pep8 + fixed failing doctest

master
pbrod 9 years ago
parent afc61e4fc5
commit 3df0cf212d

@ -113,7 +113,7 @@ class Rind(object):
>>> np.allclose(val, 0.05494076, rtol=1e-2)
True
>>> err[0] < 1e-3, terr[0] < 1e-7
True, True
(True, True)
Compute expectation E( X1^{+}*X2^{+} ) with random
correlation coefficient,Cov(X1,X2) = rho2.

@ -1587,17 +1587,17 @@ class SpecData1D(PlotData):
else:
note = note + 'Density is not scaled to unity'
if defnr in (-2, -1, 0, 1):
title = 'Density of (%sMm, M = %2.5g, m = %2.5g)' % (
tmp, h[1], h[0])
title_txt = 'Density of (%sMm, M = %2.5g, m = %2.5g)'
title = title_txt % (tmp, h[1], h[0])
elif defnr in (2, 3):
title = 'Density of (%sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (
tmp, h[1], -h[1], utc)
title_txt = 'Density of (%sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}'
title = title_txt % (tmp, h[1], -h[1], utc)
elif defnr == 4:
title = 'Density of (%sMd, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (
tmp, tmp, h[1], -h[1], utc)
txt = 'Density of (%sMd, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}'
title = txt % (tmp, tmp, h[1], -h[1], utc)
elif defnr == 5:
title = 'Density of (%sdm, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % (
tmp, tmp, h[1], -h[1], utc)
txt = 'Density of (%sdm, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}'
title = txt % (tmp, tmp, h[1], -h[1], utc)
f = PlotData(args=args, title=title, labx=labx, laby=laby)
f.options = options
@ -1632,7 +1632,7 @@ class SpecData1D(PlotData):
paramu)) * sqrt(L4*L0)/L2
err = np.abs(ftmp0 -
np.fliplr(mctp2tc(np.fliplr(ftmp+err),
utc,paramu)) *
utc, paramu)) *
sqrt(L4*L0)/L2)
index1 = np.flatnonzero(f.args[0] > 0)
index2 = np.flatnonzero(f.args[1] < 0)
@ -1780,17 +1780,17 @@ class SpecData1D(PlotData):
Nstart = max(2, Nstart)
symmetry = 0
isOdd = np.mod(Nx1, 2)
is_odd = np.mod(Nx1, 2)
if def_nr <= 1: # just plain Mm
Nx = Nx1 * (Nx1 - 1) / 2
IJ = (Nx1 + isOdd) / 2
IJ = (Nx1 + is_odd) / 2
if (hg[0] + hg[Nx1 - 1] == 0 and (hg[IJ - 1] == 0 or
hg[IJ - 1] + hg[IJ] == 0)):
symmetry = 0
print(' Integration region symmetric')
# May save Nx1-isOdd integrations in each time step
# May save Nx1-is_odd integrations in each time step
# This is not implemented yet.
# Nx = Nx1*(Nx1-1)/2-Nx1+isOdd
# Nx = Nx1*(Nx1-1)/2-Nx1+is_odd
# normalizing constant:
# CC = 1/ expected number of zero-up-crossings of X'
# CC = 2*pi*sqrt(-R2[0]/R4[0])
@ -1819,6 +1819,7 @@ class SpecData1D(PlotData):
# opt0 = [options[n] for n in ('SCIS', 'XcScale', 'ABSEPS', 'RELEPS',
# 'COVEPS', 'MAXPTS', 'MINPTS', 'seed',
# 'NIT1')]
dt2 = dt ** 2
rind = Rind(**options)
if (Nx > 1):
# (M,m) or (M,m)v distribution wanted
@ -1892,15 +1893,16 @@ class SpecData1D(PlotData):
