master
Per A Brodtkorb 8 years ago
parent f7754c2402
commit 5a7d739721

File diff suppressed because it is too large Load Diff

@ -1,6 +1,6 @@
'''
"""
Module extending the bitoperator capabilites of numpy
'''
"""
from numpy import (bitwise_and, bitwise_or,
bitwise_not, binary_repr, # @UnusedImport

@ -1,8 +1,8 @@
'''
"""
Created on 10. mai 2014
@author: pab
'''
"""
import numpy as np
from numpy.fft import fft
from wafo.misc import nextpow2
@ -13,7 +13,7 @@ import warnings
def sampling_period(t_vec):
'''
"""
Returns sampling interval
Returns
@ -24,7 +24,7 @@ def sampling_period(t_vec):
[m] otherwise
See also
'''
"""
dt1 = t_vec[1] - t_vec[0]
n = len(t_vec) - 1
t = t_vec[-1] - t_vec[0]
@ -35,7 +35,7 @@ def sampling_period(t_vec):
class CovarianceEstimator(object):
'''
"""
Class for estimating AutoCovariance from timeseries
Parameters
@ -61,7 +61,7 @@ class CovarianceEstimator(object):
True if normalize output to one
dt : scalar
time-step between data points (default see sampling_period).
'''
"""
def __init__(self, lag=None, tr=None, detrend=None, window='boxcar',
flag='biased', norm=False, dt=None):
self.lag = lag
@ -84,24 +84,24 @@ class CovarianceEstimator(object):
return lag
def tocovdata(self, timeseries):
'''
"""
Return auto covariance function from data.
Return
-------
R : CovData1D object
acf : CovData1D object
with attributes:
data : ACF vector length L+1
args : time lags length L+1
sigma : estimated large lag standard deviation of the estimate
assuming x is a Gaussian process:
if R(k)=0 for all lags k>q then an approximation
of the variance for large samples due to Bartlett
var(R(k))=1/N*(R(0)^2+2*R(1)^2+2*R(2)^2+ ..+2*R(q)^2)
assuming x is a Gaussian process:
if acf[k]=0 for all lags k>q then an approximation
of the variance for large samples due to Bartlett
var(acf[k])=1/N*(acf[0]**2+2*acf[1]**2+2*acf[2]**2+ ..+2*acf[q]**2)
for k>q and where N=length(x). Special case is
white noise where it equals R(0)^2/N for k>0
white noise where it equals acf[0]**2/N for k>0
norm : bool
If false indicating that R is not normalized
If false indicating that auto_cov is not normalized
Example:
--------
@ -112,7 +112,7 @@ class CovarianceEstimator(object):
>>> acf = ts.tocovdata(150)
h = acf.plot()
'''
"""
lag = self.lag
window = self.window
detrend = self.detrend
@ -142,30 +142,30 @@ class CovarianceEstimator(object):
x = detrend(x)
nfft = 2 ** nextpow2(n)
Rper = abs(fft(x, nfft)) ** 2 / Ncens # Raw periodogram
R = np.real(fft(Rper)) / nfft # ifft = fft/nfft since Rper is real!
raw_periodogram = abs(fft(x, nfft)) ** 2 / Ncens
auto_cov = np.real(fft(raw_periodogram)) / nfft # ifft = fft/nfft since raw_periodogram is real!
if self.flag.startswith('unbiased'):
# unbiased result, i.e. divide by n-abs(lag)
R = R[:Ncens] * Ncens / np.arange(Ncens, 1, -1)
auto_cov = auto_cov[:Ncens] * Ncens / np.arange(Ncens, 1, -1)
if self.norm:
R = R / R[0]
auto_cov = auto_cov / auto_cov[0]
if lag is None:
lag = self._estimate_lag(R, Ncens)
lag = self._estimate_lag(auto_cov, Ncens)
lag = min(lag, n - 2)
if isinstance(window, str) or type(window) is tuple:
win = get_window(window, 2 * lag - 1)
else:
win = np.asarray(window)
R[:lag] = R[:lag] * win[lag - 1::]
R[lag] = 0
auto_cov[:lag] = auto_cov[:lag] * win[lag - 1::]
auto_cov[lag] = 0
lags = slice(0, lag + 1)
t = np.linspace(0, lag * dt, lag + 1)
acf = CovData1D(R[lags], t)
acf.sigma = np.sqrt(np.r_[0, R[0] ** 2,
R[0] ** 2 + 2 * np.cumsum(R[1:] ** 2)] / Ncens)
acf = CovData1D(auto_cov[lags], t)
acf.sigma = np.sqrt(np.r_[0, auto_cov[0] ** 2,
auto_cov[0] ** 2 + 2 * np.cumsum(auto_cov[1:] ** 2)] / Ncens)
acf.children = [PlotData(-2. * acf.sigma[lags], t),
PlotData(2. * acf.sigma[lags], t)]
acf.plot_args_children = ['r:']

@ -8,7 +8,7 @@ __all__ = ['dct', 'idct', 'dctn', 'idctn', 'dst', 'idst', 'dstn', 'idstn']
def dct(x, type=2, n=None, axis=-1, norm='ortho'): # @ReservedAssignment
'''
"""
Return the Discrete Cosine Transform of arbitrary type sequence x.
Parameters
@ -108,7 +108,7 @@ def dct(x, type=2, n=None, axis=-1, norm='ortho'): # @ReservedAssignment
'A Fast Cosine Transform in One and Two Dimensions', by J. Makhoul, `IEEE
Transactions on acoustics, speech and signal processing` vol. 28(1),
pp. 27-34, http://dx.doi.org/10.1109/TASSP.1980.1163351 (1980).
'''
"""
return _dct(x, type, n, axis, norm)
@ -117,7 +117,7 @@ def dst(x, type=2, n=None, axis=-1, norm='ortho'): # @ReservedAssignment
def idct(x, type=2, n=None, axis=-1, norm='ortho'): # @ReservedAssignment
'''
"""
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
Parameters
@ -152,7 +152,7 @@ def idct(x, type=2, n=None, axis=-1, norm='ortho'): # @ReservedAssignment
IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type 3,
and IDCT of type 3 is the DCT of type 2. For the definition of these types,
see `dct`.
