added from __future__ import absolute_import

Deleted wafodata.py
master
Per A Brodtkorb 9 years ago
parent 6d7beed94b
commit c585c8087a

@ -392,7 +392,7 @@ def test_dctn():
print('xn = idctn(yn)')
print(xn)
print(' ')
print xn-a
print(xn-a)
def test_dct2():

@ -1,3 +1,4 @@
from __future__ import absolute_import
from numpy import (r_, minimum, maximum, atleast_1d, atleast_2d, mod, ones,
floor, random, eye, nonzero, where, repeat, sqrt, exp, inf,
diag, zeros, sin, arcsin, nan)
@ -6,7 +7,7 @@ from scipy.special import ndtr as cdfnorm, ndtri as invnorm
from scipy.special import erfc
import warnings
import numpy as np
from wafo.misc import common_shape
from .misc import common_shape
try:
import mvn # @UnresolvedImport

@ -5,10 +5,10 @@ Created on 20. jan. 2011
license BSD
'''
from __future__ import division
from __future__ import absolute_import, division
import warnings
import numpy as np
from wafo.plotbackend import plotbackend
from .plotbackend import plotbackend
from matplotlib import mlab
__all__ = ['cltext', 'tallibing', 'test_docstrings']

@ -1,14 +1,14 @@
from __future__ import division
from __future__ import absolute_import, division
import warnings
import numpy as np
from numpy import pi, sqrt, ones, zeros # @UnresolvedImport
from scipy import integrate as intg
import scipy.special.orthogonal as ort
from scipy import special as sp
from wafo.plotbackend import plotbackend as plt
from .plotbackend import plotbackend as plt
from scipy.integrate import simps, trapz
from wafo.demos import humps
#from pychebfun import Chebfun
from .demos import humps
# from pychebfun import Chebfun
_EPS = np.finfo(float).eps
_POINTS_AND_WEIGHTS = {}

@ -1,5 +1,5 @@
#!/usr/bin/env python
from __future__ import division
from __future__ import absolute_import, division
import numpy as np
import scipy.signal
# import scipy.sparse.linalg # @UnusedImport
@ -7,7 +7,7 @@ import scipy.sparse as sparse
from numpy import ones, zeros, prod, sin, diff, pi, inf, vstack, linspace
from scipy.interpolate import PiecewisePolynomial, interp1d
import polynomial as pl
from . import polynomial as pl
__all__ = [

@ -9,7 +9,7 @@
# Licence: LGPL
# -------------------------------------------------------------------------
#!/usr/bin/env python # @IgnorePep8
from __future__ import division
from __future__ import absolute_import, division
import copy
import numpy as np
import scipy
@ -19,12 +19,12 @@ from scipy import interpolate, linalg, optimize, sparse, special, stats
from scipy.special import gamma
from numpy import pi, sqrt, atleast_2d, exp, newaxis # @UnresolvedImport
from wafo.misc import meshgrid, nextpow2, tranproc # , trangood
from wafo.containers import PlotData
from wafo.dctpack import dct, dctn, idctn
from wafo.plotbackend import plotbackend as plt
from .misc import meshgrid, nextpow2, tranproc # , trangood
from .containers import PlotData
from .dctpack import dct, dctn, idctn
from .plotbackend import plotbackend as plt
try:
from wafo import fig
from . import fig
except ImportError:
warnings.warn('fig import only supported on Windows')

@ -1,7 +1,7 @@
'''
Misc
'''
from __future__ import division
from __future__ import absolute_import, division
import collections
import sys
import fractions
@ -20,7 +20,7 @@ from time import strftime, gmtime
from .plotbackend import plotbackend
from collections import OrderedDict
try:
import c_library as clib # @UnresolvedImport
from . import c_library as clib # @UnresolvedImport
except ImportError:
warnings.warn('c_library not found. Check its compilation.')
clib = None