# positive wave period
# self._covinput_mmt_pdf(BIG, R, tn, ts, tnold)
BIG[:Ntdc, :Ntdc] = covinput(BIG[:Ntdc, :Ntdc], R, Ntd, 0)
[fxind, err0, terr0] = rind(BIG[:Ntdc, :Ntdc], ex[:Ntdc],
fxind, err0, terr0 = rind(BIG[:Ntdc, :Ntdc], ex[:Ntdc],
a_lo, a_up, indI, xc, Nt)
err0 = err0 ** 2
# fxind = CC*rind(BIG(1:Ntdc,1:Ntdc),ex(1:Ntdc),xc,Nt,NIT1,
# speed1,indI,a_lo,a_up)
if (Nx < 2):
# Density of TMm given the Max and the Min. Note that the
# density is not scaled to unity
pdf[0, 0, Ntd] = fxind[0]
err[0, 0, Ntd] = err0[0] ** 2
err[0, 0, Ntd] = err0[0]
terr[0, 0, Ntd] = terr0[0]
# GOTO 100
else:
@ -1910,24 +1912,24 @@ class SpecData1D(PlotData):
for i in range(1, Nx1):
J = IJ + i
pdf[:i, i, 0] += fxind[IJ:J].T * dt # *CC
err[:i, i, 0] += (err0[IJ + 1:J].T * dt) ** 2
terr[:i, i, 0] += (terr0[IJ:J].T * dt)
err[:i, i, 0] += err0[IJ + 1:J].T * dt2
terr[:i, i, 0] += terr0[IJ:J].T * dt
IJ = J
elif def_nr == 1: # joint density of (M,m,TMm)
for i in range(1, Nx1):
J = IJ + i
pdf[:i, i, Ntd] = fxind[IJ:J].T # %*CC
err[:i, i, Ntd] = (err0[IJ:J].T) ** 2 # %*CC
terr[:i, i, Ntd] = (terr0[IJ:J].T) # %*CC
pdf[:i, i, Ntd] = fxind[IJ:J].T # *CC
err[:i, i, Ntd] = err0[IJ:J].T # *CC
terr[:i, i, Ntd] = terr0[IJ:J].T # *CC
IJ = J
# end %do
# end do
# joint density of level v separated (M,m)v
elif def_nr == 2:
for i in range(1, Nx1):
J = IJ + Nx1
pdf[1:Nx1, i, 0] += fxind[IJ:J].T * dt # %*CC
err[1:Nx1, i, 0] += (err0[IJ:J].T * dt) ** 2
terr[1:Nx1, i, 0] += (terr0[IJ:J].T * dt)
pdf[1:Nx1, i, 0] += fxind[IJ:J].T * dt # *CC
err[1:Nx1, i, 0] += err0[IJ:J].T * dt2
terr[1:Nx1, i, 0] += terr0[IJ:J].T * dt
IJ = J
# end %do
elif def_nr == 3:
@ -1935,13 +1937,13 @@ class SpecData1D(PlotData):
for i in range(1, Nx1):
J = IJ + Nx1
pdf[1:Nx1, i, Ntd] += fxind[IJ:J].T # %*CC
err[1:Nx1, i, Ntd] += (err0[IJ:J].T) ** 2
terr[1:Nx1, i, Ntd] += (terr0[IJ:J].T)
err[1:Nx1, i, Ntd] += err0[IJ:J].T
terr[1:Nx1, i, Ntd] += terr0[IJ:J].T
IJ = J
# end do
# end SELECT
# end ENDIF
# waitTxt = sprintf('%s Ready: %d of %d',datestr(now),Ntd,Ntime)
# waitTxt = '%s Ready: %d of %d' % (datestr(now),Ntd,Ntime)
# fwaitbar(Ntd/Ntime,h11,waitTxt)
# end %do
@ -1969,14 +1971,15 @@ class SpecData1D(PlotData):
R, tn, ts, tnold)
fxind, err0, terr0 = rind(BIG[:Ntdc, :Ntdc], ex[:Ntdc],
a_lo, a_up, indI, xc, Nt)
err0 = err0 ** 2
# tnold = tn
tns = tn - ts
if def_nr in [3, 4]:
if (Nx == 1):
# Joint density (TMd,TMm) given the Max and min
# Note the density is not scaled to unity
pdf[0, ts, tn] = fxind[0] # *CC
err[0, ts, tn] = err0[0] ** 2 # *CC
err[0, ts, tn] = err0[0] # *CC
terr[0, ts, tn] = terr0[0] # *CC
else:
# level u separated Max2min and wave period
@ -1986,8 +1989,8 @@ class SpecData1D(PlotData):
for i in range(1, Nx1):
J = IJ + Nx1
