|
|
|
@ -1923,7 +1923,7 @@ class TimeSeries(PlotData):
|
|
|
|
|
cmvmax = 100 # if number of consecutive missing values (cmv) are longer they
|
|
|
|
|
# are not used in estimation of g, due to the fact that the
|
|
|
|
|
# conditional expectation approaches zero as the length to
|
|
|
|
|
# the closest known points increases, see below in the for loop
|
|
|
|
|
# the closest known points increases, see below in the for loop
|
|
|
|
|
dT = self.sampling_period()
|
|
|
|
|
|
|
|
|
|
Lm = np.minimum([n, 200, int(200/dT)]) # Lagmax 200 seconds
|
|
|
|
@ -2029,22 +2029,22 @@ class TimeSeries(PlotData):
|
|
|
|
|
# # used for isope article
|
|
|
|
|
# # indr =[1:27000 30000:39000];
|
|
|
|
|
# # Too many consecutive missing values will influence the estimation of
|
|
|
|
|
# # g. By default do not use consecutive missing values if there are more
|
|
|
|
|
# # than cmvmax.
|
|
|
|
|
# # g. By default do not use consecutive missing values if there are more
|
|
|
|
|
# # than cmvmax.
|
|
|
|
|
#
|
|
|
|
|
# [g test cmax irr g2] = dat2tr(xn(indr,:),def,opt);
|
|
|
|
|
# if plotflag==2,
|
|
|
|
|
# pause(ptime)
|
|
|
|
|
# end
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# #tobs=sqrt((param(2)-param(1))/(param(3)-1)*sum((g_old(:,2)-g(:,2)).^2))
|
|
|
|
|
# # new call
|
|
|
|
|
# tobs=sqrt((param(2)-param(1))/(param(3)-1)....
|
|
|
|
|
# *sum((g(:,2)-interp1(g_old(:,1)-bias, g_old(:,2),g(:,1),'spline')).^2));
|
|
|
|
|
#
|
|
|
|
|
# if ix>1
|
|
|
|
|
# if ix>1
|
|
|
|
|
# if tol>tobs2 && tol>tobs,
|
|
|
|
|
# break, #estimation of g converged break out of for loop
|
|
|
|
|
# break, #estimation of g converged break out of for loop
|
|
|
|
|
# end
|
|
|
|
|
# end
|
|
|
|
|
#
|
|
|
|
@ -2052,16 +2052,16 @@ class TimeSeries(PlotData):
|
|
|
|
|
#
|
|
|
|
|
# xnt=dat2gaus(xn,g);
|
|
|
|
|
# if ~isempty(indNaN), xnt(indNaN,2)=NaN; end
|
|
|
|
|
# rwin=findrwin(xnt,Lm,L);
|
|
|
|
|
# rwin=findrwin(xnt,Lm,L);
|
|
|
|
|
# disp(['Simulation nr: ', int2str(ix), ' of ' num2str(Nsim),' e(g-g_old)=', num2str(tobs), ', e(g-u)=', num2str(test)])
|
|
|
|
|
# [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds);
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# if expect,
|
|
|
|
|
# xnt(inds,2) =mu1o;
|
|
|
|
|
# else
|
|
|
|
|
# xnt(inds,2) =samp;
|
|
|
|
|
# end
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# xn=gaus2dat(xnt,g);
|
|
|
|
|
# if ix<Nsim
|
|
|
|
|
# bias=mean(xn(:,2));
|
|
|
|
@ -2074,8 +2074,8 @@ class TimeSeries(PlotData):
|
|
|
|
|
# pause(ptime)
|
|
|
|
|
# end
|
|
|
|
|
# end # for loop
|
|
|
|
|
#
|
|
|
|
|
# if 1, #test>test0(end-5)
|
|
|
|
|
#
|
|
|
|
|
# if 1, #test>test0(end-5)
|
|
|
|
|
# xnt=dat2gaus(xn,g);
|
|
|
|
|
# [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds);
|
|
|
|
|
# xnt(inds,2) =samp;
|
|
|
|
@ -2085,7 +2085,7 @@ class TimeSeries(PlotData):
|
|
|
|
|
# g(:,1)=g(:,1)-bias;
|
|
|
|
|
# g2(:,1)=g2(:,1)-bias;
|
|
|
|
|
# gn=trangood(g);
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# #mu1o=mu1o-tranproc(bias,gn);
|
|
|
|
|
# muUStd=tranproc(mu1o+2*mu1oStd,fliplr(gn));#
|
|
|
|
|
# muLStd=tranproc(mu1o-2*mu1oStd,fliplr(gn));#
|
|
|
|
@ -2093,7 +2093,7 @@ class TimeSeries(PlotData):
|
|
|
|
|
# muLStd=mu1o-2*mu1oStd;
|
|
|
|
|
# muUStd=mu1o+2*mu1oStd;
|
|
|
|
|
# end
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# if plotflag==2 && length(xn)<10000,
|
|
|
|
|
# waveplot(xn,[xn(inds,1) muLStd ;xn(inds,1) muUStd ], 6,round(n/3000),[])
|
|
|
|
|
# legend('reconstructed','2 stdev')
|
|
|
|
@ -2341,7 +2341,7 @@ def main():
|
|
|
|
|
d2.children = [d1]
|
|
|
|
|
|
|
|
|
|
d2.plot()
|
|
|
|
|
print 'Done'
|
|
|
|
|
print('Done')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_docstrings():
|
|
|
|
|