'''
"""
return _idct(x, type, n, axis, norm)
@ -201,7 +201,7 @@ def _raw_dctn(y, type, shape, axes, norm, fun): # @ReservedAssignment
def dctn(x, type=2, shape=None, axes=None, # @ReservedAssignment
norm='ortho'):
'''
"""
Return the N-D Discrete Cosine Transform of array x.
Parameters
@ -271,7 +271,7 @@ def dctn(x, type=2, shape=None, axes=None, # @ReservedAssignment
See also
--------
idctn, dct, idct
'''
"""
y = np.atleast_1d(x)
return _raw_dctn(y, type, shape, axes, norm, dct)
@ -284,14 +284,14 @@ def dstn(x, type=2, shape=None, axes=None, # @ReservedAssignment
def idctn(x, type=2, shape=None, axes=None, # @ReservedAssignment
norm='ortho'):
'''Return inverse N-D Discrete Cosine Transform of array x.
"""Return inverse N-D Discrete Cosine Transform of array x.
For description of parameters see `dctn`.
See Also
--------
dctn : for detailed information.
'''
"""
y = np.atleast_1d(x)
return _raw_dctn(y, type, shape, axes, norm, idct)
@ -317,7 +317,7 @@ def no_leading_ones(x):
def shiftdim(x, n=None):
'''
"""
Shift dimensions
Parameters
@ -342,7 +342,7 @@ def shiftdim(x, n=None):
See also
--------
reshape, squeeze
'''
"""
if n is None:
return x.reshape(no_leading_ones(x.shape))
elif n >= 0:
@ -383,7 +383,7 @@ def example_dct2(debug=True):
plt.set_cmap('jet')
J = dctn(rgb)
irgb = idctn(J)
out['diff_rgb_irgb'] = np.abs(rgb-irgb).max()
out['diff_rgb_irgb'] = np.abs(rgb - irgb).max()
plt.imshow(np.log(np.abs(J)))
# plt.colorbar() #colormap(jet), colorbar
# plt.show('hold')

@ -319,7 +319,7 @@ gh = wtm.TrHermite(mean=me, sigma=sa, skew=sk, kurt=ku, ysigma=sa)
ysim_t = St.sim(ns=240, dt=0.5)
xsim_t = ysim_t.copy()
xsim_t[:,1] = gh.gauss2dat(ysim_t[:,1])
xsim_t[:, 1] = gh.gauss2dat(ysim_t[:, 1])
ts_y = wo.mat2timeseries(ysim_t)
ts_x = wo.mat2timeseries(xsim_t)

@ -70,7 +70,7 @@ plt.semilogx(T, sT)
plt.hold(True)
# ws.edf(Hs).plot()
Nmax = len(Hs)
N = np.r_[1:Nmax+1]
N = np.r_[1:Nmax + 1]
plt.plot(Nmax/N, sorted(Hs, reverse=True), '.')
plt.title('Return values in the Gumbel model')
@ -107,7 +107,7 @@ XI = np.r_[1:len(xn):0.25] - .99
N = len(XI)
N = N - np.mod(N, 4*60*5)
YI = si.interp1d(xn[:, 0],xn[:, 1], kind='linear')(XI)
YI = si.interp1d(xn[:, 0], xn[:, 1], kind='linear')(XI)
YI = YI.reshape(4*60*5, N/(4*60*5)) # Each column holds 5 minutes of
# interpolated data.
Y5 = (YI - YI.mean(axis=0)) / YI.std(axis=0)

@ -28,7 +28,8 @@ def plot_varying_symbols(x, y, color='red', size=5):
def damage_vs_S(S, beta, K):
"""
calculate the damage 1/N for a given stress S
Calculate the damage 1/N for a given stress S
Parameters
----------
S : Stress [Pa]

@ -32,7 +32,7 @@ __all__ = ['Rind', 'rindmod', 'mvnprdmod', 'mvn', 'cdflomax', 'prbnormtndpc',
class Rind(object):
'''
"""
RIND Computes multivariate normal expectations
Parameters
@ -152,10 +152,10 @@ class Rind(object):
Wave Distributions",
Methodology And Computing In Applied Probability, Volume 8, Number 1,
pp. 65-91(27)
'''
"""
def __init__(self, **kwds):
'''
"""
Parameters
----------
method : integer, optional
@ -217,7 +217,7 @@ class Rind(object):
number of times to use the regression equation to restrict
integration area. Nc1c2 = 1,2 is recommended. (default 2)
(note: works only for method >0)
'''
"""
self.method = 3
self.xcscale = 0
self.abseps = 0
@ -238,7 +238,7 @@ class Rind(object):
self.set_constants()
def initialize(self, speed=None):
'''
"""
Initializes member variables according to speed.
Parameter
@ -259,7 +259,7 @@ class Rind(object):
maxpts : Maximum number of function values allowed.
quadno : Quadrature formulae used in integration of Xd(i)
implicitly determining # nodes
'''
"""
if speed is None:
return
self.speed = min(max(speed, 1), 13)
@ -324,22 +324,22 @@ class Rind(object):
if xc is None:
xc = zeros((0, 1))
BIG, Blo, Bup, xc = atleast_2d(cov, ab, bb, xc)
Blo = Blo.copy()
Bup = Bup.copy()
big, b_lo, b_up, xc = atleast_2d(cov, ab, bb, xc)
b_lo = b_lo.copy()
b_up = b_up.copy()
Ntdc = BIG.shape[0]
Ntdc = big.shape[0]
Nc = xc.shape[0]
if nt is None:
nt = Ntdc - Nc
unused_Mb, Nb = Blo.shape
unused_Mb, Nb = b_lo.shape
Nd = Ntdc - nt - Nc
Ntd = nt + Nd
if indI is None:
if Nb != Ntd:
raise ValueError('Inconsistent size of Blo and Bup')
raise ValueError('Inconsistent size of b_lo and b_up')
indI = r_[-1:Ntd]
Ex, indI = atleast_1d(m, indI)
@ -354,22 +354,22 @@ class Rind(object):
