Compare commits

..

No commits in common. 'd918dcc029edb9f9d09d047a4a956ccc53be735e' and '28ad83405f5c2d2b56673097d89cc7d4f696a567' have entirely different histories.

Binary file not shown.

@ -1,126 +0,0 @@
"""Calculate probability distributions for IPCC sea level rise forecasts.
This will calculate the values required to generate triangular distributions,
i.e. 'min', 'mode', and 'max' in the `numpy.random.triang()` function.
The values are written to 'triang-values.csv'
D. Howe
d.howe@wrl.unsw.edu.au
2022-05-05
"""
import os
import re
import numpy as np
import pandas as pd
from scipy import stats, optimize
import matplotlib.pyplot as plt
PLOT = False
def norm_cdf(x, loc, scale):
"""Calculate cumulative density function, using normal distribution."""
return stats.norm(loc=loc, scale=scale).cdf(x)
def triang_cdf(x, loc, scale, c):
"""Calculate cumulative density function, using triangular distribution."""
return stats.triang(loc=loc, scale=scale, c=c).cdf(x)
# Read data
df = pd.read_excel('IPCC AR6.xlsx', index_col=[0, 1, 2, 3, 4])
df = df.sort_index()
dff = df.loc[838, 'total', 'medium', 'ssp585'].T
dff.index.name = 'year'
percentiles = dff.columns.to_numpy() / 100
# Make SLR relative to 2020 level (at the 50th percentile)
dff -= dff.loc[2020, 50]
for i, row in dff.iterrows():
values = row.to_numpy()
# Fit normal distribution
loc, scale = optimize.curve_fit(norm_cdf, values, percentiles)[0]
p_norm = {'loc': loc, 'scale': scale}
# Fit triangular distribution
loc, scale, c = optimize.curve_fit(triang_cdf,
values,
percentiles,
p0=[values[0] - 0.1, 0.5, 0.5])[0]
p_triang = {'loc': loc, 'scale': scale, 'c': c}
# Get triangular distribution parameters
left = p_triang['loc']
centre = p_triang['loc'] + p_triang['scale'] * p_triang['c']
right = p_triang['loc'] + p_triang['scale']
dff.loc[i, 'min'] = left
dff.loc[i, 'mode'] = centre
dff.loc[i, 'max'] = right
if PLOT:
fig, ax = plt.subplots(1, 2, figsize=(10, 3))
x_min = stats.triang.ppf(0.01, **p_triang) - 0.2
x_max = stats.triang.ppf(0.99, **p_triang) + 0.2
x = np.linspace(x_min, x_max, num=1000)
ax[0].plot(x, 100 * stats.norm.cdf(x, **p_norm))
ax[0].plot(x, 100 * stats.triang.cdf(x, **p_triang))
ax[0].plot(values, 100 * percentiles, '.', c='#444444')
ax[1].plot(x, stats.norm.pdf(x, **p_norm), label='Normal')
ax[1].plot(x, stats.triang.pdf(x, **p_triang), label='Triangular')
ax[1].plot([], [], '.', c='#444444', label='IPCC data')
ax[1].legend()
ax[1].axvline(x=left, c='C3')
ax[1].axvline(x=centre, c='C3')
ax[1].axvline(x=right, c='C3')
ax[0].set_ylabel('Percentile', labelpad=10)
ax[0].set_title('Cumulative distribution')
ax[1].set_title('Probability density')
ax[0].annotate(i, (-0.3, 1),
xycoords='axes fraction',
clip_on=False,
size=14)
for a in ax:
a.set_xlabel('SLR (m)', labelpad=10)
a.spines['top'].set_visible(False)
a.spines['right'].set_visible(False)
plt.show()
# Save distribution parameters
dff[['min', 'mode', 'max']].to_csv('triang-values.csv', float_format='%0.3f')
if PLOT:
# Plot all triangular distributions
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
cmap = plt.cm.get_cmap('RdBu_r', len(dff))
c = list(cmap(range(cmap.N)))
j = -1
for i, row in dff.iterrows():
j += 1
ax.plot(row[['min', 'mode', 'max']], [0, 1, 0], c=c[j])
if j % 2 == 0:
ax.annotate(f' {i}', (row['mode'], 1),
ha='center',
va='bottom',
rotation=90)
ax.set_xlabel('SLR (m)', labelpad=10)
ax.set_ylabel('Probability density (-)', labelpad=10)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
plt.show()
Loading…
Cancel
Save