|
|
|
@ -21,6 +21,8 @@ from dispersion_relation import w2k #, k2w
|
|
|
|
|
from wafo.wafodata import WafoData, now
|
|
|
|
|
from wafo.misc import sub_dict_select, nextpow2, discretize, JITImport, findpeaks #, tranproc
|
|
|
|
|
from wafo.graphutil import cltext
|
|
|
|
|
from wafo.kdetools import qlevels
|
|
|
|
|
from wafo import wafodata
|
|
|
|
|
try:
|
|
|
|
|
from wafo.gaussian import Rind
|
|
|
|
|
except ImportError:
|
|
|
|
@ -1154,7 +1156,9 @@ class SpecData1D(WafoData):
|
|
|
|
|
>>> w = np.linspace(0,4,256)
|
|
|
|
|
>>> S1 = Sj.tospecdata(w) #Make spectrum object from numerical values
|
|
|
|
|
>>> S = sm.SpecData1D(Sj(w),w) # Alternatively do it manually
|
|
|
|
|
S.to_mm_pdf()
|
|
|
|
|
mm = S.to_mm_pdf()
|
|
|
|
|
mm.plot()
|
|
|
|
|
mm.plot(plotflag=1)
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
S = self.copy()
|
|
|
|
@ -1163,11 +1167,11 @@ class SpecData1D(WafoData):
|
|
|
|
|
A = sqrt(m[0] / m[1])
|
|
|
|
|
|
|
|
|
|
if paramt is None:
|
|
|
|
|
distanceBetweenExtremes = 5*pi*sqrt(m[1]/m[2]) #(2.5 * mean distance between extremes)
|
|
|
|
|
distanceBetweenExtremes = 5 * pi * sqrt(m[1] / m[2]) #(2.5 * mean distance between extremes)
|
|
|
|
|
paramt = [0, distanceBetweenExtremes, 43]
|
|
|
|
|
|
|
|
|
|
if paramu is None:
|
|
|
|
|
paramu = [-4*sqrt(m[0]), 4*sqrt(m[0]), 41]
|
|
|
|
|
paramu = [-5 * sqrt(m[0]), 5 * sqrt(m[0]), 41]
|
|
|
|
|
|
|
|
|
|
if self.tr is None:
|
|
|
|
|
g = TrLinear(var=m[0])
|
|
|
|
@ -1184,13 +1188,13 @@ class SpecData1D(WafoData):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unused_t0, tn, Nt = paramt
|
|
|
|
|
t = linspace(0, tn/A, Nt) # normalized times
|
|
|
|
|
t = linspace(0, tn / A, Nt) # normalized times
|
|
|
|
|
|
|
|
|
|
#Transform amplitudes to Gaussian levels:
|
|
|
|
|
h = linspace(*paramu);
|
|
|
|
|
dt = t[1] - t[0]
|
|
|
|
|
nr = 4
|
|
|
|
|
R = S.tocov_matrix(nr, Nt-1, dt)
|
|
|
|
|
R = S.tocov_matrix(nr, Nt - 1, dt)
|
|
|
|
|
|
|
|
|
|
#ulev = linspace(*paramu)
|
|
|
|
|
#vlev = linspace(*paramu)
|
|
|
|
@ -1201,19 +1205,23 @@ class SpecData1D(WafoData):
|
|
|
|
|
|
|
|
|
|
cov2mod.initinteg(EPS, EPSS, EPS0, C, IAC, ISQ)
|
|
|
|
|
uvdens = cov2mod.cov2mmpdfreg(t, R, h, h, Tg, Xg, nit)
|
|
|
|
|
uvdens = np.rot90(uvdens, -2)
|
|
|
|
|
|
|
|
|
|
dh = h[1]-h[0]
|
|
|
|
|
uvdens *= dh*dh
|
|
|
|
|
uvdens = np.rot90(uvdens,-2)
|
|
|
|
|
dh = h[1] - h[0]
|
|
|
|
|
uvdens *= dh * dh
|
|
|
|
|
|
|
|
|
|
mmpdf = WafoData(uvdens,args=(h,h), title='Joint density of maximum and minimum',
|
|
|
|
|
xlab='max [m]',ylab='min [m]')
|
|
|
|
|
mmpdf = WafoData(uvdens, args=(h, h), xlab='max [m]', ylab='min [m]',
|
|
|
|
|
title='Joint density of maximum and minimum')
|
|
|
|
|
try:
|
|
|
|
|
pl = [10, 30, 50, 70, 90, 95, 99, 99.9]
|
|
|
|
|
mmpdf.cl = qlevels(uvdens, pl, h, h)
|
|
|
|
|
mmpdf.pl = pl
|
|
|
|
|
except:
|
|
|
|
|
pass
|
|
|
|
|
return mmpdf
|
|
|
|
|
|
|
|
|
|
#[f.cl,f.pl] = qlevels(f.f,[10, 30, 50, 70, 90, 95, 99, 99.9],f.x{1},f.x{2})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_t_pdf(self, u=None, pdef='Tc', paramt=None, **options):
|
|
|
|
|
def to_t_pdf(self, u=None, kind='Tc', paramt=None, **options):
|
|
|
|
|
'''
|
|
|
|
|
Density of crest/trough- period or length, version 2.
