Started work on SpecData1D.to_mmt_pdf

master
Per.Andreas.Brodtkorb 14 years ago
parent 42a48294e2
commit 5dfc193c93

@ -34,8 +34,7 @@ def which(program):
return None
def compile_all():
def f2py_call_str():
# regardless of platform, try to figure out which f2py call is in the path
# define possible options
f2py_call_list = ('f2py','f2py2.6','f2py2.7','f2py.py',)
@ -45,13 +44,13 @@ def compile_all():
# if the call command exists in the path, it will return the path as
# a string, otherwise it will return None
f2py_path = which(k)
if not f2py_path:
no_f2py = not f2py_path
if no_f2py:
# didn't find the current call k, continue looking
pass
else:
# current call k is in the path
f2py_call = k
no_f2py = False
break
# raise exception if f2py is not found
@ -59,20 +58,11 @@ def compile_all():
raise UserWarning, \
'Couldn\'t locate f2py. Should be part of NumPy installation.'
else:
print '='*75
print 'compiling c_codes'
print '='*75
print 'found f2py in:', f2py_path
# on Windows: Install microsoft visual c++ .NET 2003 to run the following
# build command
# on posix: install gcc and gfortran
compile_format = f2py_call + ' %s %s -c'
# # on Linux my linux version it is f2py2.6, don't know how that is on others
# if os.name == 'posix':
return f2py_call
# # this might vary among specific cases: f2py, f2py2.7, f2py3.2, ...
# # TODO: more robust approach, find out what f2py is in the users path
# if os.name == 'posix':
# compile_format = 'f2py2.6 %s %s -c'
#
# # Install microsoft visual c++ .NET 2003 and run the following to build the module:
@ -85,12 +75,19 @@ def compile_all():
# raise UserWarning, \
# 'Untested platform:', os.name
def compile_all():
f2py_call = f2py_call_str()
print '='*75
print 'compiling c_codes'
print '='*75
compile_format = f2py_call + ' %s %s -c'
pyfs = ('c_library.pyf',)
files =('c_functions.c',)
for pyf,file in zip(pyfs,files):
os.system(compile_format % (pyf,file))
# f2py.py c_library.pyf c_functions.c -c
if __name__=='__main__':
compile_all()

@ -6,7 +6,82 @@ gfortran -W -Wall -pedantic-errors -fbounds-check -Werror -c dsvdc.f mregmodule.
"""
import os
def which(program):
"""
Test if program exists
======================
In order to test if a certain executable exists, it will search for the
program name in the environment variables.
If program is a full path to an executable, it will check it exists
Copied from:
http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python/
It is supposed to mimic the UNIX command "which"
"""
def is_exe(fpath):
return os.path.exists(fpath) and os.access(fpath, os.X_OK)
fpath, fname = os.path.split(program)
if fpath:
if is_exe(program):
return program
else:
for path in os.environ["PATH"].split(os.pathsep):
exe_file = os.path.join(path, program)
if is_exe(exe_file):
return exe_file
return None
def f2py_call_str():
# regardless of platform, try to figure out which f2py call is in the path
# define possible options
f2py_call_list = ('f2py','f2py2.6','f2py2.7','f2py.py',)
no_f2py = True
for k in f2py_call_list:
# if the call command exists in the path, it will return the path as
# a string, otherwise it will return None
f2py_path = which(k)
no_f2py = not f2py_path
if no_f2py:
# didn't find the current call k, continue looking
pass
else:
# current call k is in the path
f2py_call = k
break
# raise exception if f2py is not found
if no_f2py:
raise UserWarning, \
'Couldn\'t locate f2py. Should be part of NumPy installation.'