@ -12,14 +12,15 @@
# !/usr/bin/env python
from __future__ import division
from wafo.transform.core import TrData
from wafo.transform.estimation import TransformEstimator
from wafo.stats import distributions
from wafo.misc import (nextpow2, findtp, findrfc, findtc, findcross,
from __future__ import absolute_import, division
from .transform.core import TrData
from .transform.estimation import TransformEstimator
from .stats import distributions
from .misc import (nextpow2, findtp, findrfc, findtc, findcross,
ecross, JITImport, DotDict, gravity, findrfc_astm)
from wafo.interpolate import stineman_interp
from wafo.containers import PlotData
from .interpolate import stineman_interp
from .containers import PlotData
from .plotbackend import plotbackend
from scipy.integrate import trapz
from scipy.signal import welch, lfilter
from scipy.signal.windows import get_window # @UnusedImport
@ -35,12 +36,11 @@ from numpy import (inf, pi, zeros, ones, sqrt, where, log, exp, cos, sin,
cumsum, ravel, isnan, ceil, diff, array)
from numpy.fft import fft # @UnusedImport
from numpy.random import randn
import matplotlib
from matplotlib.mlab import psd, detrend_mean
from plotbackend import plotbackend
floatinfo = finfo(float)
matplotlib.interactive(True)
_wafocov = JITImport('wafo.covariance')
_wafocov_estimation = JITImport('wafo.covariance.estimation')
_wafospec = JITImport('wafo.spectrum')

@ -82,10 +82,10 @@ Contents.m : Contents file for Matlab
'''
from __future__ import division
from __future__ import absolute_import, division
import numpy as np
from numpy.fft import fft
from wafo.dctpack import dct
from .dctpack import dct
# from scipy.fftpack.realtransforms import dct

@ -17,9 +17,10 @@
# Licence: LGPL
# -------------------------------------------------------------------------
# !/usr/bin/env python
from __future__ import absolute_import
import warnings # @UnusedImport
from numpy.polynomial import polyutils as pu
from plotbackend import plotbackend as plt
from .plotbackend import plotbackend as plt
import numpy as np
from numpy import (zeros, asarray, newaxis, arange,
logical_or, any, pi, cos, round, diff, all, exp,

@ -30,11 +30,12 @@ Created on 15. des. 2009
# MSO = win32com.client.gencache.EnsureModule(typelib_mso.clsid,
# typelib_mso.lcid,
# int(typelib_mso.major), int(typelib_mso.minor))
from __future__ import absolute_import
import os
import warnings
import win32com.client
import MSO
import MSPPT
from . import MSO
from . import MSPPT
from PIL import Image # @UnresolvedImport
g = globals()

@ -1,4 +1,4 @@
from __future__ import division
from __future__ import absolute_import, division
import numpy as np
# from math import pow
# from numpy import zeros,dot
@ -6,13 +6,14 @@ from numpy import (pi, abs, size, convolve, linalg, concatenate, sqrt)
from scipy.sparse import spdiags
from scipy.sparse.linalg import spsolve, expm
from scipy.signal import medfilt
from wafo.dctpack import dctn, idctn
from .dctpack import dctn, idctn
from .plotbackend import plotbackend as plt
import scipy.optimize as optimize
from scipy.signal import _savitzky_golay
from scipy.ndimage import convolve1d
from scipy.ndimage.morphology import distance_transform_edt
import warnings
from wafo.plotbackend import plotbackend as plt
__all__ = ['SavitzkyGolay', 'Kalman', 'HodrickPrescott', 'smoothn']