# if INFIN(I) = 1, Ith limits are [Hlo(I), infinity);
# if INFIN(I) = 2, Ith limits are [Hlo(I), Hup(I)].
infinity = 37
dev = sqrt(diag(BIG)) # std
dev = sqrt(diag(big)) # std
ind = nonzero(indI[1:] > -1)[0]
infin = repeat(2, len(indI) - 1)
infin[ind] = (2 - (Bup[0, ind] > infinity * dev[indI[ind + 1]]) -
2 * (Blo[0, ind] < -infinity * dev[indI[ind + 1]]))
infin[ind] = (2 - (b_up[0, ind] > infinity * dev[indI[ind + 1]]) -
2 * (b_lo[0, ind] < -infinity * dev[indI[ind + 1]]))
Bup[0, ind] = minimum(Bup[0, ind], infinity * dev[indI[ind + 1]])
Blo[0, ind] = maximum(Blo[0, ind], -infinity * dev[indI[ind + 1]])
b_up[0, ind] = minimum(b_up[0, ind], infinity * dev[indI[ind + 1]])
b_lo[0, ind] = maximum(b_lo[0, ind], -infinity * dev[indI[ind + 1]])
ind2 = indI + 1
return rindmod.rind(BIG, Ex, xc, nt, ind2, Blo, Bup, infin, seed)
return rindmod.rind(big, Ex, xc, nt, ind2, b_lo, b_up, infin, seed)
def test_rind():
''' Small test function
'''
""" Small test function
"""
n = 5
Blo = -inf
Bup = -1.2
@ -398,7 +398,7 @@ def test_rind():
def cdflomax(x, alpha, m0):
'''
"""
Return CDF for local maxima for a zero-mean Gaussian process
Parameters
@ -449,14 +449,14 @@ def cdflomax(x, alpha, m0):
See also
--------
spec2mom, spec2bw
'''
"""
c1 = 1.0 / (sqrt(1 - alpha ** 2)) * x / sqrt(m0)
c2 = alpha * c1
return cdfnorm(c1) - alpha * exp(-x ** 2 / 2 / m0) * cdfnorm(c2)
def prbnormtndpc(rho, a, b, D=None, df=0, abseps=1e-4, IERC=0, HNC=0.24):
'''
def prbnormtndpc(rho, a, b, d=None, df=0, abseps=1e-4, ierc=0, hnc=0.24):
"""
Return Multivariate normal or T probability with product correlation.
Parameters
@ -469,13 +469,13 @@ def prbnormtndpc(rho, a, b, D=None, df=0, abseps=1e-4, IERC=0, HNC=0.24):
vector of lower and upper integration limits, respectively.
Note: any values greater the 37 in magnitude, are considered as
infinite values.
D : array-like
d : array-like
vector of means (default zeros(size(rho)))
df = Degrees of freedom, NDF<=0 gives normal probabilities (default)
abseps = absolute error tolerance. (default 1e-4)
IERC = 1 if strict error control based on fourth derivative
ierc = 1 if strict error control based on fourth derivative
0 if error control based on halving the intervals (default)
HNC = start interval width of simpson rule (default 0.24)
hnc = start interval width of simpson rule (default 0.24)
Returns
-------
@ -529,20 +529,20 @@ def prbnormtndpc(rho, a, b, D=None, df=0, abseps=1e-4, IERC=0, HNC=0.24):
Charles Dunnett (1989)
"Multivariate normal probability integrals with product correlation
structure", Applied statistics, Vol 38,No3, (Algorithm AS 251)
'''
"""
if D is None:
D = zeros(len(rho))
if d is None:
d = zeros(len(rho))
# Make sure integration limits are finite
A = np.clip(a - D, -100, 100)
B = np.clip(b - D, -100, 100)
aa = np.clip(a - d, -100, 100)
bb = np.clip(b - d, -100, 100)
return mvnprdmod.prbnormtndpc(rho, A, B, df, abseps, IERC, HNC)
return mvnprdmod.prbnormtndpc(rho, aa, bb, df, abseps, ierc, hnc)
def prbnormndpc(rho, a, b, abserr=1e-4, relerr=1e-4, usesimpson=True,
usebreakpoints=False):
'''
"""
Return Multivariate Normal probabilities with product correlation
Parameters
@ -600,7 +600,7 @@ def prbnormndpc(rho, a, b, abserr=1e-4, relerr=1e-4, usesimpson=True,
Dr.Ing thesis, Norwegian University of Science and Technolgy, NTNU,
Trondheim, Norway.
'''
"""
# Call fortran implementation
val, err, ier = mvnprdmod.prbnormndpc(rho, a, b, abserr, relerr,
usebreakpoints, usesimpson)
@ -612,7 +612,7 @@ def prbnormndpc(rho, a, b, abserr=1e-4, relerr=1e-4, usesimpson=True,
_ERRORMESSAGE = {}
_ERRORMESSAGE[0] = ''
_ERRORMESSAGE[1] = '''
_ERRORMESSAGE[1] = """
Maximum number of subdivisions allowed has been achieved. one can allow
more subdivisions by increasing the value of limit (and taking the
according dimension adjustments into account). however, if this yields
@ -623,32 +623,32 @@ _ERRORMESSAGE[1] = '''
the vector points. If necessary an appropriate special-purpose
integrator must be used, which is designed for handling the type of
difficulty involved.
'''
_ERRORMESSAGE[2] = '''
"""
_ERRORMESSAGE[2] = """
the occurrence of roundoff error is detected, which prevents the requested
tolerance from being achieved. The error may be under-estimated.'''
tolerance from being achieved. The error may be under-estimated."""
_ERRORMESSAGE[3] = '''
_ERRORMESSAGE[3] = """
Extremely bad integrand behaviour occurs at some points of the integration
interval.'''
_ERRORMESSAGE[4] = '''
interval."""
_ERRORMESSAGE[4] = """
The algorithm does not converge. Roundoff error is detected in the
extrapolation table. It is presumed that the requested tolerance cannot be
achieved, and that the returned result is the best which can be obtained.
'''
_ERRORMESSAGE[5] = '''
"""
_ERRORMESSAGE[5] = """
The integral is probably divergent, or slowly convergent.
It must be noted that divergence can occur with any other value of ier>0.
'''
_ERRORMESSAGE[6] = '''the input is invalid because:
"""
_ERRORMESSAGE[6] = """the input is invalid because:
1) npts2 < 2
2) break points are specified outside the integration range
3) (epsabs<=0 and epsrel<max(50*rel.mach.acc.,0.5d-28))
4) limit < npts2.'''
