Moved demo from kdetools.py to demo.py. Increased test coverage.

master
Per A Brodtkorb 8 years ago
parent 460ae6f819
commit d9e2349248

@ -1,3 +1,4 @@
from .kdetools import *
from .gridding import *
from .kernels import *
from .demo import *

@ -0,0 +1,298 @@
'''
Created on 2. jan. 2017
@author: pab
'''
from __future__ import absolute_import, division
import scipy.stats
import numpy as np
import warnings
from wafo.plotbackend import plotbackend as plt
from wafo.kdetools import Kernel, TKDE, KDE, KRegression, BKRegression
try:
from wafo import fig
except ImportError:
warnings.warn('fig import only supported on Windows')
__all__ = ['kde_demo1', 'kde_demo2', 'kde_demo3', 'kde_demo4', 'kde_demo5',
'kreg_demo1', ]
def kde_demo1():
"""KDEDEMO1 Demonstrate the smoothing parameter impact on KDE.
KDEDEMO1 shows the true density (dotted) compared to KDE based on 7
observations (solid) and their individual kernels (dashed) for 3
different values of the smoothing parameter, hs.
"""
st = scipy.stats
x = np.linspace(-4, 4, 101)
x0 = x / 2.0
data = np.random.normal(loc=0, scale=1.0, size=7)
kernel = Kernel('gauss')
hs = kernel.hns(data)
hVec = [hs / 2, hs, 2 * hs]
for ix, h in enumerate(hVec):
plt.figure(ix)
kde = KDE(data, hs=h, kernel=kernel)
f2 = kde(x, output='plot', title='h_s = {0:2.2f}'.format(float(h)),
ylab='Density')
f2.plot('k-')
plt.plot(x, st.norm.pdf(x, 0, 1), 'k:')
n = len(data)
plt.plot(data, np.zeros(data.shape), 'bx')
y = kernel(x0) / (n * h * kernel.norm_factor(d=1, n=n))
for i in range(n):
plt.plot(data[i] + x0 * h, y, 'b--')
plt.plot([data[i], data[i]], [0, np.max(y)], 'b')
plt.axis([min(x), max(x), 0, 0.5])
def kde_demo2():
'''Demonstrate the difference between transformation- and ordinary-KDE.
KDEDEMO2 shows that the transformation KDE is a better estimate for
Rayleigh distributed data around 0 than the ordinary KDE.
'''
st = scipy.stats
data = st.rayleigh.rvs(scale=1, size=300)
x = np.linspace(1.5e-2, 5, 55)
kde = KDE(data)
f = kde(output='plot', title='Ordinary KDE (hs={0:})'.format(kde.hs))
plt.figure(0)
f.plot()
plt.plot(x, st.rayleigh.pdf(x, scale=1), ':')
# plotnorm((data).^(L2)) # gives a straight line => L2 = 0.5 reasonable
hs = Kernel('gauss').get_smoothing(data**0.5)
tkde = TKDE(data, hs=hs, L2=0.5)
ft = tkde(x, output='plot',
title='Transformation KDE (hs={0:})'.format(tkde.tkde.hs))
plt.figure(1)
ft.plot()
plt.plot(x, st.rayleigh.pdf(x, scale=1), ':')
plt.figure(0)
def kde_demo3():
'''Demonstrate the difference between transformation and ordinary-KDE in 2D
KDEDEMO3 shows that the transformation KDE is a better estimate for
Rayleigh distributed data around 0 than the ordinary KDE.
'''
st = scipy.stats
data = st.rayleigh.rvs(scale=1, size=(2, 300))
# x = np.linspace(1.5e-3, 5, 55)
kde = KDE(data)
f = kde(output='plot', title='Ordinary KDE', plotflag=1)
plt.figure(0)
f.plot()
plt.plot(data[0], data[1], '.')