@ -1,551 +0,0 @@
import warnings
from graphutil import cltext
from plotbackend import plotbackend
from time import gmtime, strftime
import numpy as np
from scipy.integrate.quadrature import cumtrapz # @UnresolvedImport
from scipy.interpolate import griddata
from scipy import integrate
__all__ = ['PlotData', 'AxisLabels']
def empty_copy(obj):
class Empty(obj.__class__):
def __init__(self):
pass
newcopy = Empty()
newcopy.__class__ = obj.__class__
return newcopy
def _set_seed(iseed):
if iseed is not None:
try:
np.random.set_state(iseed)
except:
np.random.seed(iseed)
def now():
"""Return current date and time as a string."""
return strftime("%a, %d %b %Y %H:%M:%S", gmtime())
class PlotData(object):
"""Container class for data objects in WAFO.
Member variables
----------------
data : array_like
args : vector for 1D, list of vectors for 2D, 3D, ...
labels : AxisLabels
children : list of PlotData objects
Member methods
--------------
plot :
copy :
Example
-------
>>> import numpy as np
>>> x = np.arange(-2, 2, 0.2)
# Plot 2 objects in one call
>>> d2 = PlotData(np.sin(x), x, xlab='x', ylab='sin', title='sinus')
>>> h = d2.plot()
Plot with confidence interval
>>> d3 = PlotData(np.sin(x),x)
>>> d3.children = [PlotData(np.vstack([np.sin(x)*0.9, np.sin(x)*1.2]).T,x)]
>>> d3.plot_args_children=[':r']
>>> h = d3.plot()
See also
--------
specdata,
covdata
"""
def __init__(self, data=None, args=None, *args2, **kwds):
self.data = data
self.args = args
self.date = now()
self.plotter = kwds.pop('plotter', None)
self.children = None
self.plot_args_children = kwds.pop('plot_args_children', [])
self.plot_kwds_children = kwds.pop('plot_kwds_children', {})
self.plot_args = kwds.pop('plot_args', [])
self.plot_kwds = kwds.pop('plot_kwds', {})
self.labels = AxisLabels(**kwds)
if not self.plotter:
self.setplotter(kwds.get('plotmethod', None))
def plot(self, *args, **kwds):
axis = kwds.pop('axis', None)
if axis is None:
axis = plotbackend.gca()
tmp = None
plotflag = kwds.get('plotflag', None)
if not plotflag and self.children is not None:
plotbackend.hold('on')
tmp = []
child_args = kwds.pop(
'plot_args_children', tuple(self.plot_args_children))
child_kwds = dict(self.plot_kwds_children).copy()
child_kwds.update(kwds.pop('plot_kwds_children', {}))
child_kwds['axis'] = axis
for child in self.children:
tmp1 = child.plot(*child_args, **child_kwds)
if tmp1 is not None:
tmp.append(tmp1)
if len(tmp) == 0:
tmp = None
main_args = args if len(args) else tuple(self.plot_args)
main_kwds = dict(self.plot_kwds).copy()
main_kwds.update(kwds)
main_kwds['axis'] = axis
tmp2 = self.plotter.plot(self, *main_args, **main_kwds)
return tmp2, tmp
def eval_points(self, *args, **kwds):
'''
>>> x = np.linspace(0,5,20)
>>> d = PlotData(np.sin(x),x)
>>> xi = np.linspace(0,5,60)
>>> di = PlotData(d.eval_points(xi, method='cubic'),xi)
>>> h = d.plot('.')
>>> hi = di.plot()
'''
if isinstance(self.args, (list, tuple)): # Multidimensional data
ndim = len(self.args)
if ndim < 2:
msg = '''Unable to determine plotter-type, because len(self.args)<2.
If the data is 1D, then self.args should be a vector!
If the data is 2D, then length(self.args) should be 2.
If the data is 3D, then length(self.args) should be 3.
Unless you fix this, the plot methods will not work!'''
