directory
"""
filepath_train = settings['filepath_train']
# initialize figure
fig,ax = plt.subplots(1,1,figsize=[17,10], tight_layout=True,sharex=True,
sharey=True)
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
# loop through satellites
for satname in metadata.keys():
filepath = SDS_tools.get_filepath(settings['inputs'],satname)
filenames = metadata[satname]['filenames']
# loop through images
for i in range(len(filenames)):
# image filename
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
# read and preprocess image
im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue'])
# calculate cloud cover
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
(cloud_mask.shape[0]*cloud_mask.shape[1]))
# skip image if cloud cover is above threshold
if cloud_cover > settings['cloud_thresh'] or cloud_cover == 1:
continue
# get individual RGB image
im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
im_NDVI = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,2], cloud_mask)
im_NDWI = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask)
# initialise labels
im_viz = im_RGB.copy()
im_labels = np.zeros([im_RGB.shape[0],im_RGB.shape[1]])
# show RGB image
ax.axis('off')
ax.imshow(im_RGB)
implot = ax.imshow(im_viz, alpha=0.6)
filename = filenames[i][:filenames[i].find('.')][:-4]
ax.set_title(filename)
##############################################################
# select image to label
##############################################################
# set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071)
# this variable needs to be immuatable so we can access it after the keypress event
key_event = {}
def press(event):
# store what key was pressed in the dictionary
key_event['pressed'] = event.key
# let the user press a key, right arrow to keep the image, left arrow to skip it
# to break the loop the user can press 'escape'
while True:
btn_keep = ax.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top",
transform=ax.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
btn_skip = ax.text(-0.1, 0.9, '⇦ skip', size=12, ha="left", va="top",
transform=ax.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
btn_esc = ax.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top",
transform=ax.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
fig.canvas.draw_idle()
fig.canvas.mpl_connect('key_press_event', press)
plt.waitforbuttonpress()
# after button is pressed, remove the buttons
btn_skip.remove()
btn_keep.remove()
btn_esc.remove()
# keep/skip image according to the pressed key, 'escape' to break the loop
if key_event.get('pressed') == 'right':
skip_image = False
break
elif key_event.get('pressed') == 'left':
skip_image = True
break
elif key_event.get('pressed') == 'escape':
plt.close()
raise StopIteration('User cancelled labelling images')
else:
plt.waitforbuttonpress()
# if user decided to skip show the next image
if skip_image:
ax.clear()
continue
# otherwise label this image
else:
##############################################################
# digitize sandy pixels
##############################################################
ax.set_title('Click on SAND pixels (flood fill activated, tolerance = %.2f)\nwhen finished press <Enter>'%settings['tolerance'])
# create erase button, if you click there it delets the last selection
btn_erase = ax.text(im_ms.shape[1], 0, 'Erase', size=20, ha='right', va='top',
bbox=dict(boxstyle="square", ec='k',fc='w'))
fig.canvas.draw_idle()
color_sand = settings['colors']['sand']
sand_pixels = []
while 1:
seed = ginput(n=1, timeout=0, show_clicks=True)
# if empty break the loop and go to next label
if len(seed) == 0:
break
else:
# round to pixel location
seed = np.round(seed[0]).astype(int)
# if user clicks on erase, delete the last selection
if seed[0] > 0.95*im_ms.shape[1] and seed[1] < 0.05*im_ms.shape[0]:
if len(sand_pixels) > 0:
im_labels[sand_pixels[-1]] = 0
for k in range(im_viz.shape[2]):
im_viz[sand_pixels[-1],k] = im_RGB[sand_pixels[-1],k]
implot.set_data(im_viz)
fig.canvas.draw_idle()
del sand_pixels[-1]
# otherwise label the selected sand pixels
else:
# flood fill the NDVI and the NDWI
fill_NDVI = flood(im_NDVI, (seed[1],seed[0]), tolerance=settings['tolerance'])
fill_NDWI = flood(im_NDWI, (seed[1],seed[0]), tolerance=settings['tolerance'])
# compute the intersection of the two masks
fill_sand = np.logical_and(fill_NDVI, fill_NDWI)
im_labels[fill_sand] = settings['labels']['sand']
sand_pixels.append(fill_sand)
# show the labelled pixels
for k in range(im_viz.shape[2]):
im_viz[im_labels==settings['labels']['sand'],k] = color_sand[k]
implot.set_data(im_viz)
fig.canvas.draw_idle()
##############################################################
# digitize white-water pixels
##############################################################
color_ww = settings['colors']['white-water']
ax.set_title('Click on individual WHITE-WATER pixels (no flood fill)\nwhen finished press <Enter>')
fig.canvas.draw_idle()
ww_pixels = []
while 1:
seed = ginput(n=1, timeout=0, show_clicks=True)
# if empty break the loop and go to next label
if len(seed) == 0:
break
else:
# round to pixel location
seed = np.round(seed[0]).astype(int)
# if user clicks on erase, delete the last labelled pixels
if seed[0] > 0.95*im_ms.shape[1] and seed[1] < 0.05*im_ms.shape[0]:
if len(ww_pixels) > 0:
im_labels[ww_pixels[-1][1],ww_pixels[-1][0]] = 0
for k in range(im_viz.shape[2]):
im_viz[ww_pixels[-1][1],ww_pixels[-1][0],k] = im_RGB[ww_pixels[-1][1],ww_pixels[-1][0],k]
implot.set_data(im_viz)
fig.canvas.draw_idle()
del ww_pixels[-1]
else:
im_labels[seed[1],seed[0]] = settings['labels']['white-water']
for k in range(im_viz.shape[2]):
im_viz[seed[1],seed[0],k] = color_ww[k]
implot.set_data(im_viz)
fig.canvas.draw_idle()
ww_pixels.append(seed)
im_sand_ww = im_viz.copy()
btn_erase.set(text='<Esc> to Erase', fontsize=12)
##############################################################
# digitize water pixels (with lassos)
##############################################################
color_water = settings['colors']['water']
ax.set_title('Click and hold to draw lassos and select WATER pixels\nwhen finished press <Enter>')
fig.canvas.draw_idle()
selector_water = SelectFromImage(ax, implot, color_water)
key_event = {}
while True:
fig.canvas.draw_idle()
fig.canvas.mpl_connect('key_press_event', press)
plt.waitforbuttonpress()
if key_event.get('pressed') == 'enter':
selector_water.disconnect()
break
elif key_event.get('pressed') == 'escape':
selector_water.array = im_sand_ww
implot.set_data(selector_water.array)
fig.canvas.draw_idle()
selector_water.implot = implot
selector_water.im_bool = np.zeros((selector_water.array.shape[0], selector_water.array.shape[1]))
selector_water.ind=[]
# update im_viz and im_labels
im_viz = selector_water.array
selector_water.im_bool = selector_water.im_bool.astype(bool)
im_labels[selector_water.im_bool] = settings['labels']['water']
im_sand_ww_water = im_viz.copy()
##############################################################
# digitize land pixels (with lassos)
##############################################################
color_land = settings['colors']['other land features']
ax.set_title('Click and hold to draw lassos and select OTHER LAND pixels\nwhen finished press <Enter>')
fig.canvas.draw_idle()
selector_land = SelectFromImage(ax, implot, color_land)
key_event = {}
while True:
fig.canvas.draw_idle()
fig.canvas.mpl_connect('key_press_event', press)
plt.waitforbuttonpress()
if key_event.get('pressed') == 'enter':
selector_land.disconnect()
break
elif key_event.get('pressed') == 'escape':
selector_land.array = im_sand_ww_water
implot.set_data(selector_land.array)
fig.canvas.draw_idle()
selector_land.implot = implot
selector_land.im_bool = np.zeros((selector_land.array.shape[0], selector_land.array.shape[1]))
selector_land.ind=[]
# update im_viz and im_labels
im_viz = selector_land.array
selector_land.im_bool = selector_land.im_bool.astype(bool)
im_labels[selector_land.im_bool] = settings['labels']['other land features']
# save labelled image
ax.set_title(filename)
fig.canvas.draw_idle()
fp = os.path.join(filepath_train,settings['inputs']['sitename'])
if not os.path.exists(fp):
os.makedirs(fp)
fig.savefig(os.path.join(fp,filename+'.jpg'), dpi=150)
ax.clear()
# save labels and features
features = dict([])
for key in settings['labels'].keys():
im_bool = im_labels == settings['labels'][key]
features[key] = SDS_shoreline.calculate_features(im_ms, cloud_mask, im_bool)
training_data = {'labels':im_labels, 'features':features, 'label_ids':settings['labels']}
with open(os.path.join(fp, filename + '.pkl'), 'wb') as f:
pickle.dump(training_data,f)
# close figure when finished
plt.close(fig)
def load_labels(train_sites, settings):
"""
Load the labelled data from the different training sites
KV WRL 2019
Arguments:
-----------
train_sites: list of str
sites to be loaded
settings: dict with the following keys
'labels': dict
list of label names (key) and label numbers (value) for each class
'filepath_train': str
directory in which to save the labelled data
Returns:
-----------
features: dict
contains the features for each labelled pixel
"""
filepath_train = settings['filepath_train']
# initialize the features dict
features = dict([])
n_features = 20
first_row = np.nan*np.ones((1,n_features))
for key in settings['labels'].keys():
features[key] = first_row
# loop through each site
for site in train_sites:
sitename = site[:site.find('.')]
filepath = os.path.join(filepath_train,sitename)
if os.path.exists(filepath):
list_files = os.listdir(filepath)
else:
continue
# make a new list with only the .pkl files (no .jpg)
list_files_pkl = []
for file in list_files:
if '.pkl' in file:
list_files_pkl.append(file)
# load and append the training data to the features dict
for file in list_files_pkl:
# read file
with open(os.path.join(filepath, file), 'rb') as f:
labelled_data = pickle.load(f)
for key in labelled_data['features'].keys():
if len(labelled_data['features'][key])>0: # check that is not empty
# append rows
features[key] = np.append(features[key],
labelled_data['features'][key], axis=0)
# remove the first row (initialized with nans) and print how many pixels
print('Number of pixels per class in training data:')
for key in features.keys():
features[key] = features[key][1:,:]
print('%s : %d pixels'%(key,len(features[key])))
return features
def format_training_data(features, classes, labels):
"""
Format the labelled data in an X features matrix and a y labels vector, so
that it can be used for training an ML model.
KV WRL 2019
Arguments:
-----------
features: dict
contains the features for each labelled pixel
classes: list of str
names of the classes
labels: list of int
int value associated with each class (in the same order as classes)
Returns:
-----------
X: np.array
matrix features along the columns and pixels along the rows
y: np.array
vector with the labels corresponding to each row of X
"""
# initialize X and y
X = np.nan*np.ones((1,features[classes[0]].shape[1]))
y = np.nan*np.ones((1,1))
# append row of features to X and corresponding label to y
for i,key in enumerate(classes):
y = np.append(y, labels[i]*np.ones((features[key].shape[0],1)), axis=0)
X = np.append(X, features[key], axis=0)
# remove first row
X = X[1:,:]; y = y[1:]
# replace nans with something close to 0
# training algotihms cannot handle nans
X[np.isnan(X)] = 1e-9
return X, y
def plot_confusion_matrix(y_true,y_pred,classes,normalize=False,cmap=plt.cm.Blues):
"""
Function copied from the scikit-learn examples (https://scikit-learn.org/stable/)
This function plots a confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
# compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
# plot confusion matrix
fig, ax = plt.subplots(figsize=(6,6), tight_layout=True)
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
# ax.figure.colorbar(im, ax=ax)
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]), ylim=[3.5,-0.5],
xticklabels=classes, yticklabels=classes,
ylabel='True label',
xlabel='Predicted label')
# rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black",
fontsize=12)
fig.tight_layout()
return ax
def evaluate_classifier(classifier, metadata, settings):
"""
Apply the image classifier to all the images and save the classified images.