|
|
|
|
|
|
|
|
|
@ -1221,7 +1229,7 @@ class SpecData1D(WafoData):
|
|
|
|
|
----------
|
|
|
|
|
u : real scalar
|
|
|
|
|
reference level (default the most frequently crossed level).
|
|
|
|
|
pdef : string, 'Tc', Tt', 'Lc' or 'Lt'
|
|
|
|
|
kind : string, 'Tc', Tt', 'Lc' or 'Lt'
|
|
|
|
|
'Tc', gives half wave period, Tc (default).
|
|
|
|
|
'Tt', gives half wave period, Tt
|
|
|
|
|
'Lc' and 'Lt' ditto for wave length.
|
|
|
|
@ -1267,23 +1275,23 @@ class SpecData1D(WafoData):
|
|
|
|
|
|
|
|
|
|
opts = dict(speed=9)
|
|
|
|
|
opts.update(options)
|
|
|
|
|
if pdef[0] in ('l', 'L'):
|
|
|
|
|
if kind[0] in ('l', 'L'):
|
|
|
|
|
if self.type != 'k1d':
|
|
|
|
|
raise ValueError('Must be spectrum of type: k1d')
|
|
|
|
|
elif pdef[0] in ('t', 'T'):
|
|
|
|
|
elif kind[0] in ('t', 'T'):
|
|
|
|
|
if self.type != 'freq':
|
|
|
|
|
raise ValueError('Must be spectrum of type: freq')
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError('pdef must be Tc,Tt or Lc, Lt')
|
|
|
|
|
# if strncmpi('l',def,1)
|
|
|
|
|
# if strncmpi('l',kind,1)
|
|
|
|
|
# spec=spec2spec(spec,'k1d')
|
|
|
|
|
# elseif strncmpi('t',def,1)
|
|
|
|
|
# elseif strncmpi('t',kind,1)
|
|
|
|
|
# spec=spec2spec(spec,'freq')
|
|
|
|
|
# else
|
|
|
|
|
# error('Unknown def')
|
|
|
|
|
# error('Unknown kind')
|
|
|
|
|
# end
|
|
|
|
|
pdef2defnr = dict(tc=1, lc=1, tt= -1, lt= -1)
|
|
|
|
|
defnr = pdef2defnr[pdef.lower()]
|
|
|
|
|
kind2defnr = dict(tc=1, lc=1, tt= -1, lt= -1)
|
|
|
|
|
defnr = kind2defnr[kind.lower()]
|
|
|
|
|
|
|
|
|
|
S = self.copy()
|
|
|
|
|
S.normalize()
|
|
|
|
@ -1363,9 +1371,9 @@ class SpecData1D(WafoData):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
titledict = dict(tc='Density of Tc', tt='Density of Tt', lc='Density of Lc', lt='Density of Lt')
|
|
|
|
|
Htxt = titledict.get(pdef.lower())
|
|
|
|
|
Htxt = titledict.get(kind.lower())
|
|
|
|
|
|
|
|
|
|
if pdef[0].lower() == 'l':
|
|
|
|
|
if kind[0].lower() == 'l':
|
|
|
|
|
xtxt = 'wave length [m]'
|
|
|
|
|
else:
|
|
|
|
|
xtxt = 'period [s]'
|
|
|
|
@ -1441,6 +1449,347 @@ class SpecData1D(WafoData):
|
|
|
|
|
hstack((Scd, Scc))))
|
|
|
|
|
return big
|
|
|
|
|
|
|
|
|
|
def to_mmt_pdf(self, paramt=None,paramu=None,utc=None,kind='mm',verbose=False,**options):
|
|
|
|
|
''' Returns joint density of Maximum, minimum and period.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
u = reference level (default the most frequently crossed level).
