diff --git a/wafo/stats/_util.py b/wafo/stats/_util.py new file mode 100644 index 0000000..4a0ac9e --- /dev/null +++ b/wafo/stats/_util.py @@ -0,0 +1,267 @@ +from __future__ import division, print_function, absolute_import + +import functools +import operator +import sys +import warnings +import numbers +from collections import namedtuple +import inspect + +import numpy as np + + +def _valarray(shape, value=np.nan, typecode=None): + """Return an array of all value. + """ + + out = np.ones(shape, dtype=bool) * value + if typecode is not None: + out = out.astype(typecode) + if not isinstance(out, np.ndarray): + out = np.asarray(out) + return out + + +def _lazywhere(cond, arrays, f, fillvalue=None, f2=None): + """ + np.where(cond, x, fillvalue) always evaluates x even where cond is False. + This one only evaluates f(arr1[cond], arr2[cond], ...). + For example, + >>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8]) + >>> def f(a, b): + return a*b + >>> _lazywhere(a > 2, (a, b), f, np.nan) + array([ nan, nan, 21., 32.]) + Notice it assumes that all `arrays` are of the same shape, or can be + broadcasted together. + """ + if fillvalue is None: + if f2 is None: + raise ValueError("One of (fillvalue, f2) must be given.") + else: + fillvalue = np.nan + else: + if f2 is not None: + raise ValueError("Only one of (fillvalue, f2) can be given.") + + arrays = np.broadcast_arrays(*arrays) + temp = tuple(np.extract(cond, arr) for arr in arrays) + out = _valarray(np.shape(arrays[0]), value=fillvalue) + np.place(out, cond, f(*temp)) + if f2 is not None: + temp = tuple(np.extract(~cond, arr) for arr in arrays) + np.place(out, ~cond, f2(*temp)) + + return out + + +def _aligned_zeros(shape, dtype=float, order="C", align=None): + """Allocate a new ndarray with aligned memory. + Primary use case for this currently is working around a f2py issue + in Numpy 1.9.1, where dtype.alignment is such that np.zeros() does + not necessarily create arrays aligned up to it. + """ + dtype = np.dtype(dtype) + if align is None: + align = dtype.alignment + if not hasattr(shape, '__len__'): + shape = (shape,) + size = functools.reduce(operator.mul, shape) * dtype.itemsize + buf = np.empty(size + align + 1, np.uint8) + offset = buf.__array_interface__['data'][0] % align + if offset != 0: + offset = align - offset + # Note: slices producing 0-size arrays do not necessarily change + # data pointer --- so we use and allocate size+1 + buf = buf[offset:offset+size+1][:-1] + data = np.ndarray(shape, dtype, buf, order=order) + data.fill(0) + return data + + +class DeprecatedImport(object): + """ + Deprecated import, with redirection + warning. + Examples + -------- + Suppose you previously had in some module:: + from foo import spam + If this has to be deprecated, do:: + spam = DeprecatedImport("foo.spam", "baz") + to redirect users to use "baz" module instead. + """ + + def __init__(self, old_module_name, new_module_name): + self._old_name = old_module_name + self._new_name = new_module_name + __import__(self._new_name) + self._mod = sys.modules[self._new_name] + + def __dir__(self): + return dir(self._mod) + + def __getattr__(self, name): + warnings.warn("Module %s is deprecated, use %s instead" + % (self._old_name, self._new_name), + DeprecationWarning) + return getattr(self._mod, name) + + +# copy-pasted from scikit-learn utils/validation.py +def check_random_state(seed): + """Turn seed into a np.random.RandomState instance + If seed is None (or np.random), return the RandomState singleton used + by np.random. + If seed is an int, return a new RandomState instance seeded with seed. + If seed is already a RandomState instance, return it. + Otherwise raise ValueError. + """ + if seed is None or seed is np.random: + return np.random.mtrand._rand + if isinstance(seed, (numbers.Integral, np.integer)): + return np.random.RandomState(seed) + if isinstance(seed, np.random.RandomState): + return seed + raise ValueError('%r cannot be used to seed a numpy.random.RandomState' + ' instance' % seed) + + +def _asarray_validated(a, check_finite=True, + sparse_ok=False, objects_ok=False, mask_ok=False, + as_inexact=False): + """ + Helper function for scipy argument validation. + Many scipy linear algebra functions do support arbitrary array-like + input arguments. Examples of commonly unsupported inputs include + matrices containing inf/nan, sparse matrix representations, and + matrices with complicated elements. + Parameters + ---------- + a : array_like + The array-like input. + check_finite : bool, optional + Whether to check that the input matrices contain only finite numbers. + Disabling may give a performance gain, but may result in problems + (crashes, non-termination) if the inputs do contain infinities or NaNs. + Default: True + sparse_ok : bool, optional + True if scipy sparse matrices are allowed. + objects_ok : bool, optional + True if arrays with dype('O') are allowed. + mask_ok : bool, optional + True if masked arrays are allowed. + as_inexact : bool, optional + True to convert the input array to a np.inexact dtype. + Returns + ------- + ret : ndarray + The converted validated array. + """ + if not sparse_ok: + import scipy.sparse + if scipy.sparse.issparse(a): + msg = ('Sparse matrices are not supported by this function. ' + 'Perhaps one of the scipy.sparse.linalg functions ' + 'would work instead.') + raise ValueError(msg) + if not mask_ok: + if np.ma.isMaskedArray(a): + raise ValueError('masked arrays are not supported') + toarray = np.asarray_chkfinite if check_finite else np.asarray + a = toarray(a) + if not objects_ok: + if a.dtype is np.dtype('O'): + raise ValueError('object arrays are not supported') + if as_inexact: + if not np.issubdtype(a.dtype, np.inexact): + a = toarray(a, dtype=np.float_) + return a + + +# Add a replacement for inspect.getargspec() which is deprecated in python 3.5 +# The version below is borrowed from Django, +# https://github.com/django/django/pull/4846 + +# Note an inconsistency between inspect.getargspec(func) and +# inspect.signature(func). If `func` is a bound method, the latter does *not* +# list `self` as a first argument, while the former *does*. +# Hence cook up a common ground replacement: `getargspec_no_self` which +# mimics `inspect.getargspec` but does not list `self`. +# +# This way, the caller code does not need to know whether it uses a legacy +# .getargspec or bright and shiny .signature. + +try: + # is it python 3.3 or higher? + inspect.signature # @UndefinedVariable + + # Apparently, yes. Wrap inspect.signature + + ArgSpec = namedtuple('ArgSpec', ['args', 'varargs', 'keywords', 'defaults']) + + def getargspec_no_self(func): + """inspect.getargspec replacement using inspect.signature. + inspect.getargspec is deprecated in python 3. This is a replacement + based on the (new in python 3.3) `inspect.signature`. + Parameters + ---------- + func : callable + A callable to inspect + Returns + ------- + argspec : ArgSpec(args, varargs, varkw, defaults) + This is similar to the result of inspect.getargspec(func) under + python 2.x. + NOTE: if the first argument of `func` is self, it is *not*, I repeat + *not* included in argspec.args. + This is done for consistency between inspect.getargspec() under + python 2.x, and inspect.signature() under python 3.x. + """ + sig = inspect.signature(func) + args = [ + p.name for p in sig.parameters.values() + if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD + ] + varargs = [ + p.name for p in sig.parameters.values() + if p.kind == inspect.Parameter.VAR_POSITIONAL + ] + varargs = varargs[0] if varargs else None + varkw = [ + p.name for p in sig.parameters.values() + if p.kind == inspect.Parameter.VAR_KEYWORD + ] + varkw = varkw[0] if varkw else None + defaults = [ + p.default for p in sig.parameters.values() + if (p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and + p.default is not p.empty) + ] or None + return ArgSpec(args, varargs, varkw, defaults) + +except AttributeError: + # python 2.x + def getargspec_no_self(func): + """inspect.getargspec replacement for compatibility with python 3.x. + inspect.getargspec is deprecated in python 3. This wraps it, and + *removes* `self` from the argument list of `func`, if present. + This is done for forward compatibility with python 3. + Parameters + ---------- + func : callable + A callable to inspect + Returns + ------- + argspec : ArgSpec(args, varargs, varkw, defaults) + This is similar to the result of inspect.getargspec(func) under + python 2.x. + NOTE: if the first argument of `func` is self, it is *not*, I repeat + *not* included in argspec.args. + This is done for consistency between inspect.getargspec() under + python 2.x, and inspect.signature() under python 3.x. + """ + argspec = inspect.getargspec(func) + if argspec.args[0] == 'self': + argspec.args.pop(0) + return argspec diff --git a/wafo/stats/estimation.py b/wafo/stats/estimation.py index 3fd5371..3a481ad 100644 --- a/wafo/stats/estimation.py +++ b/wafo/stats/estimation.py @@ -12,7 +12,6 @@ import warnings from wafo.plotbackend import plotbackend from wafo.misc import ecross, findcross, argsreduce -from wafo.stats._util import check_random_state from wafo.stats._constants import _EPS, _XMAX from wafo.stats._distn_infrastructure import rv_frozen from scipy._lib.six import string_types @@ -600,7 +599,7 @@ class FitDistribution(rv_frozen): # par_upper - upper (1-alpha)% confidence bound for the parameters # # ''' - self.__doc__ = rv_frozen.__doc__ + extradoc + self.__doc__ = str(rv_frozen.__doc__) + extradoc self.dist = dist numargs = dist.numargs diff --git a/wafo/stats/tests/test_fit.py b/wafo/stats/tests/test_fit.py index c304563..81d9909 100644 --- a/wafo/stats/tests/test_fit.py +++ b/wafo/stats/tests/test_fit.py @@ -76,7 +76,7 @@ def check_cont_fit(distname,arg): truearg = np.hstack([arg,[0.0,1.0]]) diffthreshold = np.max(np.vstack([truearg*thresh_percent, np.ones(distfn.numargs+2)*thresh_min]),0) - + opt = options.copy() for fit_size in fit_sizes: # Note that if a fit succeeds, the other fit_sizes are skipped np.random.seed(1234) @@ -85,7 +85,7 @@ def check_cont_fit(distname,arg): rvs = distfn.rvs(size=fit_size, *arg) # phat = distfn.fit2(rvs) - phat = distfn.fit2(rvs, **options) + phat = distfn.fit2(rvs, **opt) est = phat.par #est = distfn.fit(rvs) # start with default values