warnings.warn(msg)
else:
return griddata(self.args, self.data.ravel(), *args, **kwds)
else: # One dimensional data
return griddata((self.args,), self.data, *args, **kwds)
def integrate(self, a, b, **kwds):
'''
>>> x = np.linspace(0,5,60)
>>> d = PlotData(np.sin(x), x)
>>> d.integrate(0,np.pi/2)
0.99940054759302188
'''
method = kwds.pop('method', 'trapz')
fun = getattr(integrate, method)
if isinstance(self.args, (list, tuple)): # Multidimensional data
ndim = len(self.args)
if ndim < 2:
msg = '''Unable to determine plotter-type, because len(self.args)<2.
If the data is 1D, then self.args should be a vector!
If the data is 2D, then length(self.args) should be 2.
If the data is 3D, then length(self.args) should be 3.
Unless you fix this, the plot methods will not work!'''
warnings.warn(msg)
else:
return griddata(self.args, self.data.ravel(), **kwds)
else: # One dimensional data
x = self.args
ix = np.flatnonzero((a < x) & (x < b))
xi = np.hstack((a, x.take(ix), b))
fi = np.hstack(
(self.eval_points(a), self.data.take(ix), self.eval_points(b)))
return fun(fi, xi, **kwds)
def show(self):
self.plotter.show()
def copy(self):
newcopy = empty_copy(self)
newcopy.__dict__.update(self.__dict__)
return newcopy
def setplotter(self, plotmethod=None):
"""Set plotter based on the data type data_1d, data_2d, data_3d or
data_nd."""
if isinstance(self.args, (list, tuple)): # Multidimensional data
ndim = len(self.args)
if ndim < 2:
msg = '''Unable to determine plotter-type, because len(self.args)<2.
If the data is 1D, then self.args should be a vector!
If the data is 2D, then length(self.args) should be 2.
If the data is 3D, then length(self.args) should be 3.
Unless you fix this, the plot methods will not work!'''
warnings.warn(msg)
elif ndim == 2:
self.plotter = Plotter_2d(plotmethod)
else:
warnings.warn('Plotter method not implemented for ndim>2')
else: # One dimensional data
self.plotter = Plotter_1d(plotmethod)
class AxisLabels:
def __init__(self, title='', xlab='', ylab='', zlab='', **kwds):
self.title = title
self.xlab = xlab
self.ylab = ylab
self.zlab = zlab
def __repr__(self):
return self.__str__()
def __str__(self):
return '%s\n%s\n%s\n%s\n' % (self.title, self.xlab, self.ylab,
self.zlab)
def copy(self):
newcopy = empty_copy(self)
newcopy.__dict__.update(self.__dict__)
return newcopy
def labelfig(self, axis=None):
if axis is None:
axis = plotbackend.gca()
try:
h1 = axis.set_title(self.title)
h2 = axis.set_xlabel(self.xlab)
h3 = axis.set_ylabel(self.ylab)
# h4 = plotbackend.zlabel(self.zlab)
return h1, h2, h3
except:
pass
class Plotter_1d(object):
"""
Parameters
----------
plotmethod : string
defining type of plot. Options are:
bar : bar plot with rectangles
barh : horizontal bar plot with rectangles
loglog : plot with log scaling on the *x* and *y* axis
semilogx : plot with log scaling on the *x* axis
semilogy : plot with log scaling on the *y* axis
plot : Plot lines and/or markers (default)
stem : Stem plot
step : stair-step plot
scatter : scatter plot
"""
def __init__(self, plotmethod='plot'):
self.plotfun = None
if plotmethod is None:
plotmethod = 'plot'
self.plotmethod = plotmethod
self.plotbackend = plotbackend
# try:
# self.plotfun = getattr(plotbackend, plotmethod)
# except:
# pass
def show(self):
plotbackend.show()