else:
print 'found f2py in:', f2py_path
return f2py_call
# # this might vary among specific cases: f2py, f2py2.7, f2py3.2, ...
# # TODO: more robust approach, find out what f2py is in the users path
# if os.name == 'posix':
# compile_format = 'f2py2.6 %s %s -c'
#
# # Install microsoft visual c++ .NET 2003 and run the following to build the module:
# elif os.name == 'nt':
# # compile_format = 'f2py.py %s %s -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71'
# compile_format = 'f2py.py %s %s -c'
#
# # give an Error for other OS-es
# else:
# raise UserWarning, \
# 'Untested platform:', os.name
def compile_all():
f2py_call = f2py_call_str()
print '='*75
print 'compiling cov2mod'
print '='*75
files = ['dsvdc','mregmodule', 'intfcmod']
compile1_format = 'gfortran -fPIC -c %s.f'
format1 = '%s.o ' * len(files)
@ -14,7 +89,7 @@ def compile_all():
os.system(compile1_format % file)
file_objects = format1 % tuple(files)
os.system('f2py.py -m cov2mod -c %s cov2mmpdfreg_intfc.f' % file_objects)
os.system(f2py_call + ' -m cov2mod -c %s cov2mmpdfreg_intfc.f' % file_objects)
if __name__=='__main__':

@ -32,10 +32,8 @@ def which(program):
return None
def compile_all():
#os.system('f2py.py mvn.pyf mvndst.f -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71 ')
def f2py_call_str():
# regardless of platform, try to figure out which f2py call is in the path
# define possible options
f2py_call_list = ('f2py','f2py2.6','f2py2.7','f2py.py',)
@ -45,13 +43,13 @@ def compile_all():
# if the call command exists in the path, it will return the path as
# a string, otherwise it will return None
f2py_path = which(k)
if not f2py_path:
no_f2py = not f2py_path
if no_f2py:
# didn't find the current call k, continue looking
pass
else:
# current call k is in the path
f2py_call = k
no_f2py = False
break
# raise exception if f2py is not found
@ -59,25 +57,29 @@ def compile_all():
raise UserWarning, \
'Couldn\'t locate f2py. Should be part of NumPy installation.'
else:
print '='*75
print 'compiling mvn'
print '='*75
print 'found f2py in:', f2py_path
return f2py_call
# # this might vary among specific cases: f2py, f2py2.7, f2py3.2, ...
# # TODO: more robust approach, find out what f2py is in the users path
# if os.name == 'posix':
# f2py_call = 'f2py2.6'
# compile_format = 'f2py2.6 %s %s -c'
#
# # Install microsoft visual c++ .NET 2003 and run the following to build the module:
# elif os.name == 'nt':
# f2py_call = 'f2py.py'
# # compile_format = 'f2py.py %s %s -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71'
# compile_format = 'f2py.py %s %s -c'
#
# # give an Error for other OS-es
# else:
# raise UserWarning, \
# 'Untested platform:', os.name
def compile_all():
f2py_call = f2py_call_str()
print '='*75
print 'compiling mvn'
print '='*75
os.system(f2py_call + ' mvn.pyf mvndst.f -c ')

@ -32,13 +32,8 @@ def which(program):
return None
def compile_all():
files = ['mvnprd', 'mvnprodcorrprb']
compile1_format = 'gfortran -fPIC -c %s.f'
for file in files:
os.system(compile1_format % file)
file_objects = '%s.o %s.o' % tuple(files)
def f2py_call_str():
# regardless of platform, try to figure out which f2py call is in the path
# define possible options
f2py_call_list = ('f2py','f2py2.6','f2py2.7','f2py.py',)
@ -48,13 +43,13 @@ def compile_all():
# if the call command exists in the path, it will return the path as
# a string, otherwise it will return None
f2py_path = which(k)
if not f2py_path:
no_f2py = not f2py_path
if no_f2py:
# didn't find the current call k, continue looking
pass
else:
# current call k is in the path
f2py_call = k
no_f2py = False
break
# raise exception if f2py is not found
@ -62,25 +57,36 @@ def compile_all():
raise UserWarning, \
'Couldn\'t locate f2py. Should be part of NumPy installation.'
else:
print '='*75
print 'compiling mvnprd'