|
|
|
|
|
kind : string
|
|
|
|
|
defining density returned
|
|
|
|
|
'Mm' : maximum and the following minimum. (M,m) (default)
|
|
|
|
|
'rfc' : maximum and the rainflow minimum height.
|
|
|
|
|
'AcAt' : (crest,trough) heights.
|
|
|
|
|
'vMm' : level v separated Maximum and minimum (M,m)_v
|
|
|
|
|
'MmTMm' : maximum, minimum and period between (M,m,TMm)
|
|
|
|
|
'vMmTMm': level v separated Maximum, minimum and period
|
|
|
|
|
between (M,m,TMm)_v
|
|
|
|
|
'MmTMd' : level v separated Maximum, minimum and the period
|
|
|
|
|
from Max to level v-down-crossing (M,m,TMd)_v.
|
|
|
|
|
'MmTdm' : level v separated Maximum, minimum and the period from
|
|
|
|
|
level v-down-crossing to min. (M,m,Tdm)_v
|
|
|
|
|
NB! All 'T' above can be replaced by 'L' to get wave length
|
|
|
|
|
instead.
|
|
|
|
|
paramt : [0 tn Nt]
|
|
|
|
|
defines discretization of half period: tn is the longest period
|
|
|
|
|
considered while Nt is the number of points, i.e. (Nt-1)/tn is the
|
|
|
|
|
sampling frequnecy. paramt= [0 10 51] implies that the halfperiods
|
|
|
|
|
are considered at 51 linearly spaced points in the interval [0,10],
|
|
|
|
|
i.e. sampling frequency is 5 Hz.
|
|
|
|
|
paramu : [u v N]
|
|
|
|
|
defines discretization of maxima and minima ranges: u is the lowest
|
|
|
|
|
minimum considered, v the highest maximum and N is the number of
|
|
|
|
|
levels (u,v) included.
|
|
|
|
|
options :
|
|
|
|
|
rind-options structure containing optional parameters controlling
|
|
|
|
|
the performance of the integration. See rindoptset for details.
|
|
|
|
|
[] = default values are used.
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
f = pdf (density structure) of crests (trough) heights
|
|
|
|
|
|
|
|
|
|
TO_MMT_PDF calculates densities of wave characteristics in a
|
|
|
|
|
stationary Gaussian transform process X(t) where
|
|
|
|
|
Y(t) = g(X(t)) (Y zero-mean Gaussian with spectrum given in input spec).
|
|
|
|
|
The tr. g can be estimated using lc2tr, dat2tr, hermitetr or ochitr.
|
|
|
|
|
|
|
|
|
|
Examples
|
|
|
|
|
--------
|
|
|
|
|
The joint density of zero separated Max2min cycles in time (a);
|
|
|
|
|
in space (b); AcAt in time for nonlinear sea model (c):
|
|
|
|
|
|
|
|
|
|
Hm0=7;Tp=11;
|
|
|
|
|
S = jonswap(4*pi/Tp,[Hm0 Tp]);
|
|
|
|
|
Sk = spec2spec(S,'k1d');
|
|
|
|
|
L0 = spec2mom(S,1);
|
|
|
|
|
paramu = [sqrt(L0)*[-4 4] 41];
|
|
|
|
|
ft = spec2mmtpdf(S,0,'vmm',[],paramu); pdfplot(ft) % a)
|
|
|
|
|
fs = spec2mmtpdf(Sk,0,'vmm'); figure, pdfplot(fs) % b)
|
|
|
|
|
[sk, ku, me]=spec2skew(S);
|
|
|
|
|
g = hermitetr([],[sqrt(L0) sk ku me]);
|
|
|
|
|
Snorm=S; Snorm.S=S.S/L0; Snorm.tr=g;
|
|
|
|
|
ftg=spec2mmtpdf(Snorm,0,'AcAt',[],paramu); pdfplot(ftg) % c)
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
rindoptset, dat2tr, datastructures, wavedef, perioddef
|
|
|
|
|
|
|
|
|
|
References
|
|
|
|
|
---------
|
|
|
|
|
Podgorski et al. (2000)
|
|
|
|
|
"Exact distributions for apparent waves in irregular seas"
|
|
|
|
|
Ocean Engineering, Vol 27, no 1, pp979-1016.