KV WRL 2019
Arguments:
-----------
classifier: joblib object
classifier model to be used for image classification
metadata: dict
contains all the information about the satellite images that were downloaded
settings: dict with the following keys
'inputs': dict
input parameters (sitename, filepath, polygon, dates, sat_list)
'cloud_thresh': float
value between 0 and 1 indicating the maximum cloud fraction in
the cropped image that is accepted
'cloud_mask_issue': boolean
True if there is an issue with the cloud mask and sand pixels
are erroneously being masked on the images
'output_epsg': int
output spatial reference system as EPSG code
'buffer_size': int
size of the buffer (m) around the sandy pixels over which the pixels
are considered in the thresholding algorithm
'min_beach_area': int
minimum allowable object area (in metres^2) for the class 'sand',
the area is converted to number of connected pixels
'min_length_sl': int
minimum length (in metres) of shoreline contour to be valid
Returns:
-----------
Saves .jpg images with the output of the classification in the folder ./detection
"""
# create folder called evaluation
fp = os.path.join(os.getcwd(), 'evaluation')
if not os.path.exists(fp):
os.makedirs(fp)
# initialize figure (not interactive)
plt.ioff()
fig,ax = plt.subplots(1,2,figsize=[17,10],sharex=True, sharey=True,
constrained_layout=True)
# create colormap for labels
cmap = cm.get_cmap('tab20c')
colorpalette = cmap(np.arange(0,13,1))
colours = np.zeros((3,4))
colours[0,:] = colorpalette[5]
colours[1,:] = np.array([204/255,1,1,1])
colours[2,:] = np.array([0,91/255,1,1])
# loop through satellites
for satname in metadata.keys():
filepath = SDS_tools.get_filepath(settings['inputs'],satname)
filenames = metadata[satname]['filenames']
# load classifiers and
if satname in ['L5','L7','L8']:
pixel_size = 15
elif satname == 'S2':
pixel_size = 10
# convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size)
min_beach_area_pixels = np.ceil(settings['min_beach_area']/pixel_size**2)
# loop through images
for i in range(len(filenames)):
# image filename
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
# read and preprocess image
im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue'])
image_epsg = metadata[satname]['epsg'][i]
# calculate cloud cover
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
(cloud_mask.shape[0]*cloud_mask.shape[1]))
# skip image if cloud cover is above threshold
if cloud_cover > settings['cloud_thresh']:
continue
# calculate a buffer around the reference shoreline (if any has been digitised)
im_ref_buffer = SDS_shoreline.create_shoreline_buffer(cloud_mask.shape, georef, image_epsg,
pixel_size, settings)
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = SDS_shoreline.classify_image_NN(im_ms, im_extra, cloud_mask,
min_beach_area_pixels, classifier)
# there are two options to map the contours:
# if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced)
# otherwise use find_wl_contours2 (traditional)
try: # use try/except structure for long runs
if sum(sum(im_labels[:,:,0])) < 10 :
# compute MNDWI image (SWIR-G)
im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# find water contours on MNDWI grayscale image
contours_mwi = SDS_shoreline.find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer)
else:
# use classification to refine threshold and extract the sand/water interface
contours_wi, contours_mwi = SDS_shoreline.find_wl_contours2(im_ms, im_labels,
cloud_mask, buffer_size_pixels, im_ref_buffer)
except:
print('Could not map shoreline for this image: ' + filenames[i])
continue
# process the water contours into a shoreline
shoreline = SDS_shoreline.process_shoreline(contours_mwi, cloud_mask, georef, image_epsg, settings)
try:
sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline,
settings['output_epsg'],
image_epsg)[:,[0,1]], georef)
except:
# if try fails, just add nan into the shoreline vector so the next parts can still run
sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]])
# make a plot
im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
# create classified image
im_class = np.copy(im_RGB)
for k in range(0,im_labels.shape[2]):
im_class[im_labels[:,:,k],0] = colours[k,0]
im_class[im_labels[:,:,k],1] = colours[k,1]
im_class[im_labels[:,:,k],2] = colours[k,2]
# show images
ax[0].imshow(im_RGB)
ax[1].imshow(im_RGB)
ax[1].imshow(im_class, alpha=0.5)
ax[0].axis('off')
ax[1].axis('off')
filename = filenames[i][:filenames[i].find('.')][:-4]
ax[0].set_title(filename)
ax[0].plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
ax[1].plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
# save figure
fig.savefig(os.path.join(fp,settings['inputs']['sitename'] + filename[:19] +'.jpg'), dpi=150)
# clear axes
for cax in fig.axes:
cax.clear()
# close the figure at the end
plt.close()

@ -1,7 +1,8 @@
"""This module contains all the functions needed to download the satellite images from the Google """
Earth Engine Server This module contains all the functions needed to download the satellite images
from the Google Earth Engine server
Author: Kilian Vos, Water Research Laboratory, University of New South Wales Author: Kilian Vos, Water Research Laboratory, University of New South Wales
""" """
# load modules # load modules
@ -15,16 +16,16 @@ import ee
from urllib.request import urlretrieve from urllib.request import urlretrieve
import zipfile import zipfile
import copy import copy
from coastsat import gdal_merge
# additional modules # additional modules
from datetime import datetime from datetime import datetime, timedelta
import pytz import pytz
import pickle import pickle
import skimage.morphology as morphology from skimage import morphology, transform
from scipy import ndimage
# own modules # CoastSat modules
from coastsat import SDS_preprocess, SDS_tools from coastsat import SDS_preprocess, SDS_tools, gdal_merge
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
@ -44,6 +45,10 @@ def download_tif(image, polygon, bandsId, filepath):
list of bands to be downloaded list of bands to be downloaded
filepath: location where the temporary file should be saved filepath: location where the temporary file should be saved
Returns:
-----------
Downloads an image in a file named data.tif
""" """
url = ee.data.makeDownloadUrl(ee.data.getDownloadId({ url = ee.data.makeDownloadUrl(ee.data.getDownloadId({
@ -60,39 +65,45 @@ def download_tif(image, polygon, bandsId, filepath):
def retrieve_images(inputs): def retrieve_images(inputs):
""" """
Downloads all images from Landsat 5, Landsat 7, Landsat 8 and Sentinel-2 covering the area of Downloads all images from Landsat 5, Landsat 7, Landsat 8 and Sentinel-2
interest and acquired between the specified dates. covering the area of interest and acquired between the specified dates.
The downloaded images are in .TIF format and organised in subfolders, divided by satellite The downloaded images are in .TIF format and organised in subfolders, divided
mission and pixel resolution. by satellite mission. The bands are also subdivided by pixel resolution.
KV WRL 2018 KV WRL 2018
Arguments: Arguments:
----------- -----------
inputs: dict inputs: dict with the following keys
dictionnary that contains the following fields:
'sitename': str 'sitename': str
String containig the name of the site name of the site
'polygon': list 'polygon': list
polygon containing the lon/lat coordinates to be extracted, polygon containing the lon/lat coordinates to be extracted,
longitudes in the first column and latitudes in the second column, longitudes in the first column and latitudes in the second column,
there are 5 pairs of lat/lon with the fifth point equal to the first point. there are 5 pairs of lat/lon with the fifth point equal to the first point:
e.g. [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8], ```
polygon = [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8],
[151.3, -33.7]]] [151.3, -33.7]]]
```
'dates': list of str 'dates': list of str
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd' list that contains 2 strings with the initial and final dates in
e.g. ['1987-01-01', '2018-01-01'] format 'yyyy-mm-dd':
```
dates = ['1987-01-01', '2018-01-01']
```
'sat_list': list of str 'sat_list': list of str
list that contains the names of the satellite missions to include list that contains the names of the satellite missions to include:
e.g. ['L5', 'L7', 'L8', 'S2'] ```
sat_list = ['L5', 'L7', 'L8', 'S2']
```
'filepath_data': str 'filepath_data': str
Filepath to the directory where the images are downloaded filepath to the directory where the images are downloaded
Returns: Returns:
----------- -----------
metadata: dict metadata: dict
contains the information about the satellite images that were downloaded: filename, contains the information about the satellite images that were downloaded:
georeferencing accuracy and image coordinate reference system date, filename, georeferencing accuracy and image coordinate reference system
""" """
@ -710,9 +721,11 @@ def retrieve_images(inputs):
def merge_overlapping_images(metadata,inputs): def merge_overlapping_images(metadata,inputs):
""" """
When the area of interest is located at the boundary between 2 images, there will be overlap Merge simultaneous overlapping images that cover the area of interest.
between the 2 images and both will be downloaded from Google Earth Engine. This function When the area of interest is located at the boundary between 2 images, there
merges the 2 images, so that the area of interest is covered by only 1 image. will be overlap between the 2 images and both will be downloaded from Google
Earth Engine. This function merges the 2 images, so that the area of interest
is covered by only 1 image.