4) limit < npts2."""
def prbnormnd(correl, a, b, abseps=1e-4, releps=1e-3, maxpts=None, method=0):
'''
"""
Multivariate Normal probability by Genz' algorithm.
@ -713,7 +713,7 @@ def prbnormnd(correl, a, b, abseps=1e-4, releps=1e-3, maxpts=None, method=0):
See also
--------
prbnormndpc, Rind
'''
"""
m, n = correl.shape
Na = len(a)
@ -787,7 +787,7 @@ _X20 = [-0.9931285991850949e+00, -0.9639719272779138e+00,
def cdfnorm2d(b1, b2, r):
'''
"""
Returnc Bivariate Normal cumulative distribution function
Parameters
@ -831,7 +831,7 @@ def cdfnorm2d(b1, b2, r):
Drezner, z and g.o. Wesolowsky, (1989),
"On the computation of the bivariate normal integral",
Journal of statist. comput. simul. 35, pp. 101-107,
'''
"""
# Translated into Python
# Per A. Brodtkorb
#
@ -956,7 +956,7 @@ def fi(x):
def prbnorm2d(a, b, r):
'''
"""
Returns Bivariate Normal probability
Parameters
@ -986,7 +986,7 @@ def prbnorm2d(a, b, r):
cdfnorm2d,
cdfnorm,
prbnormndpc
'''
"""
infinity = 37
lower = np.asarray(a)
upper = np.asarray(b)

@ -1,8 +1,8 @@
'''
"""
Created on 6. okt. 2016
@author: pab
'''
"""
from __future__ import absolute_import, division
from numba import guvectorize, jit, float64, int64, int32, int8, void
import numpy as np
@ -66,8 +66,8 @@ def _findcross(ind, y):
def findcross(xn):
'''Return indices to zero up and downcrossings of a vector
'''
"""Return indices to zero up and downcrossings of a vector
"""
ind = np.empty(len(xn), dtype=np.int64)
m = _findcross(ind, xn)
return ind[:m]
@ -150,9 +150,9 @@ _findrfc_lt = _make_findrfc(a_lt_b, a_le_b)
def _findrfc(ind, y, h):
n = len(y)
t_start = 0
NC = n // 2 - 1
nc = n // 2 - 1
ix = 0
for i in range(NC):
for i in range(nc):
Tmi = t_start + 2 * i
Tpl = t_start + 2 * i + 2
xminus = y[2 * i]
@ -174,7 +174,7 @@ def _findrfc(ind, y, h):
# goto L180 continue
else:
j = i + 1
while (j < NC):
while (j < nc):
if (y[2 * j + 1] >= y[2 * i + 1]):
break # goto L170
if((y[2 * j + 2] <= xplus)):

@ -57,7 +57,7 @@ def sech(x):
def _gengamspec(wn, N=5, M=4):
''' Return Generalized gamma spectrum in dimensionless form
""" Return Generalized gamma spectrum in dimensionless form
Parameters
----------
@ -106,7 +106,7 @@ def _gengamspec(wn, N=5, M=4):
Torsethaugen, K. (2004)
"Simplified Double Peak Spectral Model for Ocean Waves"
In Proc. 14th ISOPE
'''
"""
w = atleast_1d(wn)
S = zeros_like(w)
@ -132,7 +132,7 @@ class ModelSpectrum(object):
self.type = 'ModelSpectrum'
def tospecdata(self, w=None, wc=None, nw=257):
'''
"""
Return SpecData1D object from ModelSpectrum
Parameter
@ -148,7 +148,7 @@ class ModelSpectrum(object):
-------
S : SpecData1D object
member attributes of model spectrum are copied to S.workspace
'''
"""
if w is None:
if wc is None:
@ -165,8 +165,8 @@ class ModelSpectrum(object):
return S
def chk_seastate(self):
''' Check if seastate is valid
'''
""" Check if seastate is valid
"""
if self.Hm0 < 0:
raise ValueError('Hm0 can not be negative!')
@ -185,7 +185,7 @@ class ModelSpectrum(object):
class Bretschneider(ModelSpectrum):
'''
"""
Bretschneider spectral density model
Member variables
@ -237,7 +237,7 @@ class Bretschneider(ModelSpectrum):
--------
Jonswap,
Torsethaugen
'''
"""
def __init__(self, Hm0=7.0, Tp=11.0, N=5, M=4, chk_seastate=True, **kwds):
self.type = 'Bretschneider'
@ -249,8 +249,8 @@ class Bretschneider(ModelSpectrum):
self.chk_seastate()
def __call__(self, wi):
''' Return Bretschnieder spectrum
'''
""" Return Bretschnieder spectrum
"""
w = atleast_1d(wi)
if self.Hm0 > 0:
wp = 2 * pi / self.Tp
@ -262,7 +262,7 @@ class Bretschneider(ModelSpectrum):
def jonswap_peakfact(Hm0, Tp):
''' Jonswap peakedness factor, gamma, given Hm0 and Tp
""" Jonswap peakedness factor, gamma, given Hm0 and Tp
Parameters
----------
@ -313,7 +313,7 @@ def jonswap_peakfact(Hm0, Tp):
See also
--------
jonswap
'''
"""
Hm0, Tp = atleast_1d(Hm0, Tp)
x = Tp / sqrt(Hm0)
@ -332,7 +332,7 @@ def jonswap_peakfact(Hm0, Tp):
def jonswap_seastate(u10, fetch=150000., method='lewis', g=9.81,
output='dict'):
'''
"""
Return Jonswap seastate from windspeed and fetch
Parameters
@ -400,7 +400,7 @@ def jonswap_seastate(u10, fetch=150000., method='lewis', g=9.81,
A parametric wave prediction model.
J. phys. oceanogr. Vol 6, pp 200-228
'''
"""
# The following formulas are from Lewis and Allos 1990:
zeta = g * fetch / (u10 ** 2) # dimensionless fetch, Table 1
@ -440,7 +440,7 @@ def jonswap_seastate(u10, fetch=150000., method='lewis', g=9.81,
class Jonswap(ModelSpectrum):
'''
"""
Jonswap spectral density model
Member variables
@ -520,7 +520,7 @@ class Jonswap(ModelSpectrum):
Measurements of Wind-Wave Growth and Swell Decay during the Joint
North Sea Project (JONSWAP).