# plotnorm((data).^(L2)) % gives a straight line => L2 = 0.5 reasonable
hs = Kernel('gauss').get_smoothing(data**0.5)
tkde = TKDE(data, hs=hs, L2=0.5)
ft = tkde.eval_grid_fast(
output='plot', title='Transformation KDE', plotflag=1)
plt.figure(1)
ft.plot()
plt.plot(data[0], data[1], '.')
plt.figure(0)
def kde_demo4(N=50):
'''Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
for 1D multimodal distributions
KDEDEMO4 shows that the improved Sheather-Jones plug-in smoothing is a
better compared to normal reference rules (in this case the hns)
'''
st = scipy.stats
data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(N,)),
st.norm.rvs(loc=-5, scale=1, size=(N,))))
# x = np.linspace(1.5e-3, 5, 55)
kde = KDE(data, kernel=Kernel('gauss', 'hns'))
f = kde(output='plot', title='Ordinary KDE', plotflag=1)
kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
f1 = kde1(output='plot', label='Ordinary KDE', plotflag=1)
plt.figure(0)
f.plot('r', label='hns={0}'.format(kde.hs))
# plt.figure(2)
f1.plot('b', label='hisj={0}'.format(kde1.hs))
x = np.linspace(-9, 9)
plt.plot(x, (st.norm.pdf(x, loc=-5, scale=1) +
st.norm.pdf(x, loc=5, scale=1)) / 2, 'k:',
label='True density')
plt.legend()
def kde_demo5(N=500):
'''Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
for 2D multimodal distributions
KDEDEMO5 shows that the improved Sheather-Jones plug-in smoothing is better
compared to normal reference rules (in this case the hns)
'''
st = scipy.stats
data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(2, N,)),
st.norm.rvs(loc=-5, scale=1, size=(2, N,))))
kde = KDE(data, kernel=Kernel('gauss', 'hns'))
f = kde(output='plot', plotflag=1,
title='Ordinary KDE, hns={0:s}'.format(str(list(kde.hs))))
kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
f1 = kde1(output='plot', plotflag=1,
title='Ordinary KDE, hisj={0:s}'.format(str(list(kde1.hs))))
plt.figure(0)
plt.clf()
f.plot()
plt.plot(data[0], data[1], '.')
plt.figure(1)
plt.clf()
f1.plot()
plt.plot(data[0], data[1], '.')
def kreg_demo1(hs=None, fast=False, fun='hisj'):
""""""
N = 100
# ei = np.random.normal(loc=0, scale=0.075, size=(N,))
ei = np.array([
-0.08508516, 0.10462496, 0.07694448, -0.03080661, 0.05777525,
0.06096313, -0.16572389, 0.01838912, -0.06251845, -0.09186784,
-0.04304887, -0.13365788, -0.0185279, -0.07289167, 0.02319097,
0.06887854, -0.08938374, -0.15181813, 0.03307712, 0.08523183,
-0.0378058, -0.06312874, 0.01485772, 0.06307944, -0.0632959,
0.18963205, 0.0369126, -0.01485447, 0.04037722, 0.0085057,
-0.06912903, 0.02073998, 0.1174351, 0.17599277, -0.06842139,
0.12587608, 0.07698113, -0.0032394, -0.12045792, -0.03132877,
0.05047314, 0.02013453, 0.04080741, 0.00158392, 0.10237899,
-0.09069682, 0.09242174, -0.15445323, 0.09190278, 0.07138498,
0.03002497, 0.02495252, 0.01286942, 0.06449978, 0.03031802,
0.11754861, -0.02322272, 0.00455867, -0.02132251, 0.09119446,
-0.03210086, -0.06509545, 0.07306443, 0.04330647, 0.078111,
-0.04146907, 0.05705476, 0.02492201, -0.03200572, -0.02859788,
