You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
299 lines
9.4 KiB
Python
299 lines
9.4 KiB
Python
'''
|
|
Created on 2. jan. 2017
|
|
|
|
@author: pab
|
|
'''
|
|
from __future__ import absolute_import, division
|
|
import scipy.stats
|
|
import numpy as np
|
|
import warnings
|
|
from wafo.plotbackend import plotbackend as plt
|
|
from wafo.kdetools import Kernel, TKDE, KDE, KRegression, BKRegression
|
|
try:
|
|
from wafo import fig
|
|
except ImportError:
|
|
warnings.warn('fig import only supported on Windows')
|
|
|
|
__all__ = ['kde_demo1', 'kde_demo2', 'kde_demo3', 'kde_demo4', 'kde_demo5',
|
|
'kreg_demo1', ]
|
|
|
|
|
|
def kde_demo1():
|
|
"""KDEDEMO1 Demonstrate the smoothing parameter impact on KDE.
|
|
|
|
KDEDEMO1 shows the true density (dotted) compared to KDE based on 7
|
|
observations (solid) and their individual kernels (dashed) for 3
|
|
different values of the smoothing parameter, hs.
|
|
|
|
"""
|
|
st = scipy.stats
|
|
x = np.linspace(-4, 4, 101)
|
|
x0 = x / 2.0
|
|
data = np.random.normal(loc=0, scale=1.0, size=7)
|
|
kernel = Kernel('gauss')
|
|
hs = kernel.hns(data)
|
|
hVec = [hs / 2, hs, 2 * hs]
|
|
|
|
for ix, h in enumerate(hVec):
|
|
plt.figure(ix)
|
|
kde = KDE(data, hs=h, kernel=kernel)
|
|
f2 = kde(x, output='plot', title='h_s = {0:2.2f}'.format(float(h)),
|
|
ylab='Density')
|
|
f2.plot('k-')
|
|
|
|
plt.plot(x, st.norm.pdf(x, 0, 1), 'k:')
|
|
n = len(data)
|
|
plt.plot(data, np.zeros(data.shape), 'bx')
|
|
y = kernel(x0) / (n * h * kernel.norm_factor(d=1, n=n))
|
|
for i in range(n):
|
|
plt.plot(data[i] + x0 * h, y, 'b--')
|
|
plt.plot([data[i], data[i]], [0, np.max(y)], 'b')
|
|
|
|
plt.axis([min(x), max(x), 0, 0.5])
|
|
|
|
|
|
def kde_demo2():
|
|
'''Demonstrate the difference between transformation- and ordinary-KDE.
|
|
|
|
KDEDEMO2 shows that the transformation KDE is a better estimate for
|
|
Rayleigh distributed data around 0 than the ordinary KDE.
|
|
'''
|
|
st = scipy.stats
|
|
data = st.rayleigh.rvs(scale=1, size=300)
|
|
|
|
x = np.linspace(1.5e-2, 5, 55)
|
|
|
|
kde = KDE(data)
|
|
f = kde(output='plot', title='Ordinary KDE (hs={0:})'.format(kde.hs))
|
|
plt.figure(0)
|
|
f.plot()
|
|
|
|
plt.plot(x, st.rayleigh.pdf(x, scale=1), ':')
|
|
|
|
# plotnorm((data).^(L2)) # gives a straight line => L2 = 0.5 reasonable
|
|
hs = Kernel('gauss').get_smoothing(data**0.5)
|
|
tkde = TKDE(data, hs=hs, L2=0.5)
|
|
ft = tkde(x, output='plot',
|
|
title='Transformation KDE (hs={0:})'.format(tkde.tkde.hs))
|
|
plt.figure(1)
|
|
ft.plot()
|
|
|
|
plt.plot(x, st.rayleigh.pdf(x, scale=1), ':')
|
|
|
|
plt.figure(0)
|
|
|
|
|
|
def kde_demo3():
|
|
'''Demonstrate the difference between transformation and ordinary-KDE in 2D
|
|
|
|
KDEDEMO3 shows that the transformation KDE is a better estimate for
|
|
Rayleigh distributed data around 0 than the ordinary KDE.
|
|
'''
|
|
st = scipy.stats
|
|
data = st.rayleigh.rvs(scale=1, size=(2, 300))
|
|
|
|
# x = np.linspace(1.5e-3, 5, 55)
|
|
|
|
kde = KDE(data)
|
|
f = kde(output='plot', title='Ordinary KDE', plotflag=1)
|
|
plt.figure(0)
|
|
f.plot()
|
|
|
|
plt.plot(data[0], data[1], '.')