Ergansungsheft, Reihe A(8), Nr. 12, Deutschen Hydrografischen Zeitschrift.
'''
"""
def __init__(self, Hm0=7.0, Tp=11.0, gamma=None, sigmaA=0.07, sigmaB=0.09,
Ag=None, N=5, M=4, method='integration', wnc=6.0,
@ -552,17 +552,17 @@ class Jonswap(ModelSpectrum):
gam = self.gamma
outsideJonswapRange = Tp > 5 * sqrt(Hm0) or Tp < 3.6 * sqrt(Hm0)
if outsideJonswapRange:
txt0 = '''
txt0 = """
Hm0=%g,Tp=%g is outside the JONSWAP range.
The validity of the spectral density is questionable.
''' % (Hm0, Tp)
""" % (Hm0, Tp)
warnings.warn(txt0)
if gam < 1 or 7 < gam:
txt = '''
txt = """
The peakedness factor, gamma, is possibly too large.
The validity of the spectral density is questionable.
'''
"""
warnings.warn(txt)
def _localspec(self, wn):
@ -617,8 +617,8 @@ class Jonswap(ModelSpectrum):
self.Ag = 1.0 / area
def _pre_calculate_ag(self):
''' PRECALCULATEAG Precalculate normalization.
'''
""" PRECALCULATEAG Precalculate normalization.
"""
if self.gamma == 1:
self.Ag = 1.0
self.method = 'parametric'
@ -631,8 +631,8 @@ class Jonswap(ModelSpectrum):
norm_ag()
def peak_e_factor(self, wn):
''' PEAKENHANCEMENTFACTOR
'''
""" PEAKENHANCEMENTFACTOR
"""
w = maximum(atleast_1d(wn), 0.0)
sab = where(w > 1, self.sigmaB, self.sigmaA)
@ -641,8 +641,8 @@ class Jonswap(ModelSpectrum):
return Gf
def __call__(self, wi):
''' JONSWAP spectral density
'''
""" JONSWAP spectral density
"""
w = atleast_1d(wi)
if (self.Hm0 > 0.0):
@ -660,7 +660,7 @@ class Jonswap(ModelSpectrum):
def phi1(wi, h, g=9.81):
''' Factor transforming spectra to finite water depth spectra.
""" Factor transforming spectra to finite water depth spectra.
Input
-----
@ -692,7 +692,7 @@ def phi1(wi, h, g=9.81):
1 spectral form.'
J. Geophys. Res., Vol 90, No. C1, pp 975-986
'''
"""
w = atleast_1d(wi)
if h == inf: # % special case infinite water depth
return ones_like(w)
@ -709,7 +709,7 @@ def phi1(wi, h, g=9.81):
class Tmaspec(Jonswap):
''' JONSWAP spectrum for finite water depth
""" JONSWAP spectrum for finite water depth
Member variables
----------------
@ -783,7 +783,7 @@ class Tmaspec(Jonswap):
Ergansungsheft, Reihe A(8), Nr. 12, deutschen Hydrografischen
Zeitschrift.
'''
"""
def __init__(self, Hm0=7.0, Tp=11.0, gamma=None, sigmaA=0.07, sigmaB=0.09,
Ag=None, N=5, M=4, method='integration', wnc=6.0,
@ -808,7 +808,7 @@ class Tmaspec(Jonswap):
class Torsethaugen(ModelSpectrum):
'''
"""
Torsethaugen double peaked (swell + wind) spectrum model
Member variables
@ -881,7 +881,7 @@ class Torsethaugen(ModelSpectrum):
'A two peak wave spectral model.'
In proceedings OMAE, Glasgow
'''
"""
def __init__(self, Hm0=7, Tp=11, method='integration', wnc=6, gravity=9.81,
chk_seastate=True, **kwds):
@ -899,26 +899,26 @@ class Torsethaugen(ModelSpectrum):
self._init_spec()
def __call__(self, w):
''' TORSETHAUGEN spectral density
'''
""" TORSETHAUGEN spectral density
"""
return self.wind(w) + self.swell(w)
def _chk_extra_param(self):
Hm0 = self.Hm0
Tp = self.Tp
if Hm0 > 11 or Hm0 > max((Tp / 3.6) ** 2, (Tp - 2) * 12 / 11):
txt0 = '''Hm0 is outside the valid range.
The validity of the spectral density is questionable'''
txt0 = """Hm0 is outside the valid range.
The validity of the spectral density is questionable"""
warnings.warn(txt0)
if Tp > 20 or Tp < 3:
txt1 = '''Tp is outside the valid range.
The validity of the spectral density is questionable'''
txt1 = """Tp is outside the valid range.
The validity of the spectral density is questionable"""
warnings.warn(txt1)
def _init_spec(self):
''' Initialize swell and wind part of Torsethaugen spectrum
'''
""" Initialize swell and wind part of Torsethaugen spectrum
"""
monitor = 0
Hm0 = self.Hm0
Tp = self.Tp
@ -1050,7 +1050,7 @@ class Torsethaugen(ModelSpectrum):
class McCormick(Bretschneider):
''' McCormick spectral density model
""" McCormick spectral density model
Member variables
----------------
@ -1095,7 +1095,7 @@ class McCormick(Bretschneider):
M.E. McCormick (1999)
"Application of the Generic Spectral Formula to Fetch-Limited Seas"
Marine Technology Society, Vol 33, No. 3, pp 27-32
'''
"""
def __init__(self, Hm0=7, Tp=11, Tz=None, M=None, chk_seastate=True):
self.type = 'McCormick'
@ -1122,7 +1122,7 @@ class McCormick(Bretschneider):
class OchiHubble(ModelSpectrum):
''' OchiHubble bimodal spectral density model.
""" OchiHubble bimodal spectral density model.
Member variables
----------------
@ -1171,7 +1171,7 @@ class OchiHubble(ModelSpectrum):
'On six-parameter wave spectra.'
In Proc. 15th Conf. Coastal Engng., Vol.1, pp301-328
'''
"""
def __init__(self, Hm0=7, par=1, chk_seastate=True):
self.type = 'Ochi Hubble'
@ -1253,7 +1253,7 @@ class OchiHubble(ModelSpectrum):
class Wallop(Bretschneider):
'''Wallop spectral density model.
"""Wallop spectral density model.