-0.05893749, 0.00089538, 0.0432551, 0.04001474, 0.04888828,
-0.17708392, 0.16478644, 0.1171006, 0.11664846, 0.01410477,
-0.12458953, -0.11692081, 0.0413047, -0.09292439, -0.07042327,
0.14119701, -0.05114335, 0.04994696, -0.09520663, 0.04829406,
-0.01603065, -0.1933216, 0.19352763, 0.11819496, 0.04567619,
-0.08348306, 0.00812816, -0.00908206, 0.14528945, 0.02901065])
x = np.linspace(0, 1, N)
va_1 = 0.3 ** 2
va_2 = 0.7 ** 2
y0 = np.exp(-x ** 2 / (2 * va_1)) + 1.3*np.exp(-(x - 1) ** 2 / (2 * va_2))
y = y0 + ei
kernel = Kernel('gauss', fun=fun)
hopt = kernel.hisj(x)
kreg = KRegression(
x, y, p=0, hs=hs, kernel=kernel, xmin=-2 * hopt, xmax=1 + 2 * hopt)
if fast:
kreg.__call__ = kreg.eval_grid_fast
f = kreg(x, output='plot', title='Kernel regression', plotflag=1)
plt.figure(0)
f.plot(label='p=0')
kreg.p = 1
f1 = kreg(x, output='plot', title='Kernel regression', plotflag=1)
f1.plot(label='p=1')
# print(f1.data)
plt.plot(x, y, '.', label='data')
plt.plot(x, y0, 'k', label='True model')
from statsmodels.nonparametric.kernel_regression import KernelReg
kreg2 = KernelReg(y, x, ('c'))
y2 = kreg2.fit(x)
plt.plot(x, y2[0], 'm', label='statsmodel')
plt.legend()
plt.show()
print(kreg.tkde.tkde._inv_hs)
print(kreg.tkde.tkde.hs)
def _get_data(n=100, symmetric=False, loc1=1.1, scale1=0.6, scale2=1.0):
st = scipy.stats
dist = st.norm
norm1 = scale2 * (dist.pdf(-loc1, loc=-loc1, scale=scale1) +
dist.pdf(-loc1, loc=loc1, scale=scale1))
def fun1(x):
return ((dist.pdf(x, loc=-loc1, scale=scale1) +
dist.pdf(x, loc=loc1, scale=scale1)) / norm1).clip(max=1.0)
x = np.sort(6 * np.random.rand(n, 1) - 3, axis=0)
y = (fun1(x) > np.random.rand(n, 1)).ravel()
# y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
x = x.ravel()
if symmetric:
xi = np.hstack((x.ravel(), -x.ravel()))
yi = np.hstack((y, y))
i = np.argsort(xi)
x = xi[i]
y = yi[i]
return x, y, fun1
def check_bkregression():
plt.ion()
k = 0
for _i, n in enumerate([50, 100, 300, 600]):
x, y, fun1 = _get_data(n, symmetric=True, loc1=0.1,
scale1=0.6, scale2=0.75)
bkreg = BKRegression(x, y, a=0.05, b=0.05)
fbest = bkreg.prb_search_best(
hsfun='hste', alpha=0.05, color='g', label='Transit_D')
figk = plt.figure(k)
ax = figk.gca()
k += 1
# fbest.score.plot(axis=ax)
# axsize = ax.axis()
# ax.vlines(fbest.hs,axsize[2]+1,axsize[3])
# ax.set(yscale='log')
fbest.labels.title = 'N = {:d}'.format(n)
fbest.plot(axis=ax)
ax.plot(x, fun1(x), 'r')
ax.legend(frameon=False, markerscale=4)
# ax = plt.gca()
ax.set_yticklabels(ax.get_yticks() * 100.0)
ax.grid(True)
fig.tile(range(0, k))
plt.ioff()
plt.show('hold')
if __name__ == '__main__':
# kde_demo5()
# check_bkregression()
kreg_demo1(hs=0.04, fast=True)
plt.show('hold')

@ -21,18 +21,11 @@ from numpy import sqrt, atleast_2d, meshgrid
from numpy.fft import fftn, ifftn
from wafo.misc import nextpow2
from wafo.containers import PlotData
from wafo.plotbackend import plotbackend as plt
from wafo.testing import test_docstrings
from wafo.kdetools.kernels import iqrange, qlevels, Kernel