|
|
|
|
|
|
|
|
|
|
P. A. Brodtkorb (2004),
|
|
|
|
|
Numerical evaluation of multinormal expectations
|
|
|
|
|
In Lund university report series
|
|
|
|
|
and in the Dr.Ing thesis:
|
|
|
|
|
The probability of Occurrence of dangerous Wave Situations at Sea.
|
|
|
|
|
Dr.Ing thesis, Norwegian University of Science and Technolgy, NTNU,
|
|
|
|
|
Trondheim, Norway.
|
|
|
|
|
|
|
|
|
|
Per A. Brodtkorb (2006)
|
|
|
|
|
"Evaluating Nearly Singular Multinormal Expectations with Application to
|
|
|
|
|
Wave Distributions",
|
|
|
|
|
Methodology And Computing In Applied Probability, Volume 8, Number 1, pp. 65-91(27)
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
opts = dict(speed=4, nit=2, method=0)
|
|
|
|
|
opts.update(**options)
|
|
|
|
|
|
|
|
|
|
ftype = self.freqtype
|
|
|
|
|
kind2defnr = dict( ac=-2,at=-2,
|
|
|
|
|
rfc=-1,
|
|
|
|
|
mm=0,
|
|
|
|
|
mmtmm=1, mmlmm=1,
|
|
|
|
|
vmm=2,
|
|
|
|
|
vmmtmm=3, vmmlmm=3,
|
|
|
|
|
mmtmd=4, vmmtmd=4, mmlmd=4,vmmlmd=4,
|
|
|
|
|
mmtdm=5, vmmtdm=5, mmldm=5, vmmldm=5)
|
|
|
|
|
defnr = kind2defnr.get(kind, 0)
|
|
|
|
|
in_space = (ftype=='k') # distribution in space or time
|
|
|
|
|
if defnr>=3 or defnr==1:
|
|
|
|
|
in_space = (kind[-2].upper()=='L')
|
|
|
|
|
|
|
|
|
|
if in_space:
|
|
|
|
|
#spec = spec2spec(spec,'k1d') ;
|
|
|
|
|
ptxt = 'space';
|
|
|
|
|
else:
|
|
|
|
|
#spec = spec2spec(spec,'freq');
|
|
|
|
|
ptxt='time';
|
|
|
|
|
|
|
|
|
|
S = self.copy()
|
|
|
|
|
S.normalize()
|
|
|
|
|
m, unused_mtxt = self.moment(nr=4, even=True)
|
|
|
|
|
A = sqrt(m[0] / m[1])
|
|
|
|
|
|
|
|
|
|
if paramt is None:
|
|
|
|
|
distanceBetweenExtremes = 5 * pi * sqrt(m[1] / m[2]) #(2.5 * mean distance between extremes)
|
|
|
|
|
paramt = [0, distanceBetweenExtremes, 43]
|
|
|
|
|
|
|
|
|
|
if paramu is None:
|
|
|
|
|
paramu = [-5 * sqrt(m[0]), 5 * sqrt(m[0]), 41]
|
|
|
|
|
|
|
|
|
|
if self.tr is None:
|
|
|
|
|
g = TrLinear(var=m[0])
|
|
|
|
|
else:
|
|
|
|
|
g = self.tr
|
|
|
|
|
|
|
|
|
|
if utc is None:
|
|
|
|
|
utc = g.gauss2dat(0) # most frequent crossed level
|
|
|
|
|
|
|
|
|
|
# transform reference level into Gaussian level
|
|
|
|
|
u = g.dat2gauss(utc)
|
|
|
|
|
if verbose:
|
|
|
|
|
print('The level u for Gaussian process = %g' % u)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t0, tn, Nt = paramt
|
|
|
|
|
t = linspace(0, tn / A, Nt) # normalized times
|
|
|
|
|
|
|
|
|
|
Nstart = 1 + round(t0/tn*(Nt-1)) # the starting point to evaluate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Nx = paramu[2]
|
|
|
|
|
if (defnr>1):
|
|
|
|
|
paramu[0] = max(0,paramu[0])
|
|
|
|
|
if (paramu[1]<0):
|
|
|
|
|
raise ValueError('Discretization levels must be larger than zero')
|
|
|
|
|
|
|
|
|
|