KV WRL 2018 KV WRL 2018
@ -720,128 +733,147 @@ def merge_overlapping_images(metadata,inputs):
----------- -----------
metadata: dict metadata: dict
contains all the information about the satellite images that were downloaded contains all the information about the satellite images that were downloaded
inputs: dict inputs: dict with the following keys
dictionnary that contains the following fields:
'sitename': str 'sitename': str
String containig the name of the site name of the site
'polygon': list 'polygon': list
polygon containing the lon/lat coordinates to be extracted, polygon containing the lon/lat coordinates to be extracted,
longitudes in the first column and latitudes in the second column, longitudes in the first column and latitudes in the second column,
there are 5 pairs of lat/lon with the fifth point equal to the first point. there are 5 pairs of lat/lon with the fifth point equal to the first point:
e.g. [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8], ```
polygon = [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8],
[151.3, -33.7]]] [151.3, -33.7]]]
```
'dates': list of str 'dates': list of str
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd' list that contains 2 strings with the initial and final dates in
e.g. ['1987-01-01', '2018-01-01'] format 'yyyy-mm-dd':
```
dates = ['1987-01-01', '2018-01-01']
```
'sat_list': list of str 'sat_list': list of str
list that contains the names of the satellite missions to include list that contains the names of the satellite missions to include:
e.g. ['L5', 'L7', 'L8', 'S2'] ```
sat_list = ['L5', 'L7', 'L8', 'S2']
```
'filepath_data': str 'filepath_data': str
Filepath to the directory where the images are downloaded filepath to the directory where the images are downloaded
Returns: Returns:
----------- -----------
metadata_updated: dict metadata_updated: dict
updated metadata with the information of the merged images updated metadata
""" """
# only for Sentinel-2 at this stage (not sure if this is needed for Landsat images) # only for Sentinel-2 at this stage (not sure if this is needed for Landsat images)
sat = 'S2' sat = 'S2'
filepath = os.path.join(inputs['filepath'], inputs['sitename']) filepath = os.path.join(inputs['filepath'], inputs['sitename'])
# find the images that are overlapping (same date in S2 filenames)
filenames = metadata[sat]['filenames'] filenames = metadata[sat]['filenames']
filenames_copy = filenames.copy() # find the pairs of images that are within 5 minutes of each other
# loop through all the filenames and find the pairs of overlapping images (same date and time of acquisition) time_delta = 5*60 # 5 minutes in seconds
dates = metadata[sat]['dates'].copy()
pairs = [] pairs = []
for i,fn in enumerate(filenames): for i,date in enumerate(metadata[sat]['dates']):
filenames_copy[i] = [] # dummy value so it does not match it again
# find duplicate dates[i] = pytz.utc.localize(datetime(1,1,1) + timedelta(days=i+1))
boolvec = [fn[:22] == _[:22] for _ in filenames_copy] # calculate time difference
if np.any(boolvec): time_diff = np.array([np.abs((date - _).total_seconds()) for _ in dates])
idx_dup = np.where(boolvec)[0][0] # find the matching times and add to pairs list
if len(filenames[i]) > len(filenames[idx_dup]): boolvec = time_diff <= time_delta
pairs.append([idx_dup,i]) if np.sum(boolvec) == 0:
continue
else: else:
idx_dup = np.where(boolvec)[0][0]
pairs.append([i,idx_dup]) pairs.append([i,idx_dup])
# for each pair of images, merge them into one complete image # for each pair of image, create a mask and add no_data into the .tif file (this is needed before merging .tif files)
for i,pair in enumerate(pairs): for i,pair in enumerate(pairs):
fn_im = [] fn_im = []
for index in range(len(pair)): for index in range(len(pair)):
# read image # get filenames of all the files corresponding to the each image in the pair
fn_im.append([os.path.join(filepath, 'S2', '10m', filenames[pair[index]]), fn_im.append([os.path.join(filepath, 'S2', '10m', filenames[pair[index]]),
os.path.join(filepath, 'S2', '20m', filenames[pair[index]].replace('10m','20m')), os.path.join(filepath, 'S2', '20m', filenames[pair[index]].replace('10m','20m')),
os.path.join(filepath, 'S2', '60m', filenames[pair[index]].replace('10m','60m')), os.path.join(filepath, 'S2', '60m', filenames[pair[index]].replace('10m','60m')),
os.path.join(filepath, 'S2', 'meta', filenames[pair[index]].replace('_10m','').replace('.tif','.txt'))]) os.path.join(filepath, 'S2', 'meta', filenames[pair[index]].replace('_10m','').replace('.tif','.txt'))])
# read that image
im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn_im[index], sat, False) im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn_im[index], sat, False)
# im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
# in Sentinel2 images close to the edge of the image there are some artefacts, # in Sentinel2 images close to the edge of the image there are some artefacts,
# that are squares with constant pixel intensities. They need to be masked in the # that are squares with constant pixel intensities. They need to be masked in the
# raster (GEOTIFF). It can be done using the image standard deviation, which # raster (GEOTIFF). It can be done using the image standard deviation, which
# indicates values close to 0 for the artefacts. # indicates values close to 0 for the artefacts.
# First mask the 10m bands
if len(im_ms) > 0: if len(im_ms) > 0:
# calculate image std for the first 10m band
im_std = SDS_tools.image_std(im_ms[:,:,0],1) im_std = SDS_tools.image_std(im_ms[:,:,0],1)
# convert to binary
im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std)) im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
mask = morphology.dilation(im_binary, morphology.square(3)) # dilate to fill the edges (which have high std)
mask10 = morphology.dilation(im_binary, morphology.square(3))
# mask all 10m bands
for k in range(im_ms.shape[2]): for k in range(im_ms.shape[2]):
im_ms[mask,k] = np.nan im_ms[mask10,k] = np.nan
# mask the 10m .tif file (add no_data where mask is True)
SDS_tools.mask_raster(fn_im[index][0], mask) SDS_tools.mask_raster(fn_im[index][0], mask10)
# Then mask the 20m band # create another mask for the 20m band (SWIR1)
im_std = SDS_tools.image_std(im_extra,1) im_std = SDS_tools.image_std(im_extra,1)
im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std)) im_binary = np.logical_or(im_std < 1e-6, np.isnan(im_std))
mask = morphology.dilation(im_binary, morphology.square(3)) mask20 = morphology.dilation(im_binary, morphology.square(3))
im_extra[mask] = np.nan im_extra[mask20] = np.nan
# mask the 20m .tif file (im_extra)
SDS_tools.mask_raster(fn_im[index][1], mask20)
# use the 20m mask to create a mask for the 60m QA band (by resampling)
mask60 = ndimage.zoom(mask20,zoom=1/3,order=0)
mask60 = transform.resize(mask60, im_QA.shape, mode='constant', order=0,
preserve_range=True)
mask60 = mask60.astype(bool)
# mask the 60m .tif file (im_QA)
SDS_tools.mask_raster(fn_im[index][2], mask60)
SDS_tools.mask_raster(fn_im[index][1], mask)
else: else:
continue continue
# make a figure for quality control # make a figure for quality control
# plt.figure() # fig,ax= plt.subplots(2,2,tight_layout=True)
# plt.subplot(221) # ax[0,0].imshow(im_RGB)
# plt.imshow(im_ms[:,:,[2,1,0]]) # ax[0,0].set_title('RGB original')
# plt.title('imRGB') # ax[1,0].imshow(mask10)
# plt.subplot(222) # ax[1,0].set_title('Mask 10m')
# plt.imshow(im20, cmap='gray') # ax[0,1].imshow(mask20)
# plt.title('im20') # ax[0,1].set_title('Mask 20m')
# plt.subplot(223) # ax[1,1].imshow(mask60)
# plt.imshow(imQA, cmap='gray') # ax[1,1].set_title('Mask 60 m')
# plt.title('imQA')
# plt.subplot(224) # once all the pairs of .tif files have been masked with no_data, merge the using gdal_merge
# plt.title(fn_im[index][0][-30:]) fn_merged = os.path.join(filepath, 'merged.tif')
# merge masked 10m bands # merge masked 10m bands and remove duplicate file
fn_merged = os.path.join(os.getcwd(), 'merged.tif')
gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][0], fn_im[1][0]]) gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][0], fn_im[1][0]])
os.chmod(fn_im[0][0], 0o777) os.chmod(fn_im[0][0], 0o777)
os.remove(fn_im[0][0]) os.remove(fn_im[0][0])
os.chmod(fn_im[1][0], 0o777) os.chmod(fn_im[1][0], 0o777)
os.remove(fn_im[1][0]) os.remove(fn_im[1][0])
os.chmod(fn_merged, 0o777)
os.rename(fn_merged, fn_im[0][0]) os.rename(fn_merged, fn_im[0][0])
# merge masked 20m band (SWIR band) # merge masked 20m band (SWIR band)
fn_merged = os.path.join(os.getcwd(), 'merged.tif')
gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][1], fn_im[1][1]]) gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][1], fn_im[1][1]])
os.chmod(fn_im[0][1], 0o777) os.chmod(fn_im[0][1], 0o777)
os.remove(fn_im[0][1]) os.remove(fn_im[0][1])
os.chmod(fn_im[1][1], 0o777) os.chmod(fn_im[1][1], 0o777)
os.remove(fn_im[1][1]) os.remove(fn_im[1][1])
os.chmod(fn_merged, 0o777)
os.rename(fn_merged, fn_im[0][1]) os.rename(fn_merged, fn_im[0][1])
# merge QA band (60m band) # merge QA band (60m band)
fn_merged = os.path.join(os.getcwd(), 'merged.tif') gdal_merge.main(['', '-o', fn_merged, '-n', '0', fn_im[0][2], fn_im[1][2]])
gdal_merge.main(['', '-o', fn_merged, '-n', 'nan', fn_im[0][2], fn_im[1][2]])
os.chmod(fn_im[0][2], 0o777) os.chmod(fn_im[0][2], 0o777)
os.remove(fn_im[0][2]) os.remove(fn_im[0][2])
os.chmod(fn_im[1][2], 0o777) os.chmod(fn_im[1][2], 0o777)
os.remove(fn_im[1][2]) os.remove(fn_im[1][2])
os.chmod(fn_merged, 0o777)
os.rename(fn_merged, fn_im[0][2]) os.rename(fn_merged, fn_im[0][2])
# remove the metadata .txt file of the duplicate image # remove the metadata .txt file of the duplicate image
@ -850,38 +882,38 @@ def merge_overlapping_images(metadata,inputs):
print('%d pairs of overlapping Sentinel-2 images were merged' % len(pairs)) print('%d pairs of overlapping Sentinel-2 images were merged' % len(pairs))
# update the metadata dict (delete all the duplicates) # update the metadata dict
metadata_updated = copy.deepcopy(metadata) metadata_updated = copy.deepcopy(metadata)
filenames_copy = metadata_updated[sat]['filenames'] idx_removed = []
index_list = [] idx_kept = []
for i in range(len(filenames_copy)): for pair in pairs: idx_removed.append(pair[1])
if filenames_copy[i].find('dup') == -1: for idx in np.arange(0,len(metadata[sat]['dates'])):
index_list.append(i) if not idx in idx_removed: idx_kept.append(idx)
for key in metadata_updated[sat].keys(): for key in metadata_updated[sat].keys():
metadata_updated[sat][key] = [metadata_updated[sat][key][_] for _ in index_list] metadata_updated[sat][key] = [metadata_updated[sat][key][_] for _ in idx_kept]
return metadata_updated return metadata_updated
def get_metadata(inputs): def get_metadata(inputs):
""" """
Gets the metadata from the downloaded .txt files in the \meta folders. Gets the metadata from the downloaded images by parsing .txt files located
in the \meta subfolder.
KV WRL 2018 KV WRL 2018
Arguments: Arguments:
----------- -----------
inputs: dict inputs: dict with the following fields
dictionnary that contains the following fields:
'sitename': str 'sitename': str
String containig the name of the site name of the site
'filepath_data': str 'filepath_data': str
Filepath to the directory where the images are downloaded filepath to the directory where the images are downloaded
Returns: Returns:
----------- -----------
metadata: dict metadata: dict
contains the information about the satellite images that were downloaded: filename, contains the information about the satellite images that were downloaded:
georeferencing accuracy and image coordinate reference system date, filename, georeferencing accuracy and image coordinate reference system
""" """
# directory containing the images # directory containing the images

@ -1,8 +1,9 @@
"""This module contains all the functions needed to preprocess the satellite images before the """
shoreline can be extracted. This includes creating a cloud mask and This module contains all the functions needed to preprocess the satellite images
before the shorelines can be extracted. This includes creating a cloud mask and
pansharpening/downsampling the multispectral bands. pansharpening/downsampling the multispectral bands.
