Added _util.py + fixed a bug in test_fit.py
parent
e73624161c
commit
df78c0e728
@ -0,0 +1,267 @@
|
||||
from __future__ import division, print_function, absolute_import
|
||||
|
||||
import functools
|
||||
import operator
|
||||
import sys
|
||||
import warnings
|
||||
import numbers
|
||||
from collections import namedtuple
|
||||
import inspect
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _valarray(shape, value=np.nan, typecode=None):
|
||||
"""Return an array of all value.
|
||||
"""
|
||||
|
||||
out = np.ones(shape, dtype=bool) * value
|
||||
if typecode is not None:
|
||||
out = out.astype(typecode)
|
||||
if not isinstance(out, np.ndarray):
|
||||
out = np.asarray(out)
|
||||
return out
|
||||
|
||||
|
||||
def _lazywhere(cond, arrays, f, fillvalue=None, f2=None):
|
||||
"""
|
||||
np.where(cond, x, fillvalue) always evaluates x even where cond is False.
|
||||
This one only evaluates f(arr1[cond], arr2[cond], ...).
|
||||
For example,
|
||||
>>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
|
||||
>>> def f(a, b):
|
||||
return a*b
|
||||
>>> _lazywhere(a > 2, (a, b), f, np.nan)
|
||||
array([ nan, nan, 21., 32.])
|
||||
Notice it assumes that all `arrays` are of the same shape, or can be
|
||||
broadcasted together.
|
||||
"""
|
||||
if fillvalue is None:
|
||||
if f2 is None:
|
||||
raise ValueError("One of (fillvalue, f2) must be given.")
|
||||
else:
|
||||
fillvalue = np.nan
|
||||
else:
|
||||
if f2 is not None:
|
||||
raise ValueError("Only one of (fillvalue, f2) can be given.")
|
||||
|
||||
arrays = np.broadcast_arrays(*arrays)
|
||||
temp = tuple(np.extract(cond, arr) for arr in arrays)
|
||||
out = _valarray(np.shape(arrays[0]), value=fillvalue)
|
||||
np.place(out, cond, f(*temp))
|
||||
if f2 is not None:
|
||||
temp = tuple(np.extract(~cond, arr) for arr in arrays)
|
||||
np.place(out, ~cond, f2(*temp))
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def _aligned_zeros(shape, dtype=float, order="C", align=None):
|
||||
"""Allocate a new ndarray with aligned memory.
|
||||
Primary use case for this currently is working around a f2py issue
|
||||
in Numpy 1.9.1, where dtype.alignment is such that np.zeros() does
|
||||
not necessarily create arrays aligned up to it.
|
||||
"""
|
||||
dtype = np.dtype(dtype)
|
||||
if align is None:
|
||||
align = dtype.alignment
|
||||
if not hasattr(shape, '__len__'):
|
||||
shape = (shape,)
|
||||
size = functools.reduce(operator.mul, shape) * dtype.itemsize
|
||||
buf = np.empty(size + align + 1, np.uint8)
|
||||
offset = buf.__array_interface__['data'][0] % align
|
||||
if offset != 0:
|
||||
offset = align - offset
|
||||
# Note: slices producing 0-size arrays do not necessarily change
|
||||
# data pointer --- so we use and allocate size+1
|
||||
buf = buf[offset:offset+size+1][:-1]
|
||||
data = np.ndarray(shape, dtype, buf, order=order)
|
||||
data.fill(0)
|
||||
return data
|
||||
|
||||
|
||||
class DeprecatedImport(object):
|
||||
"""
|
||||
Deprecated import, with redirection + warning.
|
||||
Examples
|
||||
--------
|
||||
Suppose you previously had in some module::
|
||||
from foo import spam
|
||||
If this has to be deprecated, do::
|
||||
spam = DeprecatedImport("foo.spam", "baz")
|
||||
to redirect users to use "baz" module instead.
|
||||
"""
|
||||
|
||||
def __init__(self, old_module_name, new_module_name):
|
||||
self._old_name = old_module_name
|
||||
self._new_name = new_module_name
|
||||
__import__(self._new_name)
|
||||
self._mod = sys.modules[self._new_name]
|
||||
|
||||
def __dir__(self):
|
||||
return dir(self._mod)
|
||||
|
||||
def __getattr__(self, name):
|
||||
warnings.warn("Module %s is deprecated, use %s instead"
|
||||
% (self._old_name, self._new_name),
|
||||
DeprecationWarning)
|
||||
return getattr(self._mod, name)
|
||||
|
||||
|
||||
# copy-pasted from scikit-learn utils/validation.py
|
||||
def check_random_state(seed):
|
||||
"""Turn seed into a np.random.RandomState instance
|
||||
If seed is None (or np.random), return the RandomState singleton used
|
||||
by np.random.
|
||||
If seed is an int, return a new RandomState instance seeded with seed.
|
||||
If seed is already a RandomState instance, return it.
|
||||
Otherwise raise ValueError.
|
||||
"""
|
||||
if seed is None or seed is np.random:
|
||||
return np.random.mtrand._rand
|
||||
if isinstance(seed, (numbers.Integral, np.integer)):
|
||||
return np.random.RandomState(seed)
|
||||
if isinstance(seed, np.random.RandomState):
|
||||
return seed
|
||||
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
|
||||
' instance' % seed)
|
||||
|
||||
|
||||
def _asarray_validated(a, check_finite=True,
|
||||
sparse_ok=False, objects_ok=False, mask_ok=False,
|
||||
as_inexact=False):
|
||||
"""
|
||||
Helper function for scipy argument validation.
|
||||
Many scipy linear algebra functions do support arbitrary array-like
|
||||
input arguments. Examples of commonly unsupported inputs include
|
||||
matrices containing inf/nan, sparse matrix representations, and
|
||||
matrices with complicated elements.