def plot(self, wdata, *args, **kwds):
axis = kwds.pop('axis', None)
if axis is None:
axis = plotbackend.gca()
plotflag = kwds.pop('plotflag', False)
if plotflag:
h1 = self._plot(axis, plotflag, wdata, *args, **kwds)
else:
if isinstance(wdata.data, (list, tuple)):
vals = tuple(wdata.data)
else:
vals = (wdata.data,)
if isinstance(wdata.args, (list, tuple)):
args1 = tuple((wdata.args)) + vals + args
else:
args1 = tuple((wdata.args,)) + vals + args
plotfun = getattr(axis, self.plotmethod)
h1 = plotfun(*args1, **kwds)
h2 = wdata.labels.labelfig(axis)
return h1, h2
def _plot(self, axis, plotflag, wdata, *args, **kwds):
x = wdata.args
data = transformdata(x, wdata.data, plotflag)
dataCI = getattr(wdata, 'dataCI', ())
h1 = plot1d(axis, x, data, dataCI, plotflag, *args, **kwds)
return h1
def plot1d(axis, args, data, dataCI, plotflag, *varargin, **kwds):
plottype = np.mod(plotflag, 10)
if plottype == 0: # % No plotting
return []
elif plottype == 1:
H = axis.plot(args, data, *varargin, **kwds)
elif plottype == 2:
H = axis.step(args, data, *varargin, **kwds)
elif plottype == 3:
H = axis.stem(args, data, *varargin, **kwds)
elif plottype == 4:
H = axis.errorbar(args, data,
yerr=[dataCI[:, 0] - data, dataCI[:, 1] - data],
*varargin, **kwds)
elif plottype == 5:
H = axis.bar(args, data, *varargin, **kwds)
elif plottype == 6:
level = 0
if np.isfinite(level):
H = axis.fill_between(args, data, level, *varargin, **kwds)
else:
H = axis.fill_between(args, data, *varargin, **kwds)
elif plottype == 7:
H = axis.plot(args, data, *varargin, **kwds)
H = axis.fill_between(
args, dataCI[:, 0], dataCI[:, 1], alpha=0.2, color='r')
scale = plotscale(plotflag)
logXscale = 'x' in scale
logYscale = 'y' in scale
logZscale = 'z' in scale
if logXscale:
axis.set(xscale='log')
if logYscale:
axis.set(yscale='log')
if logZscale:
axis.set(zscale='log')
transFlag = np.mod(plotflag // 10, 10)
logScale = logXscale or logYscale or logZscale
if logScale or (transFlag == 5 and not logScale):
ax = list(axis.axis())
fmax1 = data.max()
if transFlag == 5 and not logScale:
ax[3] = 11 * np.log10(fmax1)
ax[2] = ax[3] - 40
else:
ax[3] = 1.15 * fmax1
ax[2] = ax[3] * 1e-4
axis.axis(ax)
if np.any(dataCI) and plottype < 3:
axis.hold(True)
plot1d(axis, args, dataCI, (), plotflag, 'r--')
return H
def plotscale(plotflag):
"""Return plotscale from plotflag.
CALL scale = plotscale(plotflag)
plotflag = integer defining plotscale.
Let scaleId = floor(plotflag/100).
If scaleId < 8 then:
0 'linear' : Linear scale on all axes.
1 'xlog' : Log scale on x-axis.
2 'ylog' : Log scale on y-axis.
3 'xylog' : Log scale on xy-axis.
4 'zlog' : Log scale on z-axis.
5 'xzlog' : Log scale on xz-axis.
6 'yzlog' : Log scale on yz-axis.
7 'xyzlog' : Log scale on xyz-axis.
otherwise
if (mod(scaleId,10)>0) : Log scale on x-axis.
if (mod(floor(scaleId/10),10)>0) : Log scale on y-axis.
if (mod(floor(scaleId/100),10)>0) : Log scale on z-axis.
scale = string defining plotscale valid options are:
'linear', 'xlog', 'ylog', 'xylog', 'zlog', 'xzlog',
'yzlog', 'xyzlog'
Example
>>> for id in range(100,701,100):
... plotscale(id)
'xlog'
'ylog'
'xylog'
'zlog'
'xzlog'
'yzlog'
'xyzlog'
>>> plotscale(200)
'ylog'
>>> plotscale(300)
'xylog'
>>> plotscale(300)
'xylog'
See also
--------
transformdata
"""
scaleId = plotflag // 100