Author: Kilian Vos, Water Research Laboratory, University of New South Wales Author: Kilian Vos, Water Research Laboratory, University of New South Wales
""" """
# load modules # load modules
@ -24,7 +25,7 @@ import pickle
import geopandas as gpd import geopandas as gpd
from shapely import geometry from shapely import geometry
# own modules # CoastSat modules
from coastsat import SDS_tools from coastsat import SDS_tools
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
@ -40,14 +41,16 @@ def create_cloud_mask(im_QA, satname, cloud_mask_issue):
im_QA: np.array im_QA: np.array
Image containing the QA band Image containing the QA band
satname: string satname: string
short name for the satellite (L5, L7, L8 or S2) short name for the satellite: ```'L5', 'L7', 'L8' or 'S2'```
cloud_mask_issue: boolean cloud_mask_issue: boolean
True if there is an issue with the cloud mask and sand pixels are being masked on the images True if there is an issue with the cloud mask and sand pixels are being
erroneously masked on the images
Returns: Returns:
----------- -----------
cloud_mask : np.array cloud_mask : np.array
A boolean array with True if a pixel is cloudy and False otherwise boolean array with True if a pixel is cloudy and False otherwise
""" """
# convert QA bits (the bits allocated to cloud cover vary depending on the satellite mission) # convert QA bits (the bits allocated to cloud cover vary depending on the satellite mission)
@ -76,8 +79,8 @@ def create_cloud_mask(im_QA, satname, cloud_mask_issue):
def hist_match(source, template): def hist_match(source, template):
""" """
Adjust the pixel values of a grayscale image such that its histogram matches that of a Adjust the pixel values of a grayscale image such that its histogram matches
target image. that of a target image.
Arguments: Arguments:
----------- -----------
@ -86,10 +89,12 @@ def hist_match(source, template):
array array
template: np.array template: np.array
Template image; can have different dimensions to source Template image; can have different dimensions to source
Returns: Returns:
----------- -----------
matched: np.array matched: np.array
The transformed output image The transformed output image
""" """
oldshape = source.shape oldshape = source.shape
@ -119,9 +124,10 @@ def hist_match(source, template):
def pansharpen(im_ms, im_pan, cloud_mask): def pansharpen(im_ms, im_pan, cloud_mask):
""" """
Pansharpens a multispectral image, using the panchromatic band and a cloud mask. Pansharpens a multispectral image, using the panchromatic band and a cloud mask.
A PCA is applied to the image, then the 1st PC is replaced with the panchromatic band. A PCA is applied to the image, then the 1st PC is replaced, after histogram
Note that it is essential to match the histrograms of the 1st PC and the panchromatic band matching with the panchromatic band. Note that it is essential to match the
before replacing and inverting the PCA. histrograms of the 1st PC and the panchromatic band before replacing and
inverting the PCA.
KV WRL 2018 KV WRL 2018
@ -138,6 +144,7 @@ def pansharpen(im_ms, im_pan, cloud_mask):
----------- -----------
im_ms_ps: np.ndarray im_ms_ps: np.ndarray
Pansharpened multispectral image (3D) Pansharpened multispectral image (3D)
""" """
# reshape image into vector and apply cloud mask # reshape image into vector and apply cloud mask
@ -182,7 +189,7 @@ def rescale_image_intensity(im, cloud_mask, prob_high):
Returns: Returns:
----------- -----------
im_adj: np.array im_adj: np.array
The rescaled image rescaled image
""" """
# lower percentile is set to 0 # lower percentile is set to 0
@ -221,18 +228,19 @@ def rescale_image_intensity(im, cloud_mask, prob_high):
def preprocess_single(fn, satname, cloud_mask_issue): def preprocess_single(fn, satname, cloud_mask_issue):
""" """
Reads the image and outputs the pansharpened/down-sampled multispectral bands, the Reads the image and outputs the pansharpened/down-sampled multispectral bands,
georeferencing vector of the image (coordinates of the upper left pixel), the cloud mask and the georeferencing vector of the image (coordinates of the upper left pixel),
the QA band. For Landsat 7-8 it also outputs the panchromatic band and for Sentinel-2 it also the cloud mask, the QA band and a no_data image.
outputs the 20m SWIR band. For Landsat 7-8 it also outputs the panchromatic band and for Sentinel-2 it
also outputs the 20m SWIR band.
KV WRL 2018 KV WRL 2018
Arguments: Arguments:
----------- -----------
fn: str or list of str fn: str or list of str
filename of the .TIF file containing the image filename of the .TIF file containing the image. For L7, L8 and S2 this
for L7, L8 and S2 this is a list of filenames, one filename for each band at different is a list of filenames, one filename for each band at different
resolution (30m and 15m for Landsat 7-8, 10m, 20m, 60m for Sentinel-2) resolution (30m and 15m for Landsat 7-8, 10m, 20m, 60m for Sentinel-2)
satname: str satname: str
name of the satellite mission (e.g., 'L5') name of the satellite mission (e.g., 'L5')
@ -510,7 +518,8 @@ def preprocess_single(fn, satname, cloud_mask_issue):
def create_jpg(im_ms, cloud_mask, date, satname, filepath): def create_jpg(im_ms, cloud_mask, date, satname, filepath):
""" """
Saves a .jpg file with the RGB image as well as the NIR and SWIR1 grayscale images. Saves a .jpg file with the RGB image as well as the NIR and SWIR1 grayscale images.
This functions can be modified to obtain different visualisations of the multispectral images. This functions can be modified to obtain different visualisations of the
multispectral images.
KV WRL 2018 KV WRL 2018
@ -521,7 +530,7 @@ def create_jpg(im_ms, cloud_mask, date, satname, filepath):
cloud_mask: np.array cloud_mask: np.array
2D cloud mask with True where cloud pixels are 2D cloud mask with True where cloud pixels are
date: str date: str
String containing the date at which the image was acquired string containing the date at which the image was acquired
satname: str satname: str
name of the satellite mission (e.g., 'L5') name of the satellite mission (e.g., 'L5')
@ -573,7 +582,7 @@ def create_jpg(im_ms, cloud_mask, date, satname, filepath):
plt.close() plt.close()
def save_jpg(metadata, settings): def save_jpg(metadata, settings, **kwargs):
""" """
Saves a .jpg image for all the images contained in metadata. Saves a .jpg image for all the images contained in metadata.
@ -583,17 +592,19 @@ def save_jpg(metadata, settings):
----------- -----------
metadata: dict metadata: dict
contains all the information about the satellite images that were downloaded contains all the information about the satellite images that were downloaded
settings: dict settings: dict with the following keys
contains the following fields: 'inputs': dict
cloud_thresh: float input parameters (sitename, filepath, polygon, dates, sat_list)
value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted 'cloud_thresh': float
sitename: string value between 0 and 1 indicating the maximum cloud fraction in
name of the site (also name of the folder where the images are stored) the cropped image that is accepted
cloud_mask_issue: boolean 'cloud_mask_issue': boolean
True if there is an issue with the cloud mask and sand pixels are being masked on the images True if there is an issue with the cloud mask and sand pixels
are erroneously being masked on the images
Returns: Returns:
----------- -----------
Stores the images as .jpg in a folder named /preprocessed
""" """
@ -626,6 +637,7 @@ def save_jpg(metadata, settings):
continue continue
# save .jpg with date and satellite in the title # save .jpg with date and satellite in the title
date = filenames[i][:19] date = filenames[i][:19]
plt.ioff() # turning interactive plotting off
create_jpg(im_ms, cloud_mask, date, satname, filepath_jpg) create_jpg(im_ms, cloud_mask, date, satname, filepath_jpg)
# print the location where the images have been saved # print the location where the images have been saved
@ -634,9 +646,9 @@ def save_jpg(metadata, settings):
def get_reference_sl(metadata, settings): def get_reference_sl(metadata, settings):
""" """
Allows the user to manually digitize a reference shoreline that is used seed the shoreline Allows the user to manually digitize a reference shoreline that is used seed
detection algorithm. The reference shoreline helps to detect the outliers, making the shoreline the shoreline detection algorithm. The reference shoreline helps to detect
detection more robust. the outliers, making the shoreline detection more robust.
KV WRL 2018 KV WRL 2018
@ -644,34 +656,40 @@ def get_reference_sl(metadata, settings):
----------- -----------
metadata: dict metadata: dict
contains all the information about the satellite images that were downloaded contains all the information about the satellite images that were downloaded
settings: dict settings: dict with the following keys
contains the following fields: 'inputs': dict
input parameters (sitename, filepath, polygon, dates, sat_list)
'cloud_thresh': float 'cloud_thresh': float
value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted value between 0 and 1 indicating the maximum cloud fraction in
'sitename': string the cropped image that is accepted
name of the site (also name of the folder where the images are stored) 'cloud_mask_issue': boolean
True if there is an issue with the cloud mask and sand pixels
are erroneously being masked on the images
'output_epsg': int 'output_epsg': int
epsg code of the desired spatial reference system output spatial reference system as EPSG code
Returns: Returns:
----------- -----------
reference_shoreline: np.array reference_shoreline: np.array
coordinates of the reference shoreline that was manually digitized coordinates of the reference shoreline that was manually digitized.
This is also saved as a .pkl and .geojson file.
""" """
sitename = settings['inputs']['sitename'] sitename = settings['inputs']['sitename']
filepath_data = settings['inputs']['filepath'] filepath_data = settings['inputs']['filepath']
pts_coords = []
# check if reference shoreline already exists in the corresponding folder # check if reference shoreline already exists in the corresponding folder
filepath = os.path.join(filepath_data, sitename) filepath = os.path.join(filepath_data, sitename)
filename = sitename + '_reference_shoreline.pkl' filename = sitename + '_reference_shoreline.pkl'
# if it exist, load it and return it
if filename in os.listdir(filepath): if filename in os.listdir(filepath):
print('Reference shoreline already exists and was loaded') print('Reference shoreline already exists and was loaded')
with open(os.path.join(filepath, sitename + '_reference_shoreline.pkl'), 'rb') as f: with open(os.path.join(filepath, sitename + '_reference_shoreline.pkl'), 'rb') as f:
refsl = pickle.load(f) refsl = pickle.load(f)
return refsl return refsl
# otherwise get the user to manually digitise a shoreline on S2, L8 or L5 images (no L7 because of scan line error)
else: else:
# first try to use S2 images (10m res for manually digitizing the reference shoreline) # first try to use S2 images (10m res for manually digitizing the reference shoreline)
if 'S2' in metadata.keys(): if 'S2' in metadata.keys():
@ -690,8 +708,12 @@ def get_reference_sl(metadata, settings):
filepath = SDS_tools.get_filepath(settings['inputs'],satname) filepath = SDS_tools.get_filepath(settings['inputs'],satname)
filenames = metadata[satname]['filenames'] filenames = metadata[satname]['filenames']
else: else:
raise Exception('You cannot digitize the shoreline on L7 images, add another L8, S2 or L5 to your dataset.') raise Exception('You cannot digitize the shoreline on L7 images (because of gaps in the images), add another L8, S2 or L5 to your dataset.')