#Transform amplitudes to Gaussian levels:
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
h = linspace(*paramu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if defnr>1: # level v separated Max2min densities
|
|
|
|
|
hg = np.hstack((utc+h,utc-h))
|
|
|
|
|
hg, der = g.dat2gauss(utc+h, ones(Nx))
|
|
|
|
|
hg1, der1 = g.dat2gauss(utc-h, ones(Nx))
|
|
|
|
|
der, der1 = np.abs(der), np.abs(der1)
|
|
|
|
|
hg = np.hstack((hg,hg1))
|
|
|
|
|
else: # Max2min densities
|
|
|
|
|
hg, der = np.abs(g.dat2gauss(h, ones(Nx)))
|
|
|
|
|
der = der1 = np.abs(der)
|
|
|
|
|
|
|
|
|
|
dt = t[1] - t[0]
|
|
|
|
|
nr = 4
|
|
|
|
|
R = S.tocov_matrix(nr, Nt - 1, dt)
|
|
|
|
|
|
|
|
|
|
#NB!!! the spec2XXpdf.exe programmes is very sensitive to how you interpolate
|
|
|
|
|
# the covariances, especially where the process is very dependent
|
|
|
|
|
# and the covariance matrix is nearly singular. (i.e. for small t
|
|
|
|
|
# and high levels of u if Tc and low levels of u if Tt)
|
|
|
|
|
# The best is to interpolate the spectrum linearly so that S.S>=0
|
|
|
|
|
# This makes sure that the covariance matrix is positive
|
|
|
|
|
# semi-definitt, since the circulant spectrum are the eigenvalues of
|
|
|
|
|
# the circulant covariance matrix.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
callFortran = 0; # %options.method<0;
|
|
|
|
|
#if callFortran, % call fortran
|
|
|
|
|
#ftmp = cov2mmtpdfexe(R,dt,u,defnr,Nstart,hg,options);
|
|
|
|
|
#err = repmat(nan,size(ftmp));
|
|
|
|
|
#else
|
|
|
|
|
[ftmp,err,terr,options] = cov2mmtpdf(R,dt,u,defnr,Nstart,hg,options)
|
|
|
|
|
|
|
|
|
|
#end
|
|
|
|
|
note = ''
|
|
|
|
|
if hasattr(self,'note'):
|
|
|
|
|
note = note + self.note
|
|
|
|
|
tmp = 'L' if in_space else 'T'
|
|
|
|
|
if Nx>2:
|
|
|
|
|
titledict = {'-2':'Joint density of (Ac,At) in %s' % ptxt,
|
|
|
|
|
'-1':'Joint density of (M,m_{rfc}) in %s' % ptxt,
|
|
|
|
|
'0':'Joint density of (M,m) in %s' % ptxt,
|
|
|
|
|
'1':'Joint density of (M,m,%sMm) in %s' % (tmp, ptxt),
|
|
|
|
|
'2':'Joint density of (M,m)_{v=%2.5g} in %s' % (utc, ptxt),
|
|
|
|
|
'3':'Joint density of (M,m,%sMm)_{v=%2.5g} in %s' % (tmp,utc, ptxt),
|
|
|
|
|
'4':'Joint density of (M,m,%sMd)_{v=%2.5g} in %s' % (tmp,utc, ptxt),
|
|
|
|
|
'5':'Joint density of (M,m,%sdm)_{v=%2.5g} in %s' % (tmp,utc, ptxt)}
|
|
|
|
|
title = titledict[defnr]
|
|
|
|
|
labx = 'Max [m]'
|
|
|
|
|
laby = 'min [m]';
|
|
|
|
|
args = (h,h)
|
|
|
|
|
else:
|
|
|
|
|
note = note + 'Density is not scaled to unity'
|
|
|
|
|
if defnr in (-2,-1,0,1):
|
|
|
|
|
title = 'Density of (%sMm, M = %2.5g, m = %2.5g)' % (tmp,h[1],h[0])
|
|
|
|
|
elif defnr in (2,3):
|
|
|
|
|
title = 'Density of (%sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (tmp,h[1],-h[1],utc)