print '='*75
print 'found f2py in:', f2py_path
return f2py_call
# # this might vary among specific cases: f2py, f2py2.7, f2py3.2, ...
# # TODO: more robust approach, find out what f2py is in the users path
# if os.name == 'posix':
# f2py_call = 'f2py2.6'
# compile_format = 'f2py2.6 %s %s -c'
#
# # Install microsoft visual c++ .NET 2003 and run the following to build the module:
# elif os.name == 'nt':
# f2py_call = 'f2py.py'
# # compile_format = 'f2py.py %s %s -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71'
# compile_format = 'f2py.py %s %s -c'
#
# # give an Error for other OS-es
# else:
# raise UserWarning, \
# 'Untested platform:', os.name
def compile_all():
f2py_call = f2py_call_str()
print '='*75
print 'compiling mvnprd'
print '='*75
files = ['mvnprd', 'mvnprodcorrprb']
compile1_format = 'gfortran -fPIC -c %s.f'
for file in files:
os.system(compile1_format % file)
file_objects = '%s.o %s.o' % tuple(files)
#os.system('f2py.py -m mvnprdmod -c %s mvnprd_interface.f --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71' % file_objects)
os.system(f2py_call + ' -m mvnprdmod -c %s mvnprd_interface.f ' % file_objects)

@ -36,14 +36,7 @@ def which(program):
return None
def compile_all():
files = ['intmodule', 'jacobmod', 'swapmod', 'fimod','rindmod','rind71mod']
compile1_format = 'gfortran -fPIC -c %s.f'
format1 = '%s.o ' * len(files)
for file in files:
os.system(compile1_format % file)
file_objects = format1 % tuple(files)
def f2py_call_str():
# regardless of platform, try to figure out which f2py call is in the path
# define possible options
f2py_call_list = ('f2py','f2py2.6','f2py2.7','f2py.py',)
@ -53,13 +46,13 @@ def compile_all():
# if the call command exists in the path, it will return the path as
# a string, otherwise it will return None
f2py_path = which(k)
if not f2py_path:
no_f2py = not f2py_path
if no_f2py:
# didn't find the current call k, continue looking
pass
else:
# current call k is in the path
f2py_call = k
no_f2py = False
break
# raise exception if f2py is not found
@ -67,25 +60,36 @@ def compile_all():
raise UserWarning, \
'Couldn\'t locate f2py. Should be part of NumPy installation.'
else:
print '='*75
print 'compiling rind2007'
print '='*75
print 'found f2py in:', f2py_path
return f2py_call
# # this might vary among specific cases: f2py, f2py2.7, f2py3.2, ...
# # TODO: more robust approach, find out what f2py is in the users path
# if os.name == 'posix':
# f2py_call = 'f2py2.6'
# compile_format = 'f2py2.6 %s %s -c'
#
# # Install microsoft visual c++ .NET 2003 and run the following to build the module:
# elif os.name == 'nt':
# f2py_call = 'f2py.py'
# # compile_format = 'f2py.py %s %s -c --fcompiler=gnu95 --compiler=mingw32 -lmsvcr71'
# compile_format = 'f2py.py %s %s -c'
#
# # give an Error for other OS-es
# else:
# raise UserWarning, \
# 'Untested platform:', os.name
def compile_all():
f2py_call = f2py_call_str()
print '='*75
print 'compiling rind2007'
print '='*75
files = ['intmodule', 'jacobmod', 'swapmod', 'fimod','rindmod','rind71mod']
compile1_format = 'gfortran -fPIC -c %s.f'
format1 = '%s.o ' * len(files)
for file in files:
os.system(compile1_format % file)
file_objects = format1 % tuple(files)
os.system(f2py_call + ' -m rindmod -c %s rind_interface.f ' % file_objects)
if __name__=='__main__':

@ -21,6 +21,8 @@ from dispersion_relation import w2k #, k2w
from wafo.wafodata import WafoData, now
from wafo.misc import sub_dict_select, nextpow2, discretize, JITImport, findpeaks #, tranproc
from wafo.graphutil import cltext
from wafo.kdetools import qlevels
from wafo import wafodata
try:
from wafo.gaussian import Rind
except ImportError:
@ -1154,7 +1156,9 @@ class SpecData1D(WafoData):
>>> w = np.linspace(0,4,256)
>>> S1 = Sj.tospecdata(w) #Make spectrum object from numerical values
>>> S = sm.SpecData1D(Sj(w),w) # Alternatively do it manually
S.to_mm_pdf()
mm = S.to_mm_pdf()
mm.plot()
mm.plot(plotflag=1)
'''
S = self.copy()
@ -1167,7 +1171,7 @@ class SpecData1D(WafoData):
paramt = [0, distanceBetweenExtremes, 43]
if paramu is None:
paramu = [-4*sqrt(m[0]), 4*sqrt(m[0]), 41]
paramu = [-5 * sqrt(m[0]), 5 * sqrt(m[0]), 41]
if self.tr is None:
g = TrLinear(var=m[0])
@ -1201,19 +1205,23 @@ class SpecData1D(WafoData):
cov2mod.initinteg(EPS, EPSS, EPS0, C, IAC, ISQ)
uvdens = cov2mod.cov2mmpdfreg(t, R, h, h, Tg, Xg, nit)
uvdens = np.rot90(uvdens, -2)
dh = h[1] - h[0]
uvdens *= dh * dh
uvdens = np.rot90(uvdens,-2)
mmpdf = WafoData(uvdens,args=(h,h), title='Joint density of maximum and minimum',
xlab='max [m]',ylab='min [m]')
mmpdf = WafoData(uvdens, args=(h, h), xlab='max [m]', ylab='min [m]',
title='Joint density of maximum and minimum')
try:
pl = [10, 30, 50, 70, 90, 95, 99, 99.9]
mmpdf.cl = qlevels(uvdens, pl, h, h)
mmpdf.pl = pl
except:
pass
return mmpdf
#[f.cl,f.pl] = qlevels(f.f,[10, 30, 50, 70, 90, 95, 99, 99.9],f.x{1},f.x{2})
def to_t_pdf(self, u=None, pdef='Tc', paramt=None, **options):
def to_t_pdf(self, u=None, kind='Tc', paramt=None, **options):
'''
Density of crest/trough- period or length, version 2.
@ -1221,7 +1229,7 @@ class SpecData1D(WafoData):
----------
u : real scalar
reference level (default the most frequently crossed level).
pdef : string, 'Tc', Tt', 'Lc' or 'Lt'
kind : string, 'Tc', Tt', 'Lc' or 'Lt'
'Tc', gives half wave period, Tc (default).
'Tt', gives half wave period, Tt
'Lc' and 'Lt' ditto for wave length.
@ -1267,23 +1275,23 @@ class SpecData1D(WafoData):
opts = dict(speed=9)
opts.update(options)
if pdef[0] in ('l', 'L'):
if kind[0] in ('l', 'L'):
if self.type != 'k1d':
raise ValueError('Must be spectrum of type: k1d')
elif pdef[0] in ('t', 'T'):
elif kind[0] in ('t', 'T'):
if self.type != 'freq':
raise ValueError('Must be spectrum of type: freq')
else:
raise ValueError('pdef must be Tc,Tt or Lc, Lt')
# if strncmpi('l',def,1)
# if strncmpi('l',kind,1)
# spec=spec2spec(spec,'k1d')
# elseif strncmpi('t',def,1)
# elseif strncmpi('t',kind,1)
# spec=spec2spec(spec,'freq')
# else
# error('Unknown def')
# error('Unknown kind')
# end
pdef2defnr = dict(tc=1, lc=1, tt= -1, lt= -1)
defnr = pdef2defnr[pdef.lower()]
kind2defnr = dict(tc=1, lc=1, tt= -1, lt= -1)
defnr = kind2defnr[kind.lower()]
S = self.copy()
S.normalize()
@ -1363,9 +1371,9 @@ class SpecData1D(WafoData):
titledict = dict(tc='Density of Tc', tt='Density of Tt', lc='Density of Lc', lt='Density of Lt')
Htxt = titledict.get(pdef.lower())
Htxt = titledict.get(kind.lower())
if pdef[0].lower() == 'l':
if kind[0].lower() == 'l':
xtxt = 'wave length [m]'
else:
xtxt = 'period [s]'
@ -1441,6 +1449,347 @@ class SpecData1D(WafoData):
hstack((Scd, Scc))))
return big
def to_mmt_pdf(self, paramt=None,paramu=None,utc=None,kind='mm',verbose=False,**options):
''' Returns joint density of Maximum, minimum and period.
Parameters
----------
u = reference level (default the most frequently crossed level).
kind : string
defining density returned
'Mm' : maximum and the following minimum. (M,m) (default)
'rfc' : maximum and the rainflow minimum height.
'AcAt' : (crest,trough) heights.
'vMm' : level v separated Maximum and minimum (M,m)_v
'MmTMm' : maximum, minimum and period between (M,m,TMm)
'vMmTMm': level v separated Maximum, minimum and period
between (M,m,TMm)_v
'MmTMd' : level v separated Maximum, minimum and the period
from Max to level v-down-crossing (M,m,TMd)_v.
