Compare commits
No commits in common. 'd918dcc029edb9f9d09d047a4a956ccc53be735e' and '28ad83405f5c2d2b56673097d89cc7d4f696a567' have entirely different histories.
d918dcc029
...
28ad83405f
Binary file not shown.
@ -1,126 +0,0 @@
|
|||||||
"""Calculate probability distributions for IPCC sea level rise forecasts.
|
|
||||||
|
|
||||||
This will calculate the values required to generate triangular distributions,
|
|
||||||
i.e. 'min', 'mode', and 'max' in the `numpy.random.triang()` function.
|
|
||||||
|
|
||||||
The values are written to 'triang-values.csv'
|
|
||||||
|
|
||||||
D. Howe
|
|
||||||
d.howe@wrl.unsw.edu.au
|
|
||||||
2022-05-05
|
|
||||||
"""
|
|
||||||
import os
|
|
||||||
import re
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from scipy import stats, optimize
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
|
||||||
PLOT = False
|
|
||||||
|
|
||||||
|
|
||||||
def norm_cdf(x, loc, scale):
|
|
||||||
"""Calculate cumulative density function, using normal distribution."""
|
|
||||||
return stats.norm(loc=loc, scale=scale).cdf(x)
|
|
||||||
|
|
||||||
|
|
||||||
def triang_cdf(x, loc, scale, c):
|
|
||||||
"""Calculate cumulative density function, using triangular distribution."""
|
|
||||||
return stats.triang(loc=loc, scale=scale, c=c).cdf(x)
|
|
||||||
|
|
||||||
|
|
||||||
# Read data
|
|
||||||
df = pd.read_excel('IPCC AR6.xlsx', index_col=[0, 1, 2, 3, 4])
|
|
||||||
df = df.sort_index()
|
|
||||||
dff = df.loc[838, 'total', 'medium', 'ssp585'].T
|
|
||||||
dff.index.name = 'year'
|
|
||||||
percentiles = dff.columns.to_numpy() / 100
|
|
||||||
|
|
||||||
# Make SLR relative to 2020 level (at the 50th percentile)
|
|
||||||
dff -= dff.loc[2020, 50]
|
|
||||||
|
|
||||||
for i, row in dff.iterrows():
|
|
||||||
values = row.to_numpy()
|
|
||||||
|
|
||||||
# Fit normal distribution
|
|
||||||
loc, scale = optimize.curve_fit(norm_cdf, values, percentiles)[0]
|
|
||||||
p_norm = {'loc': loc, 'scale': scale}
|
|
||||||
|
|
||||||
# Fit triangular distribution
|
|
||||||
loc, scale, c = optimize.curve_fit(triang_cdf,
|
|
||||||
values,
|
|
||||||
percentiles,
|
|
||||||
p0=[values[0] - 0.1, 0.5, 0.5])[0]
|
|
||||||
p_triang = {'loc': loc, 'scale': scale, 'c': c}
|
|
||||||
|
|
||||||
# Get triangular distribution parameters
|
|
||||||
left = p_triang['loc']
|
|
||||||
centre = p_triang['loc'] + p_triang['scale'] * p_triang['c']
|
|
||||||
right = p_triang['loc'] + p_triang['scale']
|
|
||||||
|
|
||||||
dff.loc[i, 'min'] = left
|
|
||||||
dff.loc[i, 'mode'] = centre
|
|
||||||
dff.loc[i, 'max'] = right
|
|
||||||
|
|
||||||
if PLOT:
|
|
||||||
fig, ax = plt.subplots(1, 2, figsize=(10, 3))
|
|
||||||
|
|
||||||
x_min = stats.triang.ppf(0.01, **p_triang) - 0.2
|
|
||||||
x_max = stats.triang.ppf(0.99, **p_triang) + 0.2
|
|
||||||
x = np.linspace(x_min, x_max, num=1000)
|
|
||||||
|
|
||||||
ax[0].plot(x, 100 * stats.norm.cdf(x, **p_norm))
|
|
||||||
ax[0].plot(x, 100 * stats.triang.cdf(x, **p_triang))
|
|
||||||
ax[0].plot(values, 100 * percentiles, '.', c='#444444')
|
|
||||||
|
|
||||||
ax[1].plot(x, stats.norm.pdf(x, **p_norm), label='Normal')
|
|
||||||
ax[1].plot(x, stats.triang.pdf(x, **p_triang), label='Triangular')
|
|
||||||
ax[1].plot([], [], '.', c='#444444', label='IPCC data')
|
|
||||||
ax[1].legend()
|
|
||||||
|
|
||||||
ax[1].axvline(x=left, c='C3')
|
|
||||||
ax[1].axvline(x=centre, c='C3')
|
|
||||||
ax[1].axvline(x=right, c='C3')
|
|
||||||
|
|
||||||
ax[0].set_ylabel('Percentile', labelpad=10)
|
|
||||||
ax[0].set_title('Cumulative distribution')
|
|
||||||
ax[1].set_title('Probability density')
|
|
||||||
|
|
||||||
ax[0].annotate(i, (-0.3, 1),
|
|
||||||
xycoords='axes fraction',
|
|
||||||
clip_on=False,
|
|
||||||
size=14)
|
|
||||||
for a in ax:
|
|
||||||
|
|
||||||
a.set_xlabel('SLR (m)', labelpad=10)
|
|
||||||
a.spines['top'].set_visible(False)
|
|
||||||
a.spines['right'].set_visible(False)
|
|
||||||
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
# Save distribution parameters
|
|
||||||
dff[['min', 'mode', 'max']].to_csv('triang-values.csv', float_format='%0.3f')
|
|
||||||
|
|
||||||
if PLOT:
|
|
||||||
# Plot all triangular distributions
|
|
||||||
fig, ax = plt.subplots(1, 1, figsize=(8, 4))
|
|
||||||
|
|
||||||
cmap = plt.cm.get_cmap('RdBu_r', len(dff))
|
|
||||||
c = list(cmap(range(cmap.N)))
|
|
||||||
|
|
||||||
j = -1
|
|
||||||
for i, row in dff.iterrows():
|
|
||||||
j += 1
|
|
||||||
ax.plot(row[['min', 'mode', 'max']], [0, 1, 0], c=c[j])
|
|
||||||
if j % 2 == 0:
|
|
||||||
ax.annotate(f' {i}', (row['mode'], 1),
|
|
||||||
ha='center',
|
|
||||||
va='bottom',
|
|
||||||
rotation=90)
|
|
||||||
|
|
||||||
ax.set_xlabel('SLR (m)', labelpad=10)
|
|
||||||
ax.set_ylabel('Probability density (-)', labelpad=10)
|
|
||||||
|
|
||||||
ax.spines['top'].set_visible(False)
|
|
||||||
ax.spines['right'].set_visible(False)
|
|
||||||
plt.show()
|
|
Loading…
Reference in New Issue