from wafo.kdetools.gridding import gridcount
try:
from wafo import fig
except ImportError:
warnings.warn('fig import only supported on Windows')
__all__ = ['TKDE', 'KDE', 'kde_demo1', 'kde_demo2', 'test_docstrings',
'KRegression', 'BKRegression']
__all__ = ['TKDE', 'KDE', 'test_docstrings', 'KRegression', 'BKRegression']
_TINY = np.finfo(float).machar.tiny
# _REALMIN = np.finfo(float).machar.xmin
@ -413,10 +406,10 @@ class TKDE(_KDE):
for i, v2 in enumerate(L2.tolist()):
factor = v2 * np.sign(v2) if v2 else 1
pdf *= np.where(v2 == 1, 1, points[i] ** (v2 - 1) * factor)
if (np.abs(np.diff(pdf)).max() > 10).any():
msg = ''' Numerical problems may have occured due to the power
transformation. Check the KDE for spurious spikes'''
warnings.warn(msg)
_assert_warn((np.abs(np.diff(pdf)).max() < 10).all(), '''
Numerical problems may have occured due to the power transformation.
Check the KDE for spurious spikes''')
return pdf
def eval_grid_fast2(self, *args, **kwds):
@ -1179,284 +1172,5 @@ class BKRegression(object):
return prb_best
def kde_demo1():
"""KDEDEMO1 Demonstrate the smoothing parameter impact on KDE.
KDEDEMO1 shows the true density (dotted) compared to KDE based on 7
observations (solid) and their individual kernels (dashed) for 3
different values of the smoothing parameter, hs.
"""
st = scipy.stats
x = np.linspace(-4, 4, 101)
x0 = x / 2.0
data = np.random.normal(loc=0, scale=1.0, size=7)
kernel = Kernel('gauss')
hs = kernel.hns(data)
hVec = [hs / 2, hs, 2 * hs]
for ix, h in enumerate(hVec):
plt.figure(ix)
kde = KDE(data, hs=h, kernel=kernel)
f2 = kde(x, output='plot', title='h_s = {0:2.2f}'.format(float(h)),
ylab='Density')
f2.plot('k-')
plt.plot(x, st.norm.pdf(x, 0, 1), 'k:')
n = len(data)
plt.plot(data, np.zeros(data.shape), 'bx')
y = kernel(x0) / (n * h * kernel.norm_factor(d=1, n=n))
for i in range(n):
plt.plot(data[i] + x0 * h, y, 'b--')
plt.plot([data[i], data[i]], [0, np.max(y)], 'b')
plt.axis([min(x), max(x), 0, 0.5])
def kde_demo2():
'''Demonstrate the difference between transformation- and ordinary-KDE.
KDEDEMO2 shows that the transformation KDE is a better estimate for
Rayleigh distributed data around 0 than the ordinary KDE.
'''
st = scipy.stats
data = st.rayleigh.rvs(scale=1, size=300)
x = np.linspace(1.5e-2, 5, 55)
kde = KDE(data)
f = kde(output='plot', title='Ordinary KDE (hs={0:})'.format(kde.hs))
plt.figure(0)
f.plot()
plt.plot(x, st.rayleigh.pdf(x, scale=1), ':')
# plotnorm((data).^(L2)) # gives a straight line => L2 = 0.5 reasonable
hs = Kernel('gauss').get_smoothing(data**0.5)
tkde = TKDE(data, hs=hs, L2=0.5)
ft = tkde(x, output='plot',
title='Transformation KDE (hs={0:})'.format(tkde.tkde.hs))
plt.figure(1)
ft.plot()
plt.plot(x, st.rayleigh.pdf(x, scale=1), ':')
plt.figure(0)
def kde_demo3():
'''Demonstrate the difference between transformation and ordinary-KDE in 2D
KDEDEMO3 shows that the transformation KDE is a better estimate for
Rayleigh distributed data around 0 than the ordinary KDE.