|
|
|
|
|
elif defnr==4:
|
|
|
|
|
title = 'Density of (%sMd, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (tmp,tmp,h[1],-h[1],utc)
|
|
|
|
|
elif defnr==5:
|
|
|
|
|
title = 'Density of (%sdm, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (tmp,tmp,h[1],-h[1],utc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f = wafodata();
|
|
|
|
|
# f.options = options;
|
|
|
|
|
# if defnr>1 or defnr==-2:
|
|
|
|
|
# f.u = utc # save level u
|
|
|
|
|
#
|
|
|
|
|
# if Nx>2 % amplitude distributions wanted
|
|
|
|
|
# f.x{2} = h;
|
|
|
|
|
# f.labx{2} = 'min [m]';
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# if defnr>2 || defnr==1
|
|
|
|
|
# der0 = der1[:,None] * der[None,:]
|
|
|
|
|
# ftmp = np.reshape(ftmp,Nx,Nx,Nt) * der0[:,:, None] / A
|
|
|
|
|
# err = np.reshape(err,Nx,Nx,Nt) * der0[:,:, None] / A
|
|
|
|
|
#
|
|
|
|
|
# f.x{3} = t(:)*A
|
|
|
|
|
# labz = 'wave length [m]' if in_space else 'period [sec]'
|
|
|
|
|
#
|
|
|
|
|
# else
|
|
|
|
|
# der0 = der[:,None] * der[None,:]
|
|
|
|
|
# ftmp = np.reshape(ftmp,Nx,Nx) * der0
|
|
|
|
|
# err = np.reshape(err,Nx,Nx) * der0
|
|
|
|
|
#
|
|
|
|
|
# if (defnr==-1):
|
|
|
|
|
# ftmp0 = fliplr(mctp2rfc(fliplr(ftmp)));
|
|
|
|
|
# err = abs(ftmp0-fliplr(mctp2rfc(fliplr(ftmp+err))));
|
|
|
|
|
# ftmp = ftmp0;
|
|
|
|
|
# elif (defnr==-2):
|
|
|
|
|
# ftmp0=fliplr(mctp2tc(fliplr(ftmp),utc,paramu))*sqrt(L4*L0)/L2;
|
|
|
|
|
# err =abs(ftmp0-fliplr(mctp2tc(fliplr(ftmp+err),utc,paramu))*sqrt(L4*L0)/L2);
|
|
|
|
|
# index1=find(f.x{1}>0);
|
|
|
|
|
# index2=find(f.x{2}<0);
|
|
|
|
|
# ftmp=flipud(ftmp0(index2,index1));
|
|
|
|
|
# err =flipud(err(index2,index1));
|
|
|
|
|
# f.x{1} = f.x{1}(index1);
|
|
|
|
|
# f.x{2} = abs(flipud(f.x{2}(index2)));
|
|
|
|
|
# end
|
|
|
|
|
# end
|
|
|
|
|
# f.f = ftmp;
|
|
|
|
|
# f.err = err;
|
|
|
|
|
# else % Only time or wave length distributions wanted
|
|
|
|
|
# f.f = ftmp/A;
|
|
|
|
|
# f.err = err/A;
|
|
|
|
|
# f.x{1}=A*t';
|
|
|
|
|
# if strcmpi(def(1),'t')
|
|
|
|
|
# f.labx{1} = 'period [sec]';
|
|
|
|
|
# else
|
|
|
|
|
# f.labx{1} = 'wave length [m]';
|
|
|
|
|
# end
|
|
|
|
|
# if defnr>3,
|
|
|
|
|
# f.f = reshape(f.f,[Nt, Nt]);
|
|
|
|
|
# f.err = reshape(f.err,[Nt, Nt]);
|
|
|
|
|
# f.x{2}= A*t';
|
|
|
|
|
# if strcmpi(def(1),'t')
|
|
|
|
|
# f.labx{2} = 'period [sec]';
|
|
|
|
|
# else
|
|
|
|
|
# f.labx{2} = 'wave length [m]';
|
|
|
|
|
# end
|
|
|
|
|
# end
|
|
|
|
|
# end
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# try
|
|
|
|
|
# [f.cl,f.pl]=qlevels(f.f,[10 30 50 70 90 95 99 99.9],f.x{1},f.x{2});
|
|
|
|
|
# catch
|
|
|
|
|
# warning('WAFO:SPEC2MMTPDF','Singularity likely in pdf')
|
|
|
|
|
# end
|
|
|
|
