Added from __future__ import absolute_import

master
Per A Brodtkorb 9 years ago
parent b57307ab7c
commit 6d7beed94b

@ -1,7 +1,7 @@
from __future__ import absolute_import
import warnings import warnings
from wafo.graphutil import cltext # @UnresolvedImport from .graphutil import cltext
from .plotbackend import plotbackend
from plotbackend import plotbackend
from time import gmtime, strftime from time import gmtime, strftime
import numpy as np import numpy as np
from scipy.integrate.quadrature import cumtrapz # @UnresolvedImport from scipy.integrate.quadrature import cumtrapz # @UnresolvedImport

@ -1923,7 +1923,7 @@ class TimeSeries(PlotData):
cmvmax = 100 # if number of consecutive missing values (cmv) are longer they cmvmax = 100 # if number of consecutive missing values (cmv) are longer they
# are not used in estimation of g, due to the fact that the # are not used in estimation of g, due to the fact that the
# conditional expectation approaches zero as the length to # conditional expectation approaches zero as the length to
# the closest known points increases, see below in the for loop # the closest known points increases, see below in the for loop
dT = self.sampling_period() dT = self.sampling_period()
Lm = np.minimum([n, 200, int(200/dT)]) # Lagmax 200 seconds Lm = np.minimum([n, 200, int(200/dT)]) # Lagmax 200 seconds
@ -2029,22 +2029,22 @@ class TimeSeries(PlotData):
# # used for isope article # # used for isope article
# # indr =[1:27000 30000:39000]; # # indr =[1:27000 30000:39000];
# # Too many consecutive missing values will influence the estimation of # # Too many consecutive missing values will influence the estimation of
# # g. By default do not use consecutive missing values if there are more # # g. By default do not use consecutive missing values if there are more
# # than cmvmax. # # than cmvmax.
# #
# [g test cmax irr g2] = dat2tr(xn(indr,:),def,opt); # [g test cmax irr g2] = dat2tr(xn(indr,:),def,opt);
# if plotflag==2, # if plotflag==2,
# pause(ptime) # pause(ptime)
# end # end
# #
# #tobs=sqrt((param(2)-param(1))/(param(3)-1)*sum((g_old(:,2)-g(:,2)).^2)) # #tobs=sqrt((param(2)-param(1))/(param(3)-1)*sum((g_old(:,2)-g(:,2)).^2))
# # new call # # new call
# tobs=sqrt((param(2)-param(1))/(param(3)-1).... # tobs=sqrt((param(2)-param(1))/(param(3)-1)....
# *sum((g(:,2)-interp1(g_old(:,1)-bias, g_old(:,2),g(:,1),'spline')).^2)); # *sum((g(:,2)-interp1(g_old(:,1)-bias, g_old(:,2),g(:,1),'spline')).^2));
# #
# if ix>1 # if ix>1
# if tol>tobs2 && tol>tobs, # if tol>tobs2 && tol>tobs,
# break, #estimation of g converged break out of for loop # break, #estimation of g converged break out of for loop
# end # end
# end # end
# #
@ -2052,16 +2052,16 @@ class TimeSeries(PlotData):
# #
# xnt=dat2gaus(xn,g); # xnt=dat2gaus(xn,g);
# if ~isempty(indNaN), xnt(indNaN,2)=NaN; end # if ~isempty(indNaN), xnt(indNaN,2)=NaN; end
# rwin=findrwin(xnt,Lm,L); # rwin=findrwin(xnt,Lm,L);
# disp(['Simulation nr: ', int2str(ix), ' of ' num2str(Nsim),' e(g-g_old)=', num2str(tobs), ', e(g-u)=', num2str(test)]) # disp(['Simulation nr: ', int2str(ix), ' of ' num2str(Nsim),' e(g-g_old)=', num2str(tobs), ', e(g-u)=', num2str(test)])
# [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds); # [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds);
# #
# if expect, # if expect,
# xnt(inds,2) =mu1o; # xnt(inds,2) =mu1o;
# else # else
# xnt(inds,2) =samp; # xnt(inds,2) =samp;
# end # end
# #
# xn=gaus2dat(xnt,g); # xn=gaus2dat(xnt,g);
# if ix<Nsim # if ix<Nsim
# bias=mean(xn(:,2)); # bias=mean(xn(:,2));
@ -2074,8 +2074,8 @@ class TimeSeries(PlotData):
# pause(ptime) # pause(ptime)
# end # end
# end # for loop # end # for loop
# #
# if 1, #test>test0(end-5) # if 1, #test>test0(end-5)
# xnt=dat2gaus(xn,g); # xnt=dat2gaus(xn,g);
# [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds); # [samp ,mu1o, mu1oStd] = cov2csdat(xnt(:,2),rwin,1,method,inds);
# xnt(inds,2) =samp; # xnt(inds,2) =samp;
@ -2085,7 +2085,7 @@ class TimeSeries(PlotData):
# g(:,1)=g(:,1)-bias; # g(:,1)=g(:,1)-bias;
# g2(:,1)=g2(:,1)-bias; # g2(:,1)=g2(:,1)-bias;
# gn=trangood(g); # gn=trangood(g);
# #
# #mu1o=mu1o-tranproc(bias,gn); # #mu1o=mu1o-tranproc(bias,gn);
# muUStd=tranproc(mu1o+2*mu1oStd,fliplr(gn));# # muUStd=tranproc(mu1o+2*mu1oStd,fliplr(gn));#
# muLStd=tranproc(mu1o-2*mu1oStd,fliplr(gn));# # muLStd=tranproc(mu1o-2*mu1oStd,fliplr(gn));#
@ -2093,7 +2093,7 @@ class TimeSeries(PlotData):
# muLStd=mu1o-2*mu1oStd; # muLStd=mu1o-2*mu1oStd;
# muUStd=mu1o+2*mu1oStd; # muUStd=mu1o+2*mu1oStd;
# end # end
# #
# if plotflag==2 && length(xn)<10000, # if plotflag==2 && length(xn)<10000,
# waveplot(xn,[xn(inds,1) muLStd ;xn(inds,1) muUStd ], 6,round(n/3000),[]) # waveplot(xn,[xn(inds,1) muLStd ;xn(inds,1) muUStd ], 6,round(n/3000),[])
# legend('reconstructed','2 stdev') # legend('reconstructed','2 stdev')
@ -2341,7 +2341,7 @@ def main():
d2.children = [d1] d2.children = [d1]
d2.plot() d2.plot()
print 'Done' print('Done')
def test_docstrings(): def test_docstrings():

@ -3,10 +3,11 @@ Created on 8. mai 2014
@author: pab @author: pab
''' '''
from wafo.transform.core import TrData from __future__ import absolute_import
from wafo.transform.models import TrHermite, TrOchi, TrLinear from .core import TrData
from wafo.stats import edf, skew, kurtosis from .models import TrHermite, TrOchi, TrLinear
from wafo.interpolate import SmoothSpline from ..stats import edf, skew, kurtosis
from ..interpolate import SmoothSpline
from scipy.special import ndtri as invnorm from scipy.special import ndtri as invnorm
from scipy.integrate import cumtrapz from scipy.integrate import cumtrapz
import warnings import warnings

@ -1,2 +1,3 @@
from core import * from __future__ import absolute_import
import dispersion_relation from .core import *
from . import dispersion_relation

Loading…
Cancel
Save