'''
st = scipy.stats
data = st.rayleigh.rvs(scale=1, size=(2, 300))
# x = np.linspace(1.5e-3, 5, 55)
kde = KDE(data)
f = kde(output='plot', title='Ordinary KDE', plotflag=1)
plt.figure(0)
f.plot()
plt.plot(data[0], data[1], '.')
# plotnorm((data).^(L2)) % gives a straight line => L2 = 0.5 reasonable
hs = Kernel('gauss').get_smoothing(data**0.5)
tkde = TKDE(data, hs=hs, L2=0.5)
ft = tkde.eval_grid_fast(
output='plot', title='Transformation KDE', plotflag=1)
plt.figure(1)
ft.plot()
plt.plot(data[0], data[1], '.')
plt.figure(0)
def kde_demo4(N=50):
'''Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
for 1D multimodal distributions
KDEDEMO4 shows that the improved Sheather-Jones plug-in smoothing is a
better compared to normal reference rules (in this case the hns)
'''
st = scipy.stats
data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(N,)),
st.norm.rvs(loc=-5, scale=1, size=(N,))))
# x = np.linspace(1.5e-3, 5, 55)
kde = KDE(data, kernel=Kernel('gauss', 'hns'))
f = kde(output='plot', title='Ordinary KDE', plotflag=1)
kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
f1 = kde1(output='plot', label='Ordinary KDE', plotflag=1)
plt.figure(0)
f.plot('r', label='hns={0}'.format(kde.hs))
# plt.figure(2)
f1.plot('b', label='hisj={0}'.format(kde1.hs))
x = np.linspace(-9, 9)
plt.plot(x, (st.norm.pdf(x, loc=-5, scale=1) +
st.norm.pdf(x, loc=5, scale=1)) / 2, 'k:',
label='True density')
plt.legend()
def kde_demo5(N=500):
'''Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
for 2D multimodal distributions
KDEDEMO5 shows that the improved Sheather-Jones plug-in smoothing is better
compared to normal reference rules (in this case the hns)
'''
st = scipy.stats
data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(2, N,)),
st.norm.rvs(loc=-5, scale=1, size=(2, N,))))
kde = KDE(data, kernel=Kernel('gauss', 'hns'))
f = kde(output='plot', plotflag=1,
title='Ordinary KDE, hns={0:s}'.format(str(list(kde.hs))))
kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
f1 = kde1(output='plot', plotflag=1,
title='Ordinary KDE, hisj={0:s}'.format(str(list(kde1.hs))))
plt.figure(0)
plt.clf()
f.plot()
plt.plot(data[0], data[1], '.')
plt.figure(1)
plt.clf()
f1.plot()
plt.plot(data[0], data[1], '.')
