|
|
@ -448,7 +448,7 @@ def mctp2tc(f_Mm, utc, param, f_mM=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mctp2rfc(fmM, fMm=None):
|
|
|
|
def mctp2rfc(fmM, fMm=None):
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
Return Rainflow matrix given a Markov chain of turning points
|
|
|
|
Return Rainflow matrix given a Markov chain of turning points
|
|
|
|
|
|
|
|
|
|
|
|
computes f_rfc = f_mM + F_mct(f_mM).
|
|
|
|
computes f_rfc = f_mM + F_mct(f_mM).
|
|
|
@ -477,7 +477,7 @@ def mctp2rfc(fmM, fMm=None):
|
|
|
|
... [ 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
|
|
... [ 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
|
|
... [ 0.0, 0.0, 0.0, 0.0, 0.0]], 1.e-7)
|
|
|
|
... [ 0.0, 0.0, 0.0, 0.0, 0.0]], 1.e-7)
|
|
|
|
True
|
|
|
|
True
|
|
|
|
'''
|
|
|
|
"""
|
|
|
|
def _get_PMm(AA1, MA, nA):
|
|
|
|
def _get_PMm(AA1, MA, nA):
|
|
|
|
PMm = AA1.copy()
|
|
|
|
PMm = AA1.copy()
|
|
|
|
for j in range(nA):
|
|
|
|
for j in range(nA):
|
|
|
|