# create figure
fig, ax = plt.subplots(1,1, figsize=[18,9], tight_layout=True)
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
# loop trhough the images # loop trhough the images
for i in range(len(filenames)): for i in range(len(filenames)):
@ -711,37 +733,55 @@ def get_reference_sl(metadata, settings):
im_RGB = rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9) im_RGB = rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
# plot the image RGB on a figure # plot the image RGB on a figure
fig = plt.figure() ax.axis('off')
fig.set_size_inches([18,9]) ax.imshow(im_RGB)
fig.set_tight_layout(True)
plt.axis('off')
plt.imshow(im_RGB)
# decide if the image if good enough for digitizing the shoreline # decide if the image if good enough for digitizing the shoreline
plt.title('click <keep> if image is clear enough to digitize the shoreline.\n' + ax.set_title('Press <right arrow> if image is clear enough to digitize the shoreline.\n' +
'If not (too cloudy) click on <skip> to get another image', fontsize=14) 'If the image is cloudy press <left arrow> to get another image', fontsize=14)
keep_button = plt.text(0, 0.9, 'keep', size=16, ha="left", va="top", # set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071)
transform=plt.gca().transAxes, # this variable needs to be immuatable so we can access it after the keypress event
skip_image = False
key_event = {}
def press(event):
# store what key was pressed in the dictionary
key_event['pressed'] = event.key
# let the user press a key, right arrow to keep the image, left arrow to skip it
# to break the loop the user can press 'escape'
while True:
btn_keep = plt.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top",
transform=ax.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w')) bbox=dict(boxstyle="square", ec='k',fc='w'))
skip_button = plt.text(1, 0.9, 'skip', size=16, ha="right", va="top", btn_skip = plt.text(-0.1, 0.9, 'skip', size=12, ha="left", va="top",
transform=plt.gca().transAxes, transform=ax.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w')) bbox=dict(boxstyle="square", ec='k',fc='w'))
mng = plt.get_current_fig_manager() btn_esc = plt.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top",
mng.window.showMaximized() transform=ax.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
# let user click on the image once plt.draw()
pt_input = ginput(n=1, timeout=1e9, show_clicks=False) fig.canvas.mpl_connect('key_press_event', press)
pt_input = np.array(pt_input) plt.waitforbuttonpress()
# after button is pressed, remove the buttons
# if clicks next to <skip>, show another image btn_skip.remove()
if pt_input[0][0] > im_ms.shape[1]/2: btn_keep.remove()
btn_esc.remove()
# keep/skip image according to the pressed key, 'escape' to break the loop
if key_event.get('pressed') == 'right':
skip_image = False
break
elif key_event.get('pressed') == 'left':
skip_image = True
break
elif key_event.get('pressed') == 'escape':
plt.close() plt.close()
continue raise StopIteration('User cancelled checking shoreline detection')
else:
plt.waitforbuttonpress()
if skip_image:
ax.clear()
continue
else: else:
# remove keep and skip buttons
keep_button.set_visible(False)
skip_button.set_visible(False)
# create two new buttons # create two new buttons
add_button = plt.text(0, 0.9, 'add', size=16, ha="left", va="top", add_button = plt.text(0, 0.9, 'add', size=16, ha="left", va="top",
transform=plt.gca().transAxes, transform=plt.gca().transAxes,
@ -749,7 +789,6 @@ def get_reference_sl(metadata, settings):
end_button = plt.text(1, 0.9, 'end', size=16, ha="right", va="top", end_button = plt.text(1, 0.9, 'end', size=16, ha="right", va="top",
transform=plt.gca().transAxes, transform=plt.gca().transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w')) bbox=dict(boxstyle="square", ec='k',fc='w'))
# add multiple reference shorelines (until user clicks on <end> button) # add multiple reference shorelines (until user clicks on <end> button)
pts_sl = np.expand_dims(np.array([np.nan, np.nan]),axis=0) pts_sl = np.expand_dims(np.array([np.nan, np.nan]),axis=0)
geoms = [] geoms = []
@ -757,7 +796,7 @@ def get_reference_sl(metadata, settings):
add_button.set_visible(False) add_button.set_visible(False)
end_button.set_visible(False) end_button.set_visible(False)
# update title (instructions) # update title (instructions)
plt.title('Click points along the shoreline (enough points to capture the beach curvature).\n' + ax.set_title('Click points along the shoreline (enough points to capture the beach curvature).\n' +
'Start at one end of the beach.\n' + 'When finished digitizing, click <ENTER>', 'Start at one end of the beach.\n' + 'When finished digitizing, click <ENTER>',
fontsize=14) fontsize=14)
plt.draw() plt.draw()
@ -791,14 +830,14 @@ def get_reference_sl(metadata, settings):
# convert to pixel coordinates and plot # convert to pixel coordinates and plot
pts_pix_interp = SDS_tools.convert_world2pix(pts_world_interp, georef) pts_pix_interp = SDS_tools.convert_world2pix(pts_world_interp, georef)
pts_sl = np.append(pts_sl, pts_world_interp, axis=0) pts_sl = np.append(pts_sl, pts_world_interp, axis=0)
plt.plot(pts_pix_interp[:,0], pts_pix_interp[:,1], 'r--') ax.plot(pts_pix_interp[:,0], pts_pix_interp[:,1], 'r--')
plt.plot(pts_pix_interp[0,0], pts_pix_interp[0,1],'ko') ax.plot(pts_pix_interp[0,0], pts_pix_interp[0,1],'ko')
plt.plot(pts_pix_interp[-1,0], pts_pix_interp[-1,1],'ko') ax.plot(pts_pix_interp[-1,0], pts_pix_interp[-1,1],'ko')
# update title and buttons # update title and buttons
add_button.set_visible(True) add_button.set_visible(True)
end_button.set_visible(True) end_button.set_visible(True)
plt.title('click <add> to digitize another shoreline or <end> to finish and save the shoreline(s)', ax.set_title('click on <add> to digitize another shoreline or on <end> to finish and save the shoreline(s)',
fontsize=14) fontsize=14)
plt.draw() plt.draw()
@ -846,4 +885,9 @@ def get_reference_sl(metadata, settings):
print('Reference shoreline has been saved in ' + filepath) print('Reference shoreline has been saved in ' + filepath)
break break
# check if a shoreline was digitised
if len(pts_coords) == 0:
raise Exception('No cloud free images are available to digitise the reference shoreline,'+
'download more images and try again')
return pts_coords return pts_coords

@ -1,6 +1,8 @@
"""This module contains all the functions needed for extracting satellite-derived shorelines (SDS) """
This module contains all the functions needed for extracting satellite-derived
shorelines (SDS)
Author: Kilian Vos, Water Research Laboratory, University of New South Wales Author: Kilian Vos, Water Research Laboratory, University of New South Wales
""" """
# load modules # load modules
@ -26,7 +28,7 @@ from matplotlib import gridspec
from pylab import ginput from pylab import ginput
import pickle import pickle
# own modules # CoastSat modules
from coastsat import SDS_tools, SDS_preprocess from coastsat import SDS_tools, SDS_preprocess
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
@ -37,8 +39,9 @@ np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
def calculate_features(im_ms, cloud_mask, im_bool): def calculate_features(im_ms, cloud_mask, im_bool):
""" """
Calculates a range of features on the image that are used for the supervised classification. Calculates features on the image that are used for the supervised classification.
The features include spectral normalized-difference indices and standard deviation of the image. The features include spectral normalized-difference indices and standard
deviation of the image for all the bands and indices.
KV WRL 2018 KV WRL 2018
@ -51,10 +54,12 @@ def calculate_features(im_ms, cloud_mask, im_bool):
im_bool: np.array im_bool: np.array
2D array of boolean indicating where on the image to calculate the features 2D array of boolean indicating where on the image to calculate the features
Returns: ----------- Returns:
-----------
features: np.array features: np.array
matrix containing each feature (columns) calculated for all matrix containing each feature (columns) calculated for all
the pixels (rows) indicated in im_bool the pixels (rows) indicated in im_bool
""" """
# add all the multispectral bands # add all the multispectral bands
@ -103,7 +108,7 @@ def classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area, clf):
- water --> label = 3 - water --> label = 3
- other (vegetation, buildings, rocks...) --> label = 0 - other (vegetation, buildings, rocks...) --> label = 0
The classifier is a Neural Network previously trained. The classifier is a Neural Network that is already trained.
KV WRL 2018 KV WRL 2018
@ -117,9 +122,11 @@ def classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area, clf):
2D cloud mask with True where cloud pixels are 2D cloud mask with True where cloud pixels are
min_beach_area: int min_beach_area: int
minimum number of pixels that have to be connected to belong to the SAND class minimum number of pixels that have to be connected to belong to the SAND class
clf: classifier clf: joblib object
pre-trained classifier
Returns: ----------- Returns:
-----------
im_classif: np.array im_classif: np.array
2D image containing labels 2D image containing labels
im_labels: np.array of booleans im_labels: np.array of booleans
@ -163,9 +170,10 @@ def classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area, clf):
def find_wl_contours1(im_ndwi, cloud_mask, im_ref_buffer): def find_wl_contours1(im_ndwi, cloud_mask, im_ref_buffer):
""" """
Traditional method for shorelien detection. Traditional method for shoreline detection using a global threshold.
Finds the water line by thresholding the Normalized Difference Water Index and applying Finds the water line by thresholding the Normalized Difference Water Index
the Marching Squares Algorithm to contour the iso-value corresponding to the threshold. and applying the Marching Squares Algorithm to contour the iso-value
corresponding to the threshold.
KV WRL 2018 KV WRL 2018
@ -178,9 +186,10 @@ def find_wl_contours1(im_ndwi, cloud_mask, im_ref_buffer):
im_ref_buffer: np.array im_ref_buffer: np.array
Binary image containing a buffer around the reference shoreline Binary image containing a buffer around the reference shoreline
Returns: ----------- Returns:
-----------
contours_wl: list of np.arrays contours_wl: list of np.arrays
contains the (row,column) coordinates of the contour lines contains the coordinates of the contour lines
""" """
@ -212,8 +221,8 @@ def find_wl_contours1(im_ndwi, cloud_mask, im_ref_buffer):
def find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, im_ref_buffer): def find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, im_ref_buffer):
""" """
New robust method for extracting shorelines. Incorporates the classification component to New robust method for extracting shorelines. Incorporates the classification
refine the treshold and make it specific to the sand/water interface. component to refine the treshold and make it specific to the sand/water interface.
KV WRL 2018 KV WRL 2018
@ -229,14 +238,15 @@ def find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, im_ref_buffer):
size of the buffer around the sandy beach over which the pixels are considered in the size of the buffer around the sandy beach over which the pixels are considered in the
thresholding algorithm. thresholding algorithm.
im_ref_buffer: np.array im_ref_buffer: np.array
Binary image containing a buffer around the reference shoreline binary image containing a buffer around the reference shoreline
Returns: ----------- Returns:
-----------
contours_wi: list of np.arrays contours_wi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted from the contains the coordinates of the contour lines extracted from the
NDWI (Normalized Difference Water Index) image NDWI (Normalized Difference Water Index) image
contours_mwi: list of np.arrays contours_mwi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted from the contains the coordinates of the contour lines extracted from the
MNDWI (Modified Normalized Difference Water Index) image MNDWI (Modified Normalized Difference Water Index) image
""" """
@ -318,8 +328,8 @@ def find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, im_ref_buffer):
def create_shoreline_buffer(im_shape, georef, image_epsg, pixel_size, settings): def create_shoreline_buffer(im_shape, georef, image_epsg, pixel_size, settings):
""" """
Creates a buffer around the reference shoreline. The size of the buffer is given by Creates a buffer around the reference shoreline. The size of the buffer is
settings['max_dist_ref']. given by settings['max_dist_ref'].