Member variables
----------------
@ -1304,7 +1304,7 @@ class Wallop(Bretschneider):
Huang, N.E., Long, S.R., Tung, C.C, Yuen, Y. and Bilven, L.F. (1981)
"A unified two parameter wave spectral model for a generous sea state"
J. Fluid Mechanics, Vol.112, pp 203-224
'''
"""
def __init__(self, Hm0=7, Tp=11, N=None, chk_seastate=True):
self.type = 'Wallop'
@ -1325,7 +1325,7 @@ class Wallop(Bretschneider):
class Spreading(object):
'''
"""
Directional spreading function.
Parameters
@ -1488,7 +1488,7 @@ class Spreading(object):
NB! The generally strong frequency dependence in directional spread
makes it questionable to run load tests of ships and structures with a
directional spread independent of frequency (Krogstad and Barstow, 1999).
'''
"""
# Parameterization of B
# def = 2 Donelan et al freq. parametrization for 'sech2'
# def = 3 Banner freq. parametrization for 'sech2'
@ -1560,10 +1560,10 @@ class Spreading(object):
return atleast_1d(self.theta0).flatten()
def chk_input(self, theta, w=1, wc=1):
''' CHK_INPUT
""" CHK_INPUT
CALL [s_par,TH,phi0,Nt] = inputchk(theta,w,wc)
'''
"""
wn = atleast_1d(w / wc)
theta = theta.ravel()
@ -1579,7 +1579,7 @@ class Spreading(object):
return s, TH, phi0, Nt
def cos2s(self, theta, w=1, wc=1): # [D, phi0] =
''' COS2S spreading function
""" COS2S spreading function
cos2s(theta,w) = N(S)*[cos((theta-theta0)/2)]^(2*S) (0 < S)
@ -1599,7 +1599,7 @@ class Spreading(object):
The principal direction of D is always along the x-axis.
phi0 : real scalar
Parameter defining the actual principal direction of D.
'''
"""
S, TH, phi0 = self.chk_input(theta, w, wc)[:3]
gammaln = sp.gammaln
@ -1609,7 +1609,7 @@ class Spreading(object):
return D, phi0
def poisson(self, theta, w=1, wc=1): # [D,phi0] =
''' POISSON spreading function
""" POISSON spreading function
poisson(theta,w) = N(X)/(1-2*X*cos(theta-theta0)+X^2) (0 < X < 1)
@ -1629,14 +1629,14 @@ class Spreading(object):
The principal direction of D is always along the x-axis.
phi0 : real scalar
Parameter defining the actual principal direction of D.
'''
"""
X, TH, phi0 = self.chk_input(theta, w, wc)[:3]
D = (1 - X ** 2.) / (1. - (2. * cos(TH) - X) * X) / (2. * pi)
return D, phi0
def wrap_norm(self, theta, w=1, wc=1):
''' Wrapped Normal spreading function
""" Wrapped Normal spreading function
wnormal(theta,w) = N(D1)*[1 +
2*sum exp(-(n*D1)^2/2)*cos(n*(theta-theta0))] (0 < D1)
@ -1657,7 +1657,7 @@ class Spreading(object):
The principal direction of D is always along the x-axis.
phi0 : real scalar
Parameter defining the actual principal direction of D.
'''
"""
par, TH, phi0, Nt = self.chk_input(theta, w, wc)
@ -1678,7 +1678,7 @@ class Spreading(object):
return D, phi0
def sech2(self, theta, w=1, wc=1):
'''SECH2 directonal spreading function
"""SECH2 directonal spreading function
sech2(theta,w) = N(B)*0.5*B*sech(B*(theta-theta0))^2 (0 < B)
@ -1698,7 +1698,7 @@ class Spreading(object):
The principal direction of D is always along the x-axis.
phi0 : real scalar
Parameter defining the actual principal direction of D.
'''
"""
B, TH, phi0 = self.chk_input(theta, w, wc)[:3]
NB = tanh(pi * B) # % Normalization factor.
@ -1708,7 +1708,7 @@ class Spreading(object):
return D, phi0
def mises(self, theta, w=1, wc=1):
'''Mises spreading function
"""Mises spreading function
mises(theta,w) = N(K)*exp(K*cos(theta-theta0)) (0 < K)
@ -1728,7 +1728,7 @@ class Spreading(object):
The principal direction of D is always along the x-axis.
phi0 : real scalar
Parameter defining the actual principal direction of D.
'''
"""
K, TH, phi0 = self.chk_input(theta, w, wc)[:3]
@ -1736,7 +1736,7 @@ class Spreading(object):
return D, phi0
def box(self, theta, w=1, wc=1):
''' Box car spreading function
""" Box car spreading function
box(theta,w) = N(A)*I( -A < theta-theta0 < A) (0 < A < pi)
@ -1756,7 +1756,7 @@ class Spreading(object):
The principal direction of D is always along the x-axis.
phi0 : real scalar
Parameter defining the actual principal direction of D.
'''
"""
A, TH, phi0 = self.chk_input(theta, w, wc)[:3]
D = ((-A <= TH) & (TH <= A)) / (2. * A)
@ -1765,7 +1765,7 @@ class Spreading(object):
# Local sub functions
def fourier2distpar(self, r1):
''' Fourier coefficients to distribution parameter
""" Fourier coefficients to distribution parameter
Parameters
----------
@ -1790,14 +1790,14 @@ class Spreading(object):
Poisson spreading : R1 = X
sech-2 spreading : R1 = pi/(2*B*sinh(pi/(2*B))
Wrapped Normal : R1 = exp(-D1^2/2)
'''
"""
fourierfun = self._fourierdispatch.get(self.type[0])
return fourierfun(r1)
@staticmethod
def fourier2x(r1):
''' Returns the solution of r1 = x.
'''
""" Returns the solution of r1 = x.
"""
X = r1
if any(X >= 1):
raise ValueError('POISSON spreading: X value must be less than 1')
@ -1805,8 +1805,8 @@ class Spreading(object):
@staticmethod
def fourier2a(r1):
''' Returns the solution of R1 = sin(A)/A.
'''
""" Returns the solution of R1 = sin(A)/A.