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
The array-like input.
|
||||
check_finite : bool, optional
|
||||
Whether to check that the input matrices contain only finite numbers.
|
||||
Disabling may give a performance gain, but may result in problems
|
||||
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
||||
Default: True
|
||||
sparse_ok : bool, optional
|
||||
True if scipy sparse matrices are allowed.
|
||||
objects_ok : bool, optional
|
||||
True if arrays with dype('O') are allowed.
|
||||
mask_ok : bool, optional
|
||||
True if masked arrays are allowed.
|
||||
as_inexact : bool, optional
|
||||
True to convert the input array to a np.inexact dtype.
|
||||
Returns
|
||||
-------
|
||||
ret : ndarray
|
||||
The converted validated array.
|
||||
"""
|
||||
if not sparse_ok:
|
||||
import scipy.sparse
|
||||
if scipy.sparse.issparse(a):
|
||||
msg = ('Sparse matrices are not supported by this function. '
|
||||
'Perhaps one of the scipy.sparse.linalg functions '
|
||||
'would work instead.')
|
||||
raise ValueError(msg)
|
||||
if not mask_ok:
|
||||
if np.ma.isMaskedArray(a):
|
||||
raise ValueError('masked arrays are not supported')
|
||||
toarray = np.asarray_chkfinite if check_finite else np.asarray
|
||||
a = toarray(a)
|
||||
if not objects_ok:
|
||||
if a.dtype is np.dtype('O'):
|
||||
raise ValueError('object arrays are not supported')
|
||||
if as_inexact:
|
||||
if not np.issubdtype(a.dtype, np.inexact):
|
||||
a = toarray(a, dtype=np.float_)
|
||||
return a
|
||||
|
||||
|
||||
# Add a replacement for inspect.getargspec() which is deprecated in python 3.5
|
||||
# The version below is borrowed from Django,
|
||||
# https://github.com/django/django/pull/4846
|
||||
|
||||
# Note an inconsistency between inspect.getargspec(func) and
|
||||
# inspect.signature(func). If `func` is a bound method, the latter does *not*
|
||||
# list `self` as a first argument, while the former *does*.
|
||||
# Hence cook up a common ground replacement: `getargspec_no_self` which
|
||||
# mimics `inspect.getargspec` but does not list `self`.
|
||||
#
|
||||
# This way, the caller code does not need to know whether it uses a legacy
|
||||
# .getargspec or bright and shiny .signature.
|
||||
|
||||
try:
|
||||
# is it python 3.3 or higher?
|
||||
inspect.signature # @UndefinedVariable
|
||||
|
||||
# Apparently, yes. Wrap inspect.signature
|
||||
|
||||
ArgSpec = namedtuple('ArgSpec', ['args', 'varargs', 'keywords', 'defaults'])
|
||||
|
||||
def getargspec_no_self(func):
|
||||
"""inspect.getargspec replacement using inspect.signature.
|
||||
inspect.getargspec is deprecated in python 3. This is a replacement
|
||||
based on the (new in python 3.3) `inspect.signature`.
|
||||
Parameters
|
||||
----------
|
||||
func : callable
|
||||
A callable to inspect
|
||||
Returns
|
||||
-------
|
||||
argspec : ArgSpec(args, varargs, varkw, defaults)
|
||||
This is similar to the result of inspect.getargspec(func) under
|
||||
python 2.x.
|
||||
NOTE: if the first argument of `func` is self, it is *not*, I repeat
|
||||
*not* included in argspec.args.
|
||||
This is done for consistency between inspect.getargspec() under
|
||||
python 2.x, and inspect.signature() under python 3.x.
|
||||
"""
|
||||
sig = inspect.signature(func)
|
||||
args = [
|
||||
p.name for p in sig.parameters.values()
|
||||
if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
|
||||
]
|
||||
varargs = [
|
||||
p.name for p in sig.parameters.values()
|
||||
if p.kind == inspect.Parameter.VAR_POSITIONAL
|
||||
]
|
||||
varargs = varargs[0] if varargs else None
|
||||
varkw = [
|
||||
p.name for p in sig.parameters.values()
|
||||
if p.kind == inspect.Parameter.VAR_KEYWORD
|
||||
]
|
||||
varkw = varkw[0] if varkw else None
|
||||
defaults = [
|
||||
p.default for p in sig.parameters.values()
|
||||
if (p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and
|
||||
p.default is not p.empty)
|
||||
] or None
|
||||
return ArgSpec(args, varargs, varkw, defaults)
|
||||
|
||||
except AttributeError:
|
||||
# python 2.x
|
||||
def getargspec_no_self(func):
|
||||
"""inspect.getargspec replacement for compatibility with python 3.x.
|
||||
inspect.getargspec is deprecated in python 3. This wraps it, and
|
||||
*removes* `self` from the argument list of `func`, if present.
|
||||
This is done for forward compatibility with python 3.
|
||||
Parameters
|
||||
----------
|
||||
func : callable
|
||||
A callable to inspect
|
||||
Returns
|
||||
-------
|
||||
argspec : ArgSpec(args, varargs, varkw, defaults)
|
||||
This is similar to the result of inspect.getargspec(func) under
|
||||
python 2.x.
|
||||
NOTE: if the first argument of `func` is self, it is *not*, I repeat
|
||||
*not* included in argspec.args.
|
||||
This is done for consistency between inspect.getargspec() under
|
||||
python 2.x, and inspect.signature() under python 3.x.
|
||||
"""
|
||||
argspec = inspect.getargspec(func)
|
||||
if argspec.args[0] == 'self':
|
||||
argspec.args.pop(0)
|
||||
return argspec
|
Loading…
Reference in New Issue