KV WRL 2018 KV WRL 2018
@ -333,16 +343,16 @@ def create_shoreline_buffer(im_shape, georef, image_epsg, pixel_size, settings):
spatial reference system of the image from which the contours were extracted spatial reference system of the image from which the contours were extracted
pixel_size: int pixel_size: int
size of the pixel in metres (15 for Landsat, 10 for Sentinel-2) size of the pixel in metres (15 for Landsat, 10 for Sentinel-2)
settings: dict settings: dict with the following keys
contains the following fields: 'output_epsg': int
output_epsg: int
output spatial reference system output spatial reference system
reference_shoreline: np.array 'reference_shoreline': np.array
coordinates of the reference shoreline coordinates of the reference shoreline
max_dist_ref: int 'max_dist_ref': int
maximum distance from the reference shoreline in metres maximum distance from the reference shoreline in metres
Returns: ----------- Returns:
-----------
im_buffer: np.array im_buffer: np.array
binary image, True where the buffer is, False otherwise binary image, True where the buffer is, False otherwise
@ -358,6 +368,12 @@ def create_shoreline_buffer(im_shape, georef, image_epsg, pixel_size, settings):
ref_sl_pix = SDS_tools.convert_world2pix(ref_sl_conv, georef) ref_sl_pix = SDS_tools.convert_world2pix(ref_sl_conv, georef)
ref_sl_pix_rounded = np.round(ref_sl_pix).astype(int) ref_sl_pix_rounded = np.round(ref_sl_pix).astype(int)
# make sure that the pixel coordinates of the reference shoreline are inside the image
idx_row = np.logical_and(ref_sl_pix_rounded[:,0] > 0, ref_sl_pix_rounded[:,0] < im_shape[1])
idx_col = np.logical_and(ref_sl_pix_rounded[:,1] > 0, ref_sl_pix_rounded[:,1] < im_shape[0])
idx_inside = np.logical_and(idx_row, idx_col)
ref_sl_pix_rounded = ref_sl_pix_rounded[idx_inside,:]
# create binary image of the reference shoreline (1 where the shoreline is 0 otherwise) # create binary image of the reference shoreline (1 where the shoreline is 0 otherwise)
im_binary = np.zeros(im_shape) im_binary = np.zeros(im_shape)
for j in range(len(ref_sl_pix_rounded)): for j in range(len(ref_sl_pix_rounded)):
@ -373,9 +389,9 @@ def create_shoreline_buffer(im_shape, georef, image_epsg, pixel_size, settings):
def process_shoreline(contours, cloud_mask, georef, image_epsg, settings): def process_shoreline(contours, cloud_mask, georef, image_epsg, settings):
""" """
Converts the contours from image coordinates to world coordinates. This function also removes Converts the contours from image coordinates to world coordinates.
the contours that are too small to be a shoreline (based on the parameter This function also removes the contours that are too small to be a shoreline
settings['min_length_sl']) (based on the parameter settings['min_length_sl'])
KV WRL 2018 KV WRL 2018
@ -389,12 +405,11 @@ def process_shoreline(contours, cloud_mask, georef, image_epsg, settings):
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
image_epsg: int image_epsg: int
spatial reference system of the image from which the contours were extracted spatial reference system of the image from which the contours were extracted
settings: dict settings: dict with the following keys
contains the following fields: 'output_epsg': int
output_epsg: int
output spatial reference system output spatial reference system
min_length_sl: float 'min_length_sl': float
minimum length of shoreline perimeter to be kept (in meters) minimum length of shoreline contour to be kept (in meters)
Returns: Returns:
----------- -----------
@ -445,8 +460,9 @@ def process_shoreline(contours, cloud_mask, georef, image_epsg, settings):
def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef, def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef,
settings, date, satname): settings, date, satname):
""" """
Shows the detected shoreline to the user for visual quality control. The user can select "keep" Shows the detected shoreline to the user for visual quality control.
if the shoreline detection is correct or "skip" if it is incorrect. The user can accept/reject the detected shorelines by using keep/skip
buttons.
KV WRL 2018 KV WRL 2018
@ -464,17 +480,24 @@ def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef,
spatial reference system of the image from which the contours were extracted spatial reference system of the image from which the contours were extracted
georef: np.array georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
settings: dict
contains the following fields:
date: string date: string
date at which the image was taken date at which the image was taken
satname: string satname: string
indicates the satname (L5,L7,L8 or S2) indicates the satname (L5,L7,L8 or S2)
settings: dict with the following keys
'inputs': dict
input parameters (sitename, filepath, polygon, dates, sat_list)
'output_epsg': int
output spatial reference system as EPSG code
'check_detection': bool
if True, lets user manually accept/reject the mapped shorelines
'save_figure': bool
if True, saves a -jpg file for each mapped shoreline
Returns: Returns:
----------- -----------
skip_image: boolean skip_image: boolean
True if the user wants to skip the image, False otherwise. True if the user wants to skip the image, False otherwise
""" """
@ -520,26 +543,26 @@ def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef,
else: else:
# else create a new figure # else create a new figure
fig = plt.figure() fig = plt.figure()
fig.set_size_inches([12.53, 9.3]) fig.set_size_inches([18, 9])
mng = plt.get_current_fig_manager() mng = plt.get_current_fig_manager()
mng.window.showMaximized() mng.window.showMaximized()
# according to the image shape, decide whether it is better to have the images # according to the image shape, decide whether it is better to have the images
# in vertical subplots or horizontal subplots # in vertical subplots or horizontal subplots
if im_RGB.shape[1] > 2*im_RGB.shape[0]: if im_RGB.shape[1] > 1.5*im_RGB.shape[0]:
# vertical subplots # vertical subplots
gs = gridspec.GridSpec(3, 1) gs = gridspec.GridSpec(3, 1)
gs.update(bottom=0.03, top=0.97, left=0.03, right=0.97) gs.update(bottom=0.03, top=0.97, left=0.03, right=0.97)
ax1 = fig.add_subplot(gs[0,0]) ax1 = fig.add_subplot(gs[0,0])
ax2 = fig.add_subplot(gs[1,0]) ax2 = fig.add_subplot(gs[1,0], sharex=ax1, sharey=ax1)
ax3 = fig.add_subplot(gs[2,0]) ax3 = fig.add_subplot(gs[2,0], sharex=ax1, sharey=ax1)
else: else:
# horizontal subplots # horizontal subplots
gs = gridspec.GridSpec(1, 3) gs = gridspec.GridSpec(1, 3)
gs.update(bottom=0.05, top=0.95, left=0.05, right=0.95) gs.update(bottom=0.05, top=0.95, left=0.05, right=0.95)
ax1 = fig.add_subplot(gs[0,0]) ax1 = fig.add_subplot(gs[0,0])
ax2 = fig.add_subplot(gs[0,1]) ax2 = fig.add_subplot(gs[0,1], sharex=ax1, sharey=ax1)
ax3 = fig.add_subplot(gs[0,2]) ax3 = fig.add_subplot(gs[0,2], sharex=ax1, sharey=ax1)
# change the color of nans to either black (0.0) or white (1.0) or somewhere in between # change the color of nans to either black (0.0) or white (1.0) or somewhere in between
nan_color = 1.0 nan_color = 1.0
@ -634,7 +657,7 @@ def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef,
def extract_shorelines(metadata, settings): def extract_shorelines(metadata, settings):
""" """
Extracts shorelines from satellite images. Main function to extract shorelines from satellite images
KV WRL 2018 KV WRL 2018
@ -642,34 +665,42 @@ def extract_shorelines(metadata, settings):
----------- -----------
metadata: dict metadata: dict
contains all the information about the satellite images that were downloaded contains all the information about the satellite images that were downloaded
settings: dict with the following keys
settings: dict 'inputs': dict
contains the following fields: input parameters (sitename, filepath, polygon, dates, sat_list)
sitename: str 'cloud_thresh': float
String containig the name of the site value between 0 and 1 indicating the maximum cloud fraction in
cloud_mask_issue: boolean the cropped image that is accepted
True if there is an issue with the cloud mask and sand pixels are being masked on the images 'cloud_mask_issue': boolean
buffer_size: int True if there is an issue with the cloud mask and sand pixels
size of the buffer (m) around the sandy beach over which the pixels are considered in the are erroneously being masked on the images
thresholding algorithm 'buffer_size': int
min_beach_area: int size of the buffer (m) around the sandy pixels over which the pixels
minimum allowable object area (in metres^2) for the class 'sand' are considered in the thresholding algorithm
cloud_thresh: float 'min_beach_area': int
value between 0 and 1 defining the maximum percentage of cloud cover allowed in the images minimum allowable object area (in metres^2) for the class 'sand',
output_epsg: int the area is converted to number of connected pixels
'min_length_sl': int
minimum length (in metres) of shoreline contour to be valid
'sand_color': str
default', 'dark' (for grey/black sand beaches) or 'bright' (for white sand beaches)
'output_epsg': int
output spatial reference system as EPSG code output spatial reference system as EPSG code
check_detection: boolean 'check_detection': bool
True to show each invidual detection and let the user validate the mapped shoreline if True, lets user manually accept/reject the mapped shorelines
'save_figure': bool
if True, saves a -jpg file for each mapped shoreline
Returns: Returns:
----------- -----------
output: dict output: dict
contains the extracted shorelines and corresponding dates. contains the extracted shorelines and corresponding dates + metadata
""" """
sitename = settings['inputs']['sitename'] sitename = settings['inputs']['sitename']
filepath_data = settings['inputs']['filepath'] filepath_data = settings['inputs']['filepath']
filepath_models = os.path.join(os.getcwd(), 'classification', 'models')
# initialise output structure # initialise output structure
output = dict([]) output = dict([])
# create a subfolder to store the .jpg images showing the detection # create a subfolder to store the .jpg images showing the detection
@ -700,15 +731,15 @@ def extract_shorelines(metadata, settings):
if satname in ['L5','L7','L8']: if satname in ['L5','L7','L8']:
pixel_size = 15 pixel_size = 15
if settings['sand_color'] == 'dark': if settings['sand_color'] == 'dark':
clf = joblib.load(os.path.join(os.getcwd(), 'classifiers', 'NN_4classes_Landsat_dark.pkl')) clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_dark.pkl'))
elif settings['sand_color'] == 'bright': elif settings['sand_color'] == 'bright':
clf = joblib.load(os.path.join(os.getcwd(), 'classifiers', 'NN_4classes_Landsat_bright.pkl')) clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_bright.pkl'))
else: else:
clf = joblib.load(os.path.join(os.getcwd(), 'classifiers', 'NN_4classes_Landsat.pkl')) clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat.pkl'))
elif satname == 'S2': elif satname == 'S2':
pixel_size = 10 pixel_size = 10
clf = joblib.load(os.path.join(os.getcwd(), 'classifiers', 'NN_4classes_S2.pkl')) clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_S2.pkl'))
# convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size) buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size)
@ -743,11 +774,6 @@ def extract_shorelines(metadata, settings):
im_ref_buffer = create_shoreline_buffer(cloud_mask.shape, georef, image_epsg, im_ref_buffer = create_shoreline_buffer(cloud_mask.shape, georef, image_epsg,
pixel_size, settings) pixel_size, settings)
# when running the automated mode, skip image if cloudy pixels are found in the shoreline buffer
if not settings['check_detection'] and 'reference_shoreline' in settings.keys():
if sum(sum(np.logical_and(im_ref_buffer, cloud_mask_adv))) > 0:
continue
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier # classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = classify_image_NN(im_ms, im_extra, cloud_mask, im_classif, im_labels = classify_image_NN(im_ms, im_extra, cloud_mask,
min_beach_area_pixels, clf) min_beach_area_pixels, clf)
@ -756,7 +782,7 @@ def extract_shorelines(metadata, settings):
# if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced) # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced)
# otherwise use find_wl_contours2 (traditional) # otherwise use find_wl_contours2 (traditional)
try: # use try/except structure for long runs try: # use try/except structure for long runs
if sum(sum(im_labels[:,:,0])) == 0 : if sum(sum(im_labels[:,:,0])) < 10 :
# compute MNDWI image (SWIR-G) # compute MNDWI image (SWIR-G)
im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# find water contours on MNDWI grayscale image # find water contours on MNDWI grayscale image
@ -777,6 +803,8 @@ def extract_shorelines(metadata, settings):
# if settings['save_figure'] = True, saves a figure for each mapped shoreline # if settings['save_figure'] = True, saves a figure for each mapped shoreline
if settings['check_detection'] or settings['save_figure']: if settings['check_detection'] or settings['save_figure']:
date = filenames[i][:19] date = filenames[i][:19]
if not settings['check_detection']:
plt.ioff() # turning interactive plotting off
skip_image = show_detection(im_ms, cloud_mask, im_labels, shoreline, skip_image = show_detection(im_ms, cloud_mask, im_labels, shoreline,
image_epsg, georef, settings, date, satname) image_epsg, georef, settings, date, satname)
# if the user decides to skip the image, continue and do not save the mapped shoreline # if the user decides to skip the image, continue and do not save the mapped shoreline

@ -1,6 +1,7 @@
"""This module contains utilities to work with satellite images' """
This module contains utilities to work with satellite images
Author: Kilian Vos, Water Research Laboratory, University of New South Wales Author: Kilian Vos, Water Research Laboratory, University of New South Wales
""" """
# load modules # load modules
@ -14,7 +15,7 @@ from osgeo import gdal, osr
import geopandas as gpd import geopandas as gpd
from shapely import geometry from shapely import geometry
import skimage.transform as transform import skimage.transform as transform
from scipy.ndimage.filters import uniform_filter from astropy.convolution import convolve
################################################################################################### ###################################################################################################
# COORDINATES CONVERSION FUNCTIONS # COORDINATES CONVERSION FUNCTIONS
@ -22,19 +23,20 @@ from scipy.ndimage.filters import uniform_filter
def convert_pix2world(points, georef): def convert_pix2world(points, georef):
""" """
Converts pixel coordinates (row,columns) to world projected coordinates Converts pixel coordinates (pixel row and column) to world projected
performing an affine transformation. coordinates performing an affine transformation.