'MmTdm' : level v separated Maximum, minimum and the period from
level v-down-crossing to min. (M,m,Tdm)_v
NB! All 'T' above can be replaced by 'L' to get wave length
instead.
paramt : [0 tn Nt]
defines discretization of half period: tn is the longest period
considered while Nt is the number of points, i.e. (Nt-1)/tn is the
sampling frequnecy. paramt= [0 10 51] implies that the halfperiods
are considered at 51 linearly spaced points in the interval [0,10],
i.e. sampling frequency is 5 Hz.
paramu : [u v N]
defines discretization of maxima and minima ranges: u is the lowest
minimum considered, v the highest maximum and N is the number of
levels (u,v) included.
options :
rind-options structure containing optional parameters controlling
the performance of the integration. See rindoptset for details.
[] = default values are used.
Returns
-------
f = pdf (density structure) of crests (trough) heights
TO_MMT_PDF calculates densities of wave characteristics in a
stationary Gaussian transform process X(t) where
Y(t) = g(X(t)) (Y zero-mean Gaussian with spectrum given in input spec).
The tr. g can be estimated using lc2tr, dat2tr, hermitetr or ochitr.
Examples
--------
The joint density of zero separated Max2min cycles in time (a);
in space (b); AcAt in time for nonlinear sea model (c):
Hm0=7;Tp=11;
S = jonswap(4*pi/Tp,[Hm0 Tp]);
Sk = spec2spec(S,'k1d');
L0 = spec2mom(S,1);
paramu = [sqrt(L0)*[-4 4] 41];
ft = spec2mmtpdf(S,0,'vmm',[],paramu); pdfplot(ft) % a)
fs = spec2mmtpdf(Sk,0,'vmm'); figure, pdfplot(fs) % b)
[sk, ku, me]=spec2skew(S);
g = hermitetr([],[sqrt(L0) sk ku me]);
Snorm=S; Snorm.S=S.S/L0; Snorm.tr=g;
ftg=spec2mmtpdf(Snorm,0,'AcAt',[],paramu); pdfplot(ftg) % c)
See also
--------
rindoptset, dat2tr, datastructures, wavedef, perioddef
References
---------
Podgorski et al. (2000)
"Exact distributions for apparent waves in irregular seas"
Ocean Engineering, Vol 27, no 1, pp979-1016.
P. A. Brodtkorb (2004),
Numerical evaluation of multinormal expectations
In Lund university report series
and in the Dr.Ing thesis:
The probability of Occurrence of dangerous Wave Situations at Sea.
Dr.Ing thesis, Norwegian University of Science and Technolgy, NTNU,
Trondheim, Norway.
Per A. Brodtkorb (2006)
"Evaluating Nearly Singular Multinormal Expectations with Application to
Wave Distributions",
Methodology And Computing In Applied Probability, Volume 8, Number 1, pp. 65-91(27)
'''
opts = dict(speed=4, nit=2, method=0)
opts.update(**options)
ftype = self.freqtype
kind2defnr = dict( ac=-2,at=-2,
rfc=-1,
mm=0,
mmtmm=1, mmlmm=1,
vmm=2,
vmmtmm=3, vmmlmm=3,
mmtmd=4, vmmtmd=4, mmlmd=4,vmmlmd=4,
mmtdm=5, vmmtdm=5, mmldm=5, vmmldm=5)
defnr = kind2defnr.get(kind, 0)
in_space = (ftype=='k') # distribution in space or time
if defnr>=3 or defnr==1:
in_space = (kind[-2].upper()=='L')
if in_space:
#spec = spec2spec(spec,'k1d') ;
ptxt = 'space';
else:
#spec = spec2spec(spec,'freq');
ptxt='time';
S = self.copy()
S.normalize()
m, unused_mtxt = self.moment(nr=4, even=True)
A = sqrt(m[0] / m[1])
if paramt is None:
distanceBetweenExtremes = 5 * pi * sqrt(m[1] / m[2]) #(2.5 * mean distance between extremes)