"""
A0 = flipud(linspace(0, pi + 0.1, 1025))
funA = interp1d(sinc(A0 / pi), A0)
A0 = funA(r1.ravel())
@ -1837,9 +1837,9 @@ class Spreading(object):
@staticmethod
def fourier2k(r1):
'''
"""
Returns the solution of R1 = besseli(1,K)/besseli(0,K),
'''
"""
def fun0(x):
return sp.ive(1, x) / sp.ive(0, x)
@ -1858,8 +1858,8 @@ class Spreading(object):
return K
def fourier2b(self, r1):
''' Returns the solution of R1 = pi/(2*B*sinh(pi/(2*B)).
'''
""" Returns the solution of R1 = pi/(2*B*sinh(pi/(2*B)).
"""
B0 = hstack((linspace(_EPS, 5, 513), linspace(5.0001, 100)))
funB = interp1d(self._r1ofsech2(B0), B0)
@ -1879,8 +1879,8 @@ class Spreading(object):
return B
def fourier2d(self, r1):
''' Returns the solution of R1 = exp(-D**2/2).
'''
""" Returns the solution of R1 = exp(-D**2/2).
"""
r = clip(r1, 0., 1.0)
return where(r <= 0, inf, sqrt(-2.0 * log(r)))
@ -1936,7 +1936,7 @@ class Spreading(object):
return atleast_1d(self.s_a)
def spread_parameter_s(self, wn):
''' Return spread parameter, S, equivalent for the COS2S function
""" Return spread parameter, S, equivalent for the COS2S function
Parameters
----------
@ -1947,7 +1947,7 @@ class Spreading(object):
-------
S : ndarray
spread parameter of COS2S functions
'''
"""
spread = dict(b=self._banner_spread,
d=self._donelan_spread,
@ -1972,14 +1972,14 @@ class Spreading(object):
@staticmethod
def _donelan(wn):
''' High frequency decay of B of sech2 paramater
'''
""" High frequency decay of B of sech2 paramater
"""
return 10.0 ** (-0.4 + 0.8393 * exp(-0.567 * log(wn ** 2)))
@staticmethod
def _r1ofsech2(B):
''' R1OFSECH2 Computes R1 = pi./(2*B.*sinh(pi./(2*B)))
'''
""" R1OFSECH2 Computes R1 = pi./(2*B.*sinh(pi./(2*B)))
"""
realmax = finfo(float).max
tiny = 1. / realmax
x = clip(2. * B, tiny, realmax)
@ -1988,7 +1988,7 @@ class Spreading(object):
-2. * xk / (exp(xk) * expm1(-2. * xk)))
def tospecdata2d(self, specdata=None, theta=None, wc=0.52, nt=51):
'''
"""
MKDSPEC Make a directional spectrum
frequency spectrum times spreading function
@ -2020,7 +2020,7 @@ class Spreading(object):
h = SD.plot()
See also spreading, rotspec, jonswap, torsethaugen
'''
"""
if specdata is None:
specdata = Jonswap().tospecdata()

@ -19,9 +19,9 @@ arr = asarray
def now():
'''
"""
Return current date and time as a string
'''
"""
return strftime("%a, %d %b %Y %H:%M:%S", gmtime())
@ -66,7 +66,7 @@ def _invnorm(q):
def edf(x, method=2):
'''
"""
Returns Empirical Distribution Function (EDF).
Parameters
@ -87,7 +87,7 @@ def edf(x, method=2):
>>> h = F.plot()
See also edf, pdfplot, cumtrapz
'''
"""
z = atleast_1d(x)
z.sort()
@ -105,7 +105,7 @@ def edf(x, method=2):
def edfcnd(x, c=None, method=2):
'''
"""
Returns empirical Distribution Function CoNDitioned that X>=c (EDFCND).
Parameters
@ -128,7 +128,7 @@ def edfcnd(x, c=None, method=2):
>>> h = F.plot()
See also edf, pdfplot, cumtrapz
'''
"""
z = atleast_1d(x)
if c is None:
c = floor(min(z.min(), 0))
@ -146,7 +146,7 @@ def edfcnd(x, c=None, method=2):
def reslife(data, u=None, umin=None, umax=None, nu=None, nmin=3, alpha=0.05,
plotflag=False):
'''
"""
Return Mean Residual Life, i.e., mean excesses vs thresholds
Parameters
@ -196,7 +196,7 @@ def reslife(data, u=None, umin=None, umax=None, nu=None, nmin=3, alpha=0.05,
---------
genpareto
fitgenparrange, disprsnidx
'''
"""
if u is None:
sd = np.sort(data)
n = len(data)
@ -252,7 +252,7 @@ def reslife(data, u=None, umin=None, umax=None, nu=None, nmin=3, alpha=0.05,
def dispersion_idx(
data, t=None, u=None, umin=None, umax=None, nu=None, nmin=10, tb=1,
alpha=0.05, plotflag=False):
'''Return Dispersion Index vs threshold
"""Return Dispersion Index vs threshold
Parameters
----------
@ -329,7 +329,7 @@ def dispersion_idx(
Cunnane, C. (1979) Note on the poisson assumption in
partial duration series model. Water Resource Research, 15\bold{(2)}
:489--494.}
'''
"""
n = len(data)
if t is None:
@ -407,7 +407,7 @@ def dispersion_idx(
def decluster(data, t=None, thresh=None, tmin=1):
'''
"""
Return declustered peaks over threshold values
Parameters
@ -442,7 +442,7 @@ def decluster(data, t=None, thresh=None, tmin=1):
See also
--------
fitgenpar, findpot, extremalidx
'''
"""
if t is None:
t = np.arange(len(data))
i = findpot(data, t, thresh, tmin)
@ -450,7 +450,7 @@ def decluster(data, t=None, thresh=None, tmin=1):
def findpot(data, t=None, thresh=None, tmin=1):
'''
"""
Retrun indices to Peaks over threshold values
Parameters
@ -490,7 +490,7 @@ def findpot(data, t=None, thresh=None, tmin=1):
See also
--------
fitgenpar, decluster, extremalidx
'''
"""
Data = arr(data)
if t is None:
ti = np.arange(len(Data))
@ -538,36 +538,35 @@ def findpot(data, t=None, thresh=None, tmin=1):
return Ie
def _find_ok_peaks(Ye, Te, Tmin):
'''
Return indices to the largest maxima that are at least Tmin
distance apart.
'''
Ny = len(Ye)
def _find_ok_peaks(y, t, t_min):
"""
Return indices to the largest maxima that are at least t_min distance apart.