KV WRL 2018 KV WRL 2018
Arguments: Arguments:
----------- -----------
points: np.array or list of np.array points: np.array or list of np.array
array with 2 columns (rows first and columns second) array with 2 columns (row first and column second)
georef: np.array georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: ----------- Returns:
-----------
points_converted: np.array or list of np.array points_converted: np.array or list of np.array
converted coordinates, first columns with X and second column with Y converted coordinates, first columns with X and second column with Y
@ -47,6 +49,7 @@ def convert_pix2world(points, georef):
# create affine transformation # create affine transformation
tform = transform.AffineTransform(aff_mat) tform = transform.AffineTransform(aff_mat)
# if list of arrays
if type(points) is list: if type(points) is list:
points_converted = [] points_converted = []
# iterate over the list # iterate over the list
@ -54,6 +57,7 @@ def convert_pix2world(points, georef):
tmp = arr[:,[1,0]] tmp = arr[:,[1,0]]
points_converted.append(tform(tmp)) points_converted.append(tform(tmp))
# if single array
elif type(points) is np.ndarray: elif type(points) is np.ndarray:
tmp = points[:,[1,0]] tmp = points[:,[1,0]]
points_converted = tform(tmp) points_converted = tform(tmp)
@ -65,21 +69,22 @@ def convert_pix2world(points, georef):
def convert_world2pix(points, georef): def convert_world2pix(points, georef):
""" """
Converts world projected coordinates (X,Y) to image coordinates (row,column) Converts world projected coordinates (X,Y) to image coordinates
performing an affine transformation. (pixel row and column) performing an affine transformation.
KV WRL 2018 KV WRL 2018
Arguments: Arguments:
----------- -----------
points: np.array or list of np.array points: np.array or list of np.array
array with 2 columns (rows first and columns second) array with 2 columns (X,Y)
georef: np.array georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: ----------- Returns:
-----------
points_converted: np.array or list of np.array points_converted: np.array or list of np.array
converted coordinates, first columns with row and second column with column converted coordinates (pixel row and column)
""" """
@ -90,12 +95,14 @@ def convert_world2pix(points, georef):
# create affine transformation # create affine transformation
tform = transform.AffineTransform(aff_mat) tform = transform.AffineTransform(aff_mat)
# if list of arrays
if type(points) is list: if type(points) is list:
points_converted = [] points_converted = []
# iterate over the list # iterate over the list
for i, arr in enumerate(points): for i, arr in enumerate(points):
points_converted.append(tform.inverse(points)) points_converted.append(tform.inverse(points))
# if single array
elif type(points) is np.ndarray: elif type(points) is np.ndarray:
points_converted = tform.inverse(points) points_converted = tform.inverse(points)
@ -108,7 +115,7 @@ def convert_world2pix(points, georef):
def convert_epsg(points, epsg_in, epsg_out): def convert_epsg(points, epsg_in, epsg_out):
""" """
Converts from one spatial reference to another using the epsg codes. Converts from one spatial reference to another using the epsg codes
KV WRL 2018 KV WRL 2018
@ -121,9 +128,10 @@ def convert_epsg(points, epsg_in, epsg_out):
epsg_out: int epsg_out: int
epsg code of the spatial reference in which the output will be epsg code of the spatial reference in which the output will be
Returns: ----------- Returns:
-----------
points_converted: np.array or list of np.array points_converted: np.array or list of np.array
converted coordinates converted coordinates from epsg_in to epsg_out
""" """
@ -134,18 +142,18 @@ def convert_epsg(points, epsg_in, epsg_out):
outSpatialRef.ImportFromEPSG(epsg_out) outSpatialRef.ImportFromEPSG(epsg_out)
# create a coordinates transform # create a coordinates transform
coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef) coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
# transform points # if list of arrays
if type(points) is list: if type(points) is list:
points_converted = [] points_converted = []
# iterate over the list # iterate over the list
for i, arr in enumerate(points): for i, arr in enumerate(points):
points_converted.append(np.array(coordTransform.TransformPoints(arr))) points_converted.append(np.array(coordTransform.TransformPoints(arr)))
# if single array
elif type(points) is np.ndarray: elif type(points) is np.ndarray:
points_converted = np.array(coordTransform.TransformPoints(points)) points_converted = np.array(coordTransform.TransformPoints(points))
else: else:
raise Exception('invalid input type') raise Exception('invalid input type')
return points_converted return points_converted
################################################################################################### ###################################################################################################
@ -160,14 +168,18 @@ def nd_index(im1, im2, cloud_mask):
Arguments: Arguments:
----------- -----------
im1, im2: np.array im1: np.array
Images (2D) with which to calculate the ND index first image (2D) with which to calculate the ND index
im2: np.array
second image (2D) with which to calculate the ND index
cloud_mask: np.array cloud_mask: np.array
2D cloud mask with True where cloud pixels are 2D cloud mask with True where cloud pixels are
Returns: ----------- Returns:
-----------
im_nd: np.array im_nd: np.array
Image (2D) containing the ND index Image (2D) containing the ND index
""" """
# reshape the cloud mask # reshape the cloud mask
@ -188,15 +200,16 @@ def nd_index(im1, im2, cloud_mask):
def image_std(image, radius): def image_std(image, radius):
""" """
Calculates the standard deviation of an image, using a moving window of specified radius. Calculates the standard deviation of an image, using a moving window of
specified radius. Uses astropy's convolution library'
Arguments: Arguments:
----------- -----------
image: np.array image: np.array
2D array containing the pixel intensities of a single-band image 2D array containing the pixel intensities of a single-band image
radius: int radius: int
radius defining the moving window used to calculate the standard deviation. For example, radius defining the moving window used to calculate the standard deviation.
radius = 1 will produce a 3x3 moving window. For example, radius = 1 will produce a 3x3 moving window.
Returns: Returns:
----------- -----------
@ -211,9 +224,11 @@ def image_std(image, radius):
image_padded = np.pad(image, radius, 'reflect') image_padded = np.pad(image, radius, 'reflect')
# window size # window size
win_rows, win_cols = radius*2 + 1, radius*2 + 1 win_rows, win_cols = radius*2 + 1, radius*2 + 1
# calculate std # calculate std with uniform filters
win_mean = uniform_filter(image_padded, (win_rows, win_cols)) win_mean = convolve(image_padded, np.ones((win_rows,win_cols)), boundary='extend',
win_sqr_mean = uniform_filter(image_padded**2, (win_rows, win_cols)) normalize_kernel=True, nan_treatment='interpolate', preserve_nan=True)
win_sqr_mean = convolve(image_padded**2, np.ones((win_rows,win_cols)), boundary='extend',
normalize_kernel=True, nan_treatment='interpolate', preserve_nan=True)
win_var = win_sqr_mean - win_mean**2 win_var = win_sqr_mean - win_mean**2
win_std = np.sqrt(win_var) win_std = np.sqrt(win_var)
# remove padding # remove padding
@ -234,7 +249,7 @@ def mask_raster(fn, mask):
Returns: Returns:
----------- -----------
overwrites the .tif file directly Overwrites the .tif file directly
""" """
@ -264,21 +279,32 @@ def get_filepath(inputs,satname):
Arguments: Arguments:
----------- -----------
inputs: dict inputs: dict with the following keys
dictionnary that contains the following fields:
'sitename': str 'sitename': str
String containig the name of the site name of the site
'polygon': list 'polygon': list
polygon containing the lon/lat coordinates to be extracted polygon containing the lon/lat coordinates to be extracted,
longitudes in the first column and latitudes in the second column longitudes in the first column and latitudes in the second column,
there are 5 pairs of lat/lon with the fifth point equal to the first point:
```
polygon = [[[151.3, -33.7],[151.4, -33.7],[151.4, -33.8],[151.3, -33.8],
[151.3, -33.7]]]
```
'dates': list of str 'dates': list of str
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd' list that contains 2 strings with the initial and final dates in
e.g. ['1987-01-01', '2018-01-01'] format 'yyyy-mm-dd':
```
dates = ['1987-01-01', '2018-01-01']
```
'sat_list': list of str 'sat_list': list of str
list that contains the names of the satellite missions to include list that contains the names of the satellite missions to include:
e.g. ['L5', 'L7', 'L8', 'S2'] ```
sat_list = ['L5', 'L7', 'L8', 'S2']
```
'filepath_data': str
filepath to the directory where the images are downloaded
satname: str satname: str
short name of the satellite mission short name of the satellite mission ('L5','L7','L8','S2')
Returns: Returns:
----------- -----------
@ -351,13 +377,14 @@ def get_filenames(filename, filepath, satname):
def merge_output(output): def merge_output(output):
""" """
Function to merge the output dictionnary, which has one key per satellite mission into a Function to merge the output dictionnary, which has one key per satellite mission
dictionnary containing all the shorelines and dates ordered chronologically. into a dictionnary containing all the shorelines and dates ordered chronologically.