pdf[1:Nx1, i, ts] += fxind[IJ:J].T * dt
err[1:Nx1, i, ts] += (err0[IJ:J].T * dt) ** 2
terr[1:Nx1, i, ts] += (terr0[IJ:J].T * dt)
err[1:Nx1, i, ts] += err0[IJ:J].T * dt2
terr[1:Nx1, i, ts] += terr0[IJ:J].T * dt
IJ = J
# end %do
# end
@ -1995,9 +1998,9 @@ class SpecData1D(PlotData):
if (Nx == 1):
# Joint density (Tdm,TMm) given the Max and min
# Note the density is not scaled to unity
pdf[0, tn - ts, tn] = fxind[0] # *CC
err[0, tn - ts, tn] = err0[0] ** 2
terr[0, tn - ts, tn] = terr0[0]
pdf[0, tns, tn] = fxind[0] # *CC
err[0, tns, tn] = err0[0]
terr[0, tns, tn] = terr0[0]
else:
# level u separated Max2min and wave period
# from the crossing of level u to the
@ -2007,9 +2010,9 @@ class SpecData1D(PlotData):
for i in range(1, Nx1): # = 2:Nx1
J = IJ + Nx1
# *CC
pdf[1:Nx1, i, tn - ts] += fxind[IJ:J].T * dt
err[1:Nx1, i, tn - ts] += (err0[IJ:J].T * dt) ** 2
terr[1:Nx1, i, tn - ts] += (terr0[IJ:J].T * dt)
pdf[1:Nx1, i, tns] += fxind[IJ:J].T * dt
err[1:Nx1, i, tns] += err0[IJ:J].T * dt2
terr[1:Nx1, i, tns] += terr0[IJ:J].T * dt
IJ = J
# end %do
# end
@ -2029,17 +2032,18 @@ class SpecData1D(PlotData):
# [fxind,err0] = rind(BIG(1:Ntdc,1:Ntdc),ex,a_lo,a_up,
# indI, xc,Nt,opt0{:})
# tnold = tn
tns = tn - ts
if (Nx == 1): # % THEN
# Joint density of (TMd,TMm),(Tdm,TMm) given
# the max and the min.
# Note that the density is not scaled to unity
pdf[0, ts, tn] = fxind[0] # %*CC
err[0, ts, tn] = err0[0] ** 2
err[0, ts, tn] = terr0(1)
if (ts < tn - ts): # %THEN
pdf[0, tn - ts, tn] = fxind[0] # *CC
err[0, tn - ts, tn] = err0[0] ** 2
terr[0, tn - ts, tn] = terr0[0]
err[0, ts, tn] = err0[0]
err[0, ts, tn] = terr0[0]
if (ts < tns): # %THEN
pdf[0, tns, tn] = fxind[0] # *CC
err[0, tns, tn] = err0[0] ** 2
terr[0, tns, tn] = terr0[0]
# end
# GOTO 350
else:
@ -2051,34 +2055,33 @@ class SpecData1D(PlotData):
J = IJ + Nx1
# *CC
pdf[1:Nx1, i, ts] += fxind[IJ:J] * dt
err[1:Nx1, i, ts] += (err0[IJ:J] * dt) ** 2
terr[1:Nx1, i, ts] += (terr0[IJ:J] * dt)
if (ts < tn - ts):
err[1:Nx1, i, ts] += err0[IJ:J] * dt2
terr[1:Nx1, i, ts] += terr0[IJ:J] * dt
if (ts < tns):
# exploiting the symmetry
# %*CC
pdf[i, 1:Nx1, tn - ts] += fxind[IJ:J] * dt
err[i, 1:Nx1, tn - ts] += (err0[IJ:J] * dt) ** 2
terr[i, 1:Nx1, tn - ts] += (terr0[IJ:J] * dt)
# *CC
pdf[i, 1:Nx1, tns] += fxind[IJ:J] * dt
err[i, 1:Nx1, tns] += err0[IJ:J] * dt2
terr[i, 1:Nx1, tns] += terr0[IJ:J] * dt
# end
IJ = J
# end %do
# end do
elif def_nr == 5:
# level u separated Max2min and wave period
# from the crossing of level u to min (M,m,Tdm)
for i in range(1, Nx1): # = 2:Nx1,
J = IJ + Nx1
pdf[1:Nx1, i, tn - ts] += fxind[IJ:J] * dt
err[1:Nx1, i, tn - ts] += (err0[IJ:J] * dt) ** 2
terr[
1:Nx1, i, tn - ts] += (terr0[IJ:J] * dt)
if (ts < tn - ts + 1):
pdf[1:Nx1, i, tns