def kreg_demo1(hs=None, fast=False, fun='hisj'):
""""""
N = 100
# ei = np.random.normal(loc=0, scale=0.075, size=(N,))
ei = np.array([
-0.08508516, 0.10462496, 0.07694448, -0.03080661, 0.05777525,
0.06096313, -0.16572389, 0.01838912, -0.06251845, -0.09186784,
-0.04304887, -0.13365788, -0.0185279, -0.07289167, 0.02319097,
0.06887854, -0.08938374, -0.15181813, 0.03307712, 0.08523183,
-0.0378058, -0.06312874, 0.01485772, 0.06307944, -0.0632959,
0.18963205, 0.0369126, -0.01485447, 0.04037722, 0.0085057,
-0.06912903, 0.02073998, 0.1174351, 0.17599277, -0.06842139,
0.12587608, 0.07698113, -0.0032394, -0.12045792, -0.03132877,
0.05047314, 0.02013453, 0.04080741, 0.00158392, 0.10237899,
-0.09069682, 0.09242174, -0.15445323, 0.09190278, 0.07138498,
0.03002497, 0.02495252, 0.01286942, 0.06449978, 0.03031802,
0.11754861, -0.02322272, 0.00455867, -0.02132251, 0.09119446,
-0.03210086, -0.06509545, 0.07306443, 0.04330647, 0.078111,
-0.04146907, 0.05705476, 0.02492201, -0.03200572, -0.02859788,
-0.05893749, 0.00089538, 0.0432551, 0.04001474, 0.04888828,
-0.17708392, 0.16478644, 0.1171006, 0.11664846, 0.01410477,
-0.12458953, -0.11692081, 0.0413047, -0.09292439, -0.07042327,
0.14119701, -0.05114335, 0.04994696, -0.09520663, 0.04829406,
-0.01603065, -0.1933216, 0.19352763, 0.11819496, 0.04567619,
-0.08348306, 0.00812816, -0.00908206, 0.14528945, 0.02901065])
x = np.linspace(0, 1, N)
va_1 = 0.3 ** 2
va_2 = 0.7 ** 2
y0 = np.exp(-x ** 2 / (2 * va_1)) + 1.3*np.exp(-(x - 1) ** 2 / (2 * va_2))
y = y0 + ei
kernel = Kernel('gauss', fun=fun)
hopt = kernel.hisj(x)
kreg = KRegression(
x, y, p=0, hs=hs, kernel=kernel, xmin=-2 * hopt, xmax=1 + 2 * hopt)
if fast:
kreg.__call__ = kreg.eval_grid_fast
f = kreg(x, output='plot', title='Kernel regression', plotflag=1)
plt.figure(0)
f.plot(label='p=0')
kreg.p = 1
f1 = kreg(x, output='plot', title='Kernel regression', plotflag=1)
f1.plot(label='p=1')
# print(f1.data)
plt.plot(x, y, '.', label='data')
plt.plot(x, y0, 'k', label='True model')
from statsmodels.nonparametric.kernel_regression import KernelReg
kreg2 = KernelReg(y, x, ('c'))
y2 = kreg2.fit(x)
plt.plot(x, y2[0], 'm', label='statsmodel')
plt.legend()
plt.show()
print(kreg.tkde.tkde._inv_hs)
print(kreg.tkde.tkde.hs)
def _get_data(n=100, symmetric=False, loc1=1.1, scale1=0.6, scale2=1.0):
st = scipy.stats
dist = st.norm
norm1 = scale2 * (dist.pdf(-loc1, loc=-loc1, scale=scale1) +
dist.pdf(-loc1, loc=loc1, scale=scale1))
def fun1(x):
return ((dist.pdf(x, loc=-loc1, scale=scale1) +
dist.pdf(x, loc=loc1, scale=scale1)) / norm1).clip(max=1.0)
x = np.sort(6 * np.random.rand(n, 1) - 3, axis=0)
y = (fun1(x) > np.random.rand(n, 1)).ravel()
# y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
x = x.ravel()
if symmetric:
xi = np.hstack((x.ravel(), -x.ravel()))
yi = np.hstack((y, y))
i = np.argsort(xi)
x = xi[i]
y = yi[i]
return x, y, fun1
def check_bkregression():
plt.ion()
k = 0
for _i, n in enumerate([50, 100, 300, 600]):
x, y, fun1 = _get_data(n, symmetric=True, loc1=0.1,
scale1=0.6, scale2=0.75)
bkreg = BKRegression(x, y, a=0.05, b=0.05)
fbest = bkreg.prb_search_best(