|
# %pdfplot(f)
|
|
|
|
|
#
|
|
|
|
|
# %Test of spec2mmtpdf
|
|
|
|
|
# % cd f:\matlab\matlab\wafo\source\sp2thpdfalan
|
|
|
|
|
# % addpath f:\matlab\matlab\wafo ,initwafo, addpath f:\matlab\matlab\graphutil
|
|
|
|
|
# % Hm0=7;Tp=11; S = jonswap(4*pi/Tp,[Hm0 Tp]);
|
|
|
|
|
# % ft = spec2mmtpdf(S,0,'vMmTMm',[0.3,.4,11],[0 .00005 2]);
|
|
|
|
|
|
|
|
|
|
return f #% main
|
|
|
|
|
|
|
|
|
|
# function dens = cov2mmtpdfexe(R,dt,u,defnr,Nstart,hg,options)
|
|
|
|
|
# % Write parameters to file
|
|
|
|
|
# %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
|
# Nx = max(1,length(hg));
|
|
|
|
|
# if (defnr>1)
|
|
|
|
|
# Nx = Nx/2; %level v separated max2min densities wanted
|
|
|
|
|
# end
|
|
|
|
|
# Ntime = size(R,1);
|
|
|
|
|
#
|
|
|
|
|
# filenames = {'h.in','reflev.in'};
|
|
|
|
|
# cleanup(filenames{:})
|
|
|
|
|
#
|
|
|
|
|
# fid = fopen('h.in','wt');
|
|
|
|
|
# fprintf(fid,'%12.10f\n',hg);
|
|
|
|
|
# fclose(fid);
|
|
|
|
|
#
|
|
|
|
|
# %XSPLT = options.xsplit;
|
|
|
|
|
# nit = options.nit;
|
|
|
|
|
# speed = options.speed;
|
|
|
|
|
# seed = options.seed;
|
|
|
|
|
# SCIS = abs(options.method); % method<=0
|
|
|
|
|
#
|
|
|
|
|
# disp('writing data')
|
|
|
|
|
# fid=fopen('reflev.in','wt');
|
|
|
|
|
# fprintf(fid,'%2.0f \n',Ntime);
|
|
|
|
|
# fprintf(fid,'%2.0f \n',Nstart);
|
|
|
|
|
# fprintf(fid,'%2.0f \n',nit);
|
|
|
|
|
# fprintf(fid,'%2.0f \n',speed);
|
|
|
|
|
# fprintf(fid,'%2.0f \n',SCIS);
|
|
|
|
|
# fprintf(fid,'%2.0f \n',seed); % select a random seed for rind
|
|
|
|
|
# fprintf(fid,'%2.0f \n',Nx);
|
|
|
|
|
# fprintf(fid,'%12.10E \n',dt);
|
|
|
|
|
# fprintf(fid,'%12.10E \n',u);
|
|
|
|
|
# fprintf(fid,'%2.0f \n',defnr); % def
|
|
|
|
|
# fclose(fid);
|
|
|
|
|
#
|
|
|
|
|
# filenames2 = writecov(R);
|
|
|
|
|
#
|
|
|
|
|
# disp(' Starting Fortran executable.')
|
|
|
|
|
#
|
|
|
|
|
# dos([ wafoexepath 'cov2mmtpdf.exe']); %compiled cov2mmtpdf.f with rind70.f
|
|
|
|
|
#
|
|
|
|
|
# dens = load('dens.out');
|
|
|
|
|
#
|
|
|
|
|
# cleanup(filenames{:},filenames2{:})
|
|
|
|
|
#
|
|
|
|
|
# %% Clean up
|
|
|
|
|
#
|
|
|
|
|
# return
|
|
|
|
|
def to_specnorm(self):
|
|
|
|
|
S = self.copy()
|
|
|
|
|
S.normalize()
|
|
|
|
@ -3277,9 +3626,9 @@ def test_mm_pdf():
|
|
|
|
|
import numpy as np
|
|
|
|
|
import wafo.spectrum.models as sm
|
|
|
|
|
Sj = sm.Jonswap(Hm0=7, Tp=11)
|
|
|
|
|
w = np.linspace(0,4,256)
|
|
|
|
|
w = np.linspace(0, 4, 256)
|
|
|
|
|
S1 = Sj.tospecdata(w) #Make spectrum object from numerical values
|
|
|
|
|
S = sm.SpecData1D(Sj(w),w) # Alternatively do it manually
|
|
|
|
|
S = sm.SpecData1D(Sj(w), w) # Alternatively do it manually
|
|
|
|
|
mm = S.to_mm_pdf()
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|