|
|
|
|
# plotnorm((data).^(L2)) % gives a straight line => L2 = 0.5 reasonable
|
|
hs = Kernel('gauss').get_smoothing(data**0.5)
|
|
tkde = TKDE(data, hs=hs, L2=0.5)
|
|
ft = tkde.eval_grid_fast(
|
|
output='plot', title='Transformation KDE', plotflag=1)
|
|
|
|
plt.figure(1)
|
|
ft.plot()
|
|
|
|
plt.plot(data[0], data[1], '.')
|
|
|
|
plt.figure(0)
|
|
|
|
|
|
def kde_demo4(N=50):
|
|
'''Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
|
|
for 1D multimodal distributions
|
|
|
|
KDEDEMO4 shows that the improved Sheather-Jones plug-in smoothing is a
|
|
better compared to normal reference rules (in this case the hns)
|
|
'''
|
|
st = scipy.stats
|
|
|
|
data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(N,)),
|
|
st.norm.rvs(loc=-5, scale=1, size=(N,))))
|
|
|
|
# x = np.linspace(1.5e-3, 5, 55)
|
|
|
|
kde = KDE(data, kernel=Kernel('gauss', 'hns'))
|
|
f = kde(output='plot', title='Ordinary KDE', plotflag=1)
|
|
|
|
kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
|
|
f1 = kde1(output='plot', label='Ordinary KDE', plotflag=1)
|
|
|
|
plt.figure(0)
|
|
f.plot('r', label='hns={0}'.format(kde.hs))
|
|
# plt.figure(2)
|
|
f1.plot('b', label='hisj={0}'.format(kde1.hs))
|
|
x = np.linspace(-9, 9)
|
|
plt.plot(x, (st.norm.pdf(x, loc=-5, scale=1) +
|
|
st.norm.pdf(x, loc=5, scale=1)) / 2, 'k:',
|
|
label='True density')
|
|
plt.legend()
|
|
|
|
|
|
def kde_demo5(N=500):
|
|
'''Demonstrate that the improved Sheather-Jones plug-in (hisj) is superior
|
|
for 2D multimodal distributions
|
|
|
|
KDEDEMO5 shows that the improved Sheather-Jones plug-in smoothing is better
|
|
compared to normal reference rules (in this case the hns)
|
|
'''
|
|
st = scipy.stats
|
|
|
|
data = np.hstack((st.norm.rvs(loc=5, scale=1, size=(2, N,)),
|
|
st.norm.rvs(loc=-5, scale=1, size=(2, N,))))
|
|
kde = KDE(data, kernel=Kernel('gauss', 'hns'))
|
|
f = kde(output='plot', plotflag=1,
|
|
title='Ordinary KDE, hns={0:s}'.format(str(list(kde.hs))))
|
|
|
|
kde1 = KDE(data, kernel=Kernel('gauss', 'hisj'))
|
|
f1 = kde1(output='plot', plotflag=1,
|
|
title='Ordinary KDE, hisj={0:s}'.format(str(list(kde1.hs))))
|
|
|
|
plt.figure(0)
|
|
plt.clf()
|
|
f.plot()
|
|
plt.plot(data[0], data[1], '.')
|
|
plt.figure(1)
|
|
plt.clf()
|
|
f1.plot()
|
|
plt.plot(data[0], data[1], '.')
|
|
|
|
|
|
def kreg_demo1(hs=None, fast=False, fun='hisj'):
|
|
""""""
|
|
N = 100
|
|
# ei = np.random.normal(loc=0, scale=0.075, size=(N,))
|
|
ei = np.array([
|
|
-0.08508516, 0.10462496, 0.07694448, -0.03080661, 0.05777525,
|
|
0.06096313, -0.16572389, 0.01838912, -0.06251845, -0.09186784,
|
|
-0.04304887, -0.13365788, -0.0185279, -0.07289167, 0.02319097,
|
|
0.06887854, -0.08938374, -0.15181813, 0.03307712, 0.08523183,
|
|
-0.0378058, -0.06312874, 0.01485772, 0.06307944, -0.0632959,
|
|
0.18963205, 0.0369126, -0.01485447, 0.04037722, 0.0085057,
|
|
-0.06912903, 0.02073998, 0.1174351, 0.17599277, -0.06842139,
|
|
0.12587608, 0.07698113, -0.0032394, -0.12045792, -0.03132877,
|
|
0.05047314, 0.02013453, 0.04080741, 0.00158392, 0.10237899,
|
|
-0.09069682, 0.09242174, -0.15445323, 0.09190278, 0.07138498,
|
|
0.03002497, 0.02495252, 0.01286942, 0.06449978, 0.03031802,
|
|
0.11754861, -0.02322272, 0.00455867, -0.02132251, 0.09119446,