paramt = [0, distanceBetweenExtremes, 43]
if paramu is None:
paramu = [-5 * sqrt(m[0]), 5 * sqrt(m[0]), 41]
if self.tr is None:
g = TrLinear(var=m[0])
else:
g = self.tr
if utc is None:
utc = g.gauss2dat(0) # most frequent crossed level
# transform reference level into Gaussian level
u = g.dat2gauss(utc)
if verbose:
print('The level u for Gaussian process = %g' % u)
t0, tn, Nt = paramt
t = linspace(0, tn / A, Nt) # normalized times
Nstart = 1 + round(t0/tn*(Nt-1)) # the starting point to evaluate
Nx = paramu[2]
if (defnr>1):
paramu[0] = max(0,paramu[0])
if (paramu[1]<0):
raise ValueError('Discretization levels must be larger than zero')
#Transform amplitudes to Gaussian levels:
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
h = linspace(*paramu)
if defnr>1: # level v separated Max2min densities
hg = np.hstack((utc+h,utc-h))
hg, der = g.dat2gauss(utc+h, ones(Nx))
hg1, der1 = g.dat2gauss(utc-h, ones(Nx))
der, der1 = np.abs(der), np.abs(der1)
hg = np.hstack((hg,hg1))
else: # Max2min densities
hg, der = np.abs(g.dat2gauss(h, ones(Nx)))
der = der1 = np.abs(der)
dt = t[1] - t[0]
nr = 4
R = S.tocov_matrix(nr, Nt - 1, dt)
#NB!!! the spec2XXpdf.exe programmes is very sensitive to how you interpolate
# the covariances, especially where the process is very dependent
# and the covariance matrix is nearly singular. (i.e. for small t
# and high levels of u if Tc and low levels of u if Tt)
# The best is to interpolate the spectrum linearly so that S.S>=0
# This makes sure that the covariance matrix is positive
# semi-definitt, since the circulant spectrum are the eigenvalues of
# the circulant covariance matrix.
callFortran = 0; # %options.method<0;
#if callFortran, % call fortran
#ftmp = cov2mmtpdfexe(R,dt,u,defnr,Nstart,hg,options);
#err = repmat(nan,size(ftmp));
#else
[ftmp,err,terr,options] = cov2mmtpdf(R,dt,u,defnr,Nstart,hg,options)
#end
note = ''
if hasattr(self,'note'):
note = note + self.note
tmp = 'L' if in_space else 'T'
if Nx>2:
titledict = {'-2':'Joint density of (Ac,At) in %s' % ptxt,
'-1':'Joint density of (M,m_{rfc}) in %s' % ptxt,
'0':'Joint density of (M,m) in %s' % ptxt,
'1':'Joint density of (M,m,%sMm) in %s' % (tmp, ptxt),
'2':'Joint density of (M,m)_{v=%2.5g} in %s' % (utc, ptxt),
'3':'Joint density of (M,m,%sMm)_{v=%2.5g} in %s' % (tmp,utc, ptxt),
'4':'Joint density of (M,m,%sMd)_{v=%2.5g} in %s' % (tmp,utc, ptxt),
'5':'Joint density of (M,m,%sdm)_{v=%2.5g} in %s' % (tmp,utc, ptxt)}
title = titledict[defnr]
labx = 'Max [m]'
laby = 'min [m]';
args = (h,h)
else:
note = note + 'Density is not scaled to unity'
if defnr in (-2,-1,0,1):
title = 'Density of (%sMm, M = %2.5g, m = %2.5g)' % (tmp,h[1],h[0])
elif defnr in (2,3):
title = 'Density of (%sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (tmp,h[1],-h[1],utc)
elif defnr==4:
title = 'Density of (%sMd, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (tmp,tmp,h[1],-h[1],utc)
elif defnr==5:
title = 'Density of (%sdm, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (tmp,tmp,h[1],-h[1],utc)
f = wafodata();