hsfun='hste', alpha=0.05, color='g', label='Transit_D')
figk = plt.figure(k)
ax = figk.gca()
k += 1
# fbest.score.plot(axis=ax)
# axsize = ax.axis()
# ax.vlines(fbest.hs,axsize[2]+1,axsize[3])
# ax.set(yscale='log')
fbest.labels.title = 'N = {:d}'.format(n)
fbest.plot(axis=ax)
ax.plot(x, fun1(x), 'r')
ax.legend(frameon=False, markerscale=4)
# ax = plt.gca()
ax.set_yticklabels(ax.get_yticks() * 100.0)
ax.grid(True)
fig.tile(range(0, k))
plt.ioff()
plt.show('hold')
if __name__ == '__main__':
if False:
test_docstrings(__file__)
else:
# kde_demo5()
# check_bkregression()
kreg_demo1(hs=0.04, fast=True)
plt.show('hold')

@ -26,6 +26,12 @@ class TestKde(unittest.TestCase):
0.72433808, 1.92973094, 0.44749838, 1.36508452])
self.x = np.linspace(0, max(self.data) + 1, 10)
def test_default_bandwidth_and_inc(self):
kde0 = wk.KDE(self.data, hs=-1, alpha=0.0, inc=None)
print(kde0.hs.tolist(), kde0.inc)
assert_allclose(kde0.hs, 0.19682759537327105)
assert_allclose(kde0.inc, 64)
def test0_KDE1D(self):
data, x = self.data, self.x
@ -36,6 +42,11 @@ class TestKde(unittest.TestCase):
0.52219649, 0.3906213, 0.26381501, 0.16407362,
0.08270612, 0.02991145, 0.00720821])
fx = kde0.eval_points(x)
assert_allclose(fx, [0.2039735, 0.40252503, 0.54595078,
0.52219649, 0.3906213, 0.26381501, 0.16407362,
0.08270612, 0.02991145, 0.00720821])
fx = kde0.eval_grid(x, r=1)
assert_allclose(-fx, [0.11911419724002906, 0.13440000694772541,
0.044400116190638696, -0.0677695267531197,
@ -88,6 +99,11 @@ class TestKde(unittest.TestCase):
assert_allclose(f, [1.03982714, 0.45839018, 0.39514782, 0.32860602,
0.26433318, 0.20717946, 0.15907684, 0.1201074,
0.08941027, 0.06574882])
f = kde.eval_points(x)
assert_allclose(f, [1.03982714, 0.45839018, 0.39514782, 0.32860602,
0.26433318, 0.20717946, 0.15907684, 0.1201074,
0.08941027, 0.06574882])
assert_allclose(np.trapz(f, x), 0.94787730659349068)
f = kde.eval_grid_fast(x)
assert_allclose(f, [1.0401892415290148, 0.45838973393693677,
@ -170,17 +186,28 @@ class TestKde(unittest.TestCase):
x = np.linspace(0, max(np.ravel(data)) + 1, 3)
kde0 = wk.KDE(data, hs=0.5, alpha=0.0, inc=512)
assert_allclose(kde0.eval_grid(x, x),
[[3.27260963e-02, 4.21654678e-02, 5.85338634e-04],
[6.78845466e-02, 1.42195839e-01, 1.41676003e-03],
[1.39466746e-04, 4.26983850e-03, 2.52736185e-05]])
f0 = kde0.eval_grid_fast(x, x, output='plot')
t = [[0.0443506097653615, 0.06433530873456418, 0.0041353838654317856],
[0.07218297149063724, 0.1235819591878892, 0.009288890372002473],
[0.001613328022214066, 0.00794857884864038, 0.0005874786787715641]
]
assert_allclose(kde0.eval_grid_fast(x, x), t)
assert_allclose(f0.data, t)
def test_2d_default_bandwidth(self):
# N = 20
# data = np.random.rayleigh(1, size=(2, N))
data = DATA2D
kde0 = wk.KDE(data, kernel=wk.Kernel('epan', 'hmns'), inc=512)
assert_allclose(kde0.hs, [[0.8838122391117693, 0.08341940479019105],
[0.08341940479019104, 0.7678179747855731]])
self.assertRaises(ValueError, kde0.eval_points, [1, 2, 3])
assert_allclose(kde0.eval_points([1, 2]), 0.11329600006973661)
class TestRegression(unittest.TestCase):

Loading…
Cancel
Save