|
|
-0.03210086, -0.06509545, 0.07306443, 0.04330647, 0.078111,
|
|
-0.04146907, 0.05705476, 0.02492201, -0.03200572, -0.02859788,
|
|
-0.05893749, 0.00089538, 0.0432551, 0.04001474, 0.04888828,
|
|
-0.17708392, 0.16478644, 0.1171006, 0.11664846, 0.01410477,
|
|
-0.12458953, -0.11692081, 0.0413047, -0.09292439, -0.07042327,
|
|
0.14119701, -0.05114335, 0.04994696, -0.09520663, 0.04829406,
|
|
-0.01603065, -0.1933216, 0.19352763, 0.11819496, 0.04567619,
|
|
-0.08348306, 0.00812816, -0.00908206, 0.14528945, 0.02901065])
|
|
x = np.linspace(0, 1, N)
|
|
|
|
va_1 = 0.3 ** 2
|
|
va_2 = 0.7 ** 2
|
|
y0 = np.exp(-x ** 2 / (2 * va_1)) + 1.3*np.exp(-(x - 1) ** 2 / (2 * va_2))
|
|
y = y0 + ei
|
|
kernel = Kernel('gauss', fun=fun)
|
|
hopt = kernel.hisj(x)
|
|
kreg = KRegression(
|
|
x, y, p=0, hs=hs, kernel=kernel, xmin=-2 * hopt, xmax=1 + 2 * hopt)
|
|
if fast:
|
|
kreg.__call__ = kreg.eval_grid_fast
|
|
|
|
f = kreg(x, output='plot', title='Kernel regression', plotflag=1)
|
|
plt.figure(0)
|
|
f.plot(label='p=0')
|
|
|
|
kreg.p = 1
|
|
f1 = kreg(x, output='plot', title='Kernel regression', plotflag=1)
|
|
f1.plot(label='p=1')
|
|
# print(f1.data)
|
|
plt.plot(x, y, '.', label='data')
|
|
plt.plot(x, y0, 'k', label='True model')
|
|
from statsmodels.nonparametric.kernel_regression import KernelReg
|
|
kreg2 = KernelReg(y, x, ('c'))
|
|
y2 = kreg2.fit(x)
|
|
plt.plot(x, y2[0], 'm', label='statsmodel')
|
|
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
print(kreg.tkde.tkde._inv_hs)
|
|
print(kreg.tkde.tkde.hs)
|
|
|
|
|
|
def _get_data(n=100, symmetric=False, loc1=1.1, scale1=0.6, scale2=1.0):
|
|
st = scipy.stats
|
|
dist = st.norm
|
|
|
|
norm1 = scale2 * (dist.pdf(-loc1, loc=-loc1, scale=scale1) +
|
|
dist.pdf(-loc1, loc=loc1, scale=scale1))
|
|
|
|
def fun1(x):
|
|
return ((dist.pdf(x, loc=-loc1, scale=scale1) +
|
|
dist.pdf(x, loc=loc1, scale=scale1)) / norm1).clip(max=1.0)
|
|
|
|
x = np.sort(6 * np.random.rand(n, 1) - 3, axis=0)
|
|
|
|
y = (fun1(x) > np.random.rand(n, 1)).ravel()
|
|
# y = (np.cos(x)>2*np.random.rand(n, 1)-1).ravel()
|
|
x = x.ravel()
|
|
|
|
if symmetric:
|
|
xi = np.hstack((x.ravel(), -x.ravel()))
|
|
yi = np.hstack((y, y))
|
|
i = np.argsort(xi)
|
|
x = xi[i]
|
|
y = yi[i]
|
|
return x, y, fun1
|
|
|
|
|
|
def check_bkregression():
|
|
plt.ion()
|
|
k = 0
|
|
for _i, n in enumerate([50, 100, 300, 600]):
|
|
x, y, fun1 = _get_data(n, symmetric=True, loc1=0.1,
|
|
scale1=0.6, scale2=0.75)
|
|
bkreg = BKRegression(x, y, a=0.05, b=0.05)
|
|
fbest = bkreg.prb_search_best(
|
|
hsfun='hste', alpha=0.05, color='g', label='Transit_D')
|
|
|
|
figk = plt.figure(k)
|
|
ax = figk.gca()
|
|
k += 1
|
|
# fbest.score.plot(axis=ax)
|
|
# axsize = ax.axis()
|
|
# ax.vlines(fbest.hs,axsize[2]+1,axsize[3])
|
|
# ax.set(yscale='log')
|
|
fbest.labels.title = 'N = {:d}'.format(n)
|
|
fbest.plot(axis=ax)
|
|
ax.plot(x, fun1(x), 'r')
|
|
ax.legend(frameon=False, markerscale=4)
|
|
# ax = plt.gca()
|
|
ax.set_yticklabels(ax.get_yticks() * 100.0)
|
|
ax.grid(True)
|
|
|
|
fig.tile(range(0, k))
|
|
plt.ioff()
|
|
plt.show('hold')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# kde_demo5()
|
|
# check_bkregression()
|
|
kreg_demo1(hs=0.04, fast=True)
|
|
plt.show('hold')
|