"""
num_y = len(y)
I = np.argsort(-Ye) # sort in descending order
i = np.argsort(-y) # sort in descending order
Te1 = Te[I]
oOrder = zeros(Ny, dtype=int)
oOrder[I] = range(Ny) # indices to the variables original location
tis = t[i]
o_order = zeros(num_y, dtype=int)
o_order[i] = range(num_y) # indices to the variables original location
isTooClose = zeros(Ny, dtype=bool)
is_too_close = zeros(num_y, dtype=bool)
pool = zeros((Ny, 2))
T_range = np.hstack([-Tmin, Tmin])
K = 0
for i, ti in enumerate(Te1):
isTooClose[i] = np.any((pool[:K, 0] <= ti) & (ti <= pool[:K, 1]))
if not isTooClose[i]:
pool[K] = ti + T_range
K += 1
pool = zeros((num_y, 2))
t_range = np.hstack([-t_min, t_min])
k = 0
for i, ti in enumerate(tis):
is_too_close[i] = np.any((pool[:k, 0] <= ti) & (ti <= pool[:k, 1]))
if not is_too_close[i]:
pool[k] = ti + t_range
k += 1
iOK, = where(1 - isTooClose[oOrder])
return iOK
i_ok, = where(1 - is_too_close[o_order])
return i_ok
def declustering_time(t):
'''
"""
Returns minimum distance between clusters.
Parameters
@ -589,7 +588,7 @@ def declustering_time(t):
>>> tc = declustering_time(Ie)
>>> tc
21
'''
"""
t0 = arr(t)
nt = len(t0)
if nt < 2:
@ -606,7 +605,7 @@ def declustering_time(t):
def interexceedance_times(t):
'''
"""
Returns interexceedance times of data
Parameters
@ -624,12 +623,12 @@ def interexceedance_times(t):
>>> interexceedance_times(t)
array([1, 3, 5])
'''
"""
return np.diff(np.sort(t))
def extremal_idx(ti):
'''
"""
Returns Extremal Index measuring the dependence of data
Parameters
@ -671,7 +670,7 @@ def extremal_idx(ti):
Journal of the Royal Statistical society: Series B
(Statistical Methodology) 54 (2), 545-556
doi:10.1111/1467-9868.00401
'''
"""
t = arr(ti)
tmax = t.max()
if tmax <= 1:
@ -693,7 +692,7 @@ def _logitinv(x):
class RegLogit(object):
'''
"""
REGLOGIT Fit ordinal logistic regression model.
CALL model = reglogit (options)
@ -756,7 +755,7 @@ class RegLogit(object):
b21.compare(b2)
See also regglm, reglm, regnonlm
'''
"""
#% Original for MATLAB written by Gordon K Smyth <gks@maths.uq.oz.au>,
#% U of Queensland, Australia, on Nov 19, 1990. Last revision Aug 3,
@ -840,7 +839,7 @@ class RegLogit(object):
return y, X
def fit(self, y, X=None, theta0=None, beta0=None):
'''
"""
Member variables
.df : degrees of freedom for error.
.params : estimated model parameters
@ -858,7 +857,7 @@ class RegLogit(object):
.d2L : Hessian matrix (double derivative of log-likelihood)
.dL : First derivative of loglikelihood w.r.t. THETA and BETA.
'''
"""
self.family = 'multinomial'
self.link = 'logit'
y, X = self.check_xy(y, X)
@ -1016,7 +1015,7 @@ class RegLogit(object):
self.summary()
def compare(self, object2):
''' Compare small LOGIT versus large one
""" Compare small LOGIT versus large one
CALL [pvalue] = compare(object2)
@ -1026,7 +1025,7 @@ class RegLogit(object):
model, and the residuals from the larger model.
See also fitls
'''
"""
try:
if self.numvar > object2.numvar:
@ -1156,7 +1155,7 @@ class RegLogit(object):
#end % summary
def predict(self, Xnew=None, alpha=0.05, fulloutput=False):
'''LOGIT/PREDICT Predict from a fitted LOGIT object
"""LOGIT/PREDICT Predict from a fitted LOGIT object
CALL [y,ylo,yup] = predict(Xnew,options)
@ -1167,7 +1166,7 @@ class RegLogit(object):
options = options struct defining the calculation
.alpha : confidence coefficient (default 0.05)
.size : size if binomial family (default 1).
'''
"""
[_mx, nx] = self.X.shape
if Xnew is None:
@ -1233,10 +1232,10 @@ class RegLogit(object):
return y
def loglike(self, beta, y, x, z, z1, numout=3):
'''
"""
[dev, dl, d2l, p] = loglike( y ,x,beta,z,z1)
Calculates likelihood for the ordinal logistic regression model.
'''
"""
# Author: Gordon K. Smyth <gks@maths.uq.oz.au>
zx = np.hstack((z, x))
z1x = np.hstack((z1, x))
@ -1248,10 +1247,10 @@ class RegLogit(object):
p = g - g1
dev = -2 * np.log(p).sum()
'''[dl, d2l] = derivatives of loglike(beta, y, x, z, z1)
"""[dl, d2l] = derivatives of loglike(beta, y, x, z, z1)
% Called by logistic_regression. Calculates derivates of the
% log-likelihood for ordinal logistic regression model.
'''
"""
# Author: Gordon K. Smyth <gks@maths.uq.oz.au>
# Description: Derivates of log-likelihood in logistic regression

@ -114,7 +114,7 @@ class TestQuadgr(unittest.TestCase):
def test_integrand6(self):
tol = 1e-9
Q, err = quadgr(lambda x: np.cos(x)*np.exp(-x), 0, np.inf, tol)
Q, err = quadgr(lambda x: np.cos(x) * np.exp(-x), 0, np.inf, tol)
assert_array_almost_equal(Q, 0.5)
self.assert_(err < tol)
# (0.50000000000000044, 7.3296813063450372e-11)

@ -7,8 +7,7 @@ Created on 5. aug. 2010
import unittest
from numpy.testing import TestCase, assert_array_almost_equal
import wafo.data # @UnusedImport
import numpy as np # @UnusedImport
import wafo.data
import wafo.objects as wo
import wafo.spectrum.models as sm
import wafo.transform.models as tm

Loading…
Cancel
Save