if scaleId > 7:
logXscaleId = np.mod(scaleId, 10) > 0
logYscaleId = (np.mod(scaleId // 10, 10) > 0) * 2
logZscaleId = (np.mod(scaleId // 100, 10) > 0) * 4
scaleId = logYscaleId + logXscaleId + logZscaleId
scales = ['linear', 'xlog', 'ylog', 'xylog',
'zlog', 'xzlog', 'yzlog', 'xyzlog']
return scales[scaleId]
def transformdata(x, f, plotflag):
transFlag = np.mod(plotflag // 10, 10)
if transFlag == 0:
data = f
elif transFlag == 1:
data = 1 - f
elif transFlag == 2:
data = cumtrapz(f, x)
elif transFlag == 3:
data = 1 - cumtrapz(f, x)
if transFlag in (4, 5):
if transFlag == 4:
data = -np.log1p(-cumtrapz(f, x))
else:
if any(f < 0):
raise ValueError('Invalid plotflag: Data or dataCI is '
'negative, but must be positive')
data = 10 * np.log10(f)
return data
class Plotter_2d(Plotter_1d):
"""
Parameters
----------
plotmethod : string
defining type of plot. Options are:
contour (default)
contourf
mesh
surf
"""
def __init__(self, plotmethod='contour'):
if plotmethod is None:
plotmethod = 'contour'
super(Plotter_2d, self).__init__(plotmethod)
def _plot(self, axis, plotflag, wdata, *args, **kwds):
h1 = plot2d(axis, wdata, plotflag, *args, **kwds)
return h1
def plot2d(axis, wdata, plotflag, *args, **kwds):
f = wdata
if isinstance(wdata.args, (list, tuple)):
args1 = tuple((wdata.args)) + (wdata.data,) + args
else:
args1 = tuple((wdata.args,)) + (wdata.data,) + args
if plotflag in (1, 6, 7, 8, 9):
isPL = False
# check if contour levels is submitted
if hasattr(f, 'clevels') and len(f.clevels) > 0:
CL = f.clevels
isPL = hasattr(f, 'plevels') and f.plevels is not None
if isPL:
PL = f.plevels # levels defines quantile levels? 0=no 1=yes
else:
dmax = np.max(f.data)
dmin = np.min(f.data)
CL = dmax - (dmax - dmin) * \
(1 - np.r_[0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.5, 0.75])
clvec = np.sort(CL)
if plotflag in [1, 8, 9]:
h = axis.contour(*args1, levels=CL, **kwds)
# else:
# [cs hcs] = contour3(f.x{:},f.f,CL,sym);
if plotflag in (1, 6):
ncl = len(clvec)
if ncl > 12:
ncl = 12
warnings.warn(
'Only the first 12 levels will be listed in table.')
clvals = PL[:ncl] if isPL else clvec[:ncl]
# print(contour level text)
unused_axcl = cltext(clvals, percent=isPL)
elif any(plotflag == [7, 9]):
axis.clabel(h)
else:
axis.clabel(h)
elif plotflag == 2:
h = axis.mesh(*args1, **kwds)
elif plotflag == 3:
# shading interp % flat, faceted % surfc
h = axis.surf(*args1, **kwds)
elif plotflag == 4:
h = axis.waterfall(*args1, **kwds)
elif plotflag == 5:
h = axis.pcolor(*args1, **kwds) # %shading interp % flat, faceted
elif plotflag == 10:
h = axis.contourf(*args1, **kwds)
axis.clabel(h)
plotbackend.colorbar(h)
else:
raise ValueError('unknown option for plotflag')
# if any(plotflag==(2:5))
# shading(shad);
# end
# pass
def test_eval_points():
plotbackend.ioff()
x = np.linspace(0, 5, 21)
d = PlotData(np.sin(x), x)
xi = np.linspace(0, 5, 61)
di = PlotData(d.eval_points(xi, method='cubic'), xi)
d.plot('.')
di.plot()
di.show()
def test_integrate():
x = np.linspace(0, 5, 60)
d = PlotData(np.sin(x), x)
print(d.integrate(0, np.pi / 2, method='simps'))
def test_docstrings():
import doctest
doctest.testmod()
def main():
pass
if __name__ == '__main__':
# test_integrate()
# test_eval_points()
test_docstrings()
# main()
Loading…
Cancel
Save