# f.options = options;
# if defnr>1 or defnr==-2:
# f.u = utc # save level u
#
# if Nx>2 % amplitude distributions wanted
# f.x{2} = h;
# f.labx{2} = 'min [m]';
#
#
# if defnr>2 || defnr==1
# der0 = der1[:,None] * der[None,:]
# ftmp = np.reshape(ftmp,Nx,Nx,Nt) * der0[:,:, None] / A
# err = np.reshape(err,Nx,Nx,Nt) * der0[:,:, None] / A
#
# f.x{3} = t(:)*A
# labz = 'wave length [m]' if in_space else 'period [sec]'
#
# else
# der0 = der[:,None] * der[None,:]
# ftmp = np.reshape(ftmp,Nx,Nx) * der0
# err = np.reshape(err,Nx,Nx) * der0
#
# if (defnr==-1):
# ftmp0 = fliplr(mctp2rfc(fliplr(ftmp)));
# err = abs(ftmp0-fliplr(mctp2rfc(fliplr(ftmp+err))));
# ftmp = ftmp0;
# elif (defnr==-2):
# ftmp0=fliplr(mctp2tc(fliplr(ftmp),utc,paramu))*sqrt(L4*L0)/L2;
# err =abs(ftmp0-fliplr(mctp2tc(fliplr(ftmp+err),utc,paramu))*sqrt(L4*L0)/L2);
# index1=find(f.x{1}>0);
# index2=find(f.x{2}<0);
# ftmp=flipud(ftmp0(index2,index1));
# err =flipud(err(index2,index1));
# f.x{1} = f.x{1}(index1);
# f.x{2} = abs(flipud(f.x{2}(index2)));
# end
# end
# f.f = ftmp;
# f.err = err;
# else % Only time or wave length distributions wanted
# f.f = ftmp/A;
# f.err = err/A;
# f.x{1}=A*t';
# if strcmpi(def(1),'t')
# f.labx{1} = 'period [sec]';
# else
# f.labx{1} = 'wave length [m]';
# end
# if defnr>3,
# f.f = reshape(f.f,[Nt, Nt]);
# f.err = reshape(f.err,[Nt, Nt]);
# f.x{2}= A*t';
# if strcmpi(def(1),'t')
# f.labx{2} = 'period [sec]';
# else
# f.labx{2} = 'wave length [m]';
# end
# end
# end
#
#
# try
# [f.cl,f.pl]=qlevels(f.f,[10 30 50 70 90 95 99 99.9],f.x{1},f.x{2});
# catch
# warning('WAFO:SPEC2MMTPDF','Singularity likely in pdf')
# end
# %pdfplot(f)
#
# %Test of spec2mmtpdf
# % cd f:\matlab\matlab\wafo\source\sp2thpdfalan
# % addpath f:\matlab\matlab\wafo ,initwafo, addpath f:\matlab\matlab\graphutil
# % Hm0=7;Tp=11; S = jonswap(4*pi/Tp,[Hm0 Tp]);
# % ft = spec2mmtpdf(S,0,'vMmTMm',[0.3,.4,11],[0 .00005 2]);
return f #% main
# function dens = cov2mmtpdfexe(R,dt,u,defnr,Nstart,hg,options)
# % Write parameters to file
# %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Nx = max(1,length(hg));
# if (defnr>1)
# Nx = Nx/2; %level v separated max2min densities wanted
# end
# Ntime = size(R,1);
#
# filenames = {'h.in','reflev.in'};
# cleanup(filenames{:})
#
# fid = fopen('h.in','wt');
# fprintf(fid,'%12.10f\n',hg);
# fclose(fid);
#
# %XSPLT = options.xsplit;
# nit = options.nit;
# speed = options.speed;
# seed = options.seed;
# SCIS = abs(options.method); % method<=0
#
# disp('writing data')
# fid=fopen('reflev.in','wt');
# fprintf(fid,'%2.0f \n',Ntime);
# fprintf(fid,'%2.0f \n',Nstart);
# fprintf(fid,'%2.0f \n',nit);
# fprintf(fid,'%2.0f \n',speed);
# fprintf(fid,'%2.0f \n',SCIS);
# fprintf(fid,'%2.0f \n',seed); % select a random seed for rind
# fprintf(fid,'%2.0f \n',Nx);
# fprintf(fid,'%12.10E \n',dt);
# fprintf(fid,'%12.10E \n',u);
# fprintf(fid,'%2.0f \n',defnr); % def
# fclose(fid);
#
# filenames2 = writecov(R);
#
# disp(' Starting Fortran executable.')
#
# dos([ wafoexepath 'cov2mmtpdf.exe']); %compiled cov2mmtpdf.f with rind70.f
#
# dens = load('dens.out');
#
# cleanup(filenames{:},filenames2{:})
#
# %% Clean up
#
# return
def to_specnorm(self):
S = self.copy()
S.normalize()

Loading…
Cancel
Save