Arguments: Arguments:
----------- -----------
output: dict output: dict
contains the extracted shorelines and corresponding dates, organised by satellite mission contains the extracted shorelines and corresponding dates, organised by
satellite mission
Returns: Returns:
----------- -----------
@ -401,7 +428,8 @@ def polygon_from_kml(fn):
fn: str fn: str
filepath + filename of the kml file to be read filepath + filename of the kml file to be read
Returns: ----------- Returns:
-----------
polygon: list polygon: list
coordinates extracted from the .kml file coordinates extracted from the .kml file
@ -434,7 +462,7 @@ def transects_from_geojson(filename):
Returns: Returns:
----------- -----------
transects: dict transects: dict
contains the X and Y coordinates of each transect. contains the X and Y coordinates of each transect
""" """
@ -458,11 +486,13 @@ def output_to_gdf(output):
output: dict output: dict
contains the coordinates of the mapped shorelines + attributes contains the coordinates of the mapped shorelines + attributes
Returns: ----------- Returns:
-----------
gdf_all: gpd.GeoDataFrame gdf_all: gpd.GeoDataFrame
contains the shorelines + attirbutes
""" """
# loop through the mapped shorelines # loop through the mapped shorelines
counter = 0 counter = 0
for i in range(len(output['shorelines'])): for i in range(len(output['shorelines'])):
@ -498,11 +528,13 @@ def transects_to_gdf(transects):
transects: dict transects: dict
contains the coordinates of the transects contains the coordinates of the transects
Returns: ----------- Returns:
-----------
gdf_all: gpd.GeoDataFrame gdf_all: gpd.GeoDataFrame
""" """
# loop through the mapped shorelines # loop through the mapped shorelines
for i,key in enumerate(list(transects.keys())): for i,key in enumerate(list(transects.keys())):
# save the geometry + attributes # save the geometry + attributes

@ -1,6 +1,8 @@
"""This module contains functions to analyze the shoreline data along transects' """
This module contains functions to analyze the 2D shorelines along shore-normal
transects
Author: Kilian Vos, Water Research Laboratory, University of New South Wales Author: Kilian Vos, Water Research Laboratory, University of New South Wales
""" """
# load modules # load modules
@ -14,12 +16,15 @@ import skimage.transform as transform
from pylab import ginput from pylab import ginput
import geopandas as gpd import geopandas as gpd
# own modules # CoastSat modules
from coastsat import SDS_tools from coastsat import SDS_tools
def create_transect(origin, orientation, length): def create_transect(origin, orientation, length):
""" """
Create a 2D transect of points with 1m interval. Create a transect given an origin, orientation and length.
Points are spaced at 1m intervals.
KV WRL 2018
Arguments: Arguments:
----------- -----------
@ -36,6 +41,8 @@ def create_transect(origin, orientation, length):
contains the X and Y coordinates of the transect contains the X and Y coordinates of the transect
""" """
# origin of the transect
x0 = origin[0] x0 = origin[0]
y0 = origin[1] y0 = origin[1]
# orientation of the transect # orientation of the transect
@ -54,25 +61,29 @@ def create_transect(origin, orientation, length):
def draw_transects(output, settings): def draw_transects(output, settings):
""" """
Allows the user to draw shore-normal transects over the mapped shorelines. Draw shore-normal transects interactively on top of the mapped shorelines
Arguments: Arguments:
----------- -----------
output: dict output: dict
contains the extracted shorelines and corresponding dates. contains the extracted shorelines and corresponding metadata
settings: dict settings: dict with the following keys
contains the inputs 'inputs': dict
input parameters (sitename, filepath, polygon, dates, sat_list)
Returns: Returns:
----------- -----------
transects: dict transects: dict
contains the X and Y coordinates of all the transects drawn. These are also saved contains the X and Y coordinates of all the transects drawn.
as a .geojson (+ a .jpg figure showing the location of the transects) Also saves the coordinates as a .geojson as well as a .jpg figure
showing the location of the transects.
""" """
sitename = settings['inputs']['sitename'] sitename = settings['inputs']['sitename']
filepath = os.path.join(settings['inputs']['filepath'], sitename) filepath = os.path.join(settings['inputs']['filepath'], sitename)
# plot all shorelines # plot the mapped shorelines
fig1 = plt.figure() fig1 = plt.figure()
ax1 = fig1.add_subplot(111) ax1 = fig1.add_subplot(111)
ax1.axis('equal') ax1.axis('equal')
@ -90,7 +101,7 @@ def draw_transects(output, settings):
ax1.set_title('Click two points to define each transect (first point is the origin of the transect).\n'+ ax1.set_title('Click two points to define each transect (first point is the origin of the transect).\n'+
'When all transects have been defined, click on <ENTER>', fontsize=16) 'When all transects have been defined, click on <ENTER>', fontsize=16)
# initialise variable # initialise transects dict
transects = dict([]) transects = dict([])
counter = 0 counter = 0
# loop until user breaks it by click <enter> # loop until user breaks it by click <enter>
@ -99,14 +110,20 @@ def draw_transects(output, settings):
pts = ginput(n=2, timeout=1e9) pts = ginput(n=2, timeout=1e9)
if len(pts) > 0: if len(pts) > 0:
origin = pts[0] origin = pts[0]
# if user presses <enter>, no points are selected
else: else:
# save figure as .jpg
fig1.gca().set_title('Transect locations', fontsize=16) fig1.gca().set_title('Transect locations', fontsize=16)
fig1.savefig(os.path.join(filepath, 'jpg_files', sitename + '_transect_locations.jpg'), dpi=200) fig1.savefig(os.path.join(filepath, 'jpg_files', sitename + '_transect_locations.jpg'), dpi=200)
plt.title('Transect coordinates saved as ' + sitename + '_transects.geojson') plt.title('Transect coordinates saved as ' + sitename + '_transects.geojson')
plt.draw() plt.draw()
# wait 3 seconds for user to visualise the transects that are saved
ginput(n=1, timeout=3, show_clicks=True) ginput(n=1, timeout=3, show_clicks=True)
plt.close(fig1) plt.close(fig1)
# break the loop
break break
# add selectect points to the transect dict
counter = counter + 1 counter = counter + 1
transect = np.array([pts[0], pts[1]]) transect = np.array([pts[0], pts[1]])
@ -126,40 +143,40 @@ def draw_transects(output, settings):
bbox=dict(boxstyle="square", ec='k',fc='w')) bbox=dict(boxstyle="square", ec='k',fc='w'))
plt.draw() plt.draw()
# save as transects.geojson (for GIS) # save transects.geojson
gdf = SDS_tools.transects_to_gdf(transects) gdf = SDS_tools.transects_to_gdf(transects)
# set projection # set projection
gdf.crs = {'init':'epsg:'+str(settings['output_epsg'])} gdf.crs = {'init':'epsg:'+str(settings['output_epsg'])}
# save as geojson # save as geojson
gdf.to_file(os.path.join(filepath, sitename + '_transects.geojson'), driver='GeoJSON', encoding='utf-8') gdf.to_file(os.path.join(filepath, sitename + '_transects.geojson'), driver='GeoJSON', encoding='utf-8')
# print the location of the files
print('Transect locations saved in ' + filepath) print('Transect locations saved in ' + filepath)
return transects return transects
def compute_intersection(output, transects, settings): def compute_intersection(output, transects, settings):
""" """
Computes the intersection between the 2D mapped shorelines and the transects, to generate Computes the intersection between the 2D shorelines and the shore-normal.
time-series of cross-shore distance along each transect. transects. It returns time-series of cross-shore distance along each transect.
Arguments: Arguments:
----------- -----------
output: dict output: dict
contains the extracted shorelines and corresponding dates. contains the extracted shorelines and corresponding metadata
transects: dict transects: dict
contains the X and Y coordinates of the transects (first and last point needed for each contains the X and Y coordinates of each transect
transect). settings: dict with the following keys
settings: dict 'along_dist': int
contains parameters defining : alongshore distance considered caluclate the intersection
along_dist: alongshore distance to caluclate the intersection (median of points
within this distance).
Returns: Returns:
----------- -----------
cross_dist: dict cross_dist: dict
time-series of cross-shore distance along each of the transects. These are not tidally time-series of cross-shore distance along each of the transects.
corrected. Not tidally corrected.
""" """
shorelines = output['shorelines'] shorelines = output['shorelines']
along_dist = settings['along_dist'] along_dist = settings['along_dist']

@ -16,3 +16,4 @@ dependencies:
- scipy=1.2.1 - scipy=1.2.1
- spyder=3.3.4 - spyder=3.3.4
- notebook=5.7.8 - notebook=5.7.8
- astropy

@ -0,0 +1,62 @@
<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>NARRA</name>
<Style id="poly-000000-1200-77-nodesc-normal">
<LineStyle>
<color>ff000000</color>
<width>1.2</width>
</LineStyle>
<PolyStyle>
<color>4d000000</color>
<fill>1</fill>
<outline>1</outline>
</PolyStyle>
<BalloonStyle>
<text><![CDATA[<h3>$[name]</h3>]]></text>
</BalloonStyle>
</Style>
<Style id="poly-000000-1200-77-nodesc-highlight">
<LineStyle>
<color>ff000000</color>
<width>1.8</width>
</LineStyle>
<PolyStyle>
<color>4d000000</color>
<fill>1</fill>
<outline>1</outline>
</PolyStyle>
<BalloonStyle>
<text><![CDATA[<h3>$[name]</h3>]]></text>
</BalloonStyle>
</Style>
<StyleMap id="poly-000000-1200-77-nodesc">
<Pair>
<key>normal</key>
<styleUrl>#poly-000000-1200-77-nodesc-normal</styleUrl>
</Pair>
<Pair>
<key>highlight</key>
<styleUrl>#poly-000000-1200-77-nodesc-highlight</styleUrl>
</Pair>
</StyleMap>
<Placemark>
<name>Polygon 1</name>
<styleUrl>#poly-000000-1200-77-nodesc</styleUrl>
<Polygon>
<outerBoundaryIs>
<LinearRing>
<tessellate>1</tessellate>
<coordinates>
151.2957545,-33.7012561,0
151.297557,-33.7388075,0
151.312234,-33.7390216,0
151.311204,-33.701399,0
151.2957545,-33.7012561,0
</coordinates>
</LinearRing>
</outerBoundaryIs>
</Polygon>
</Placemark>
</Document>
</kml>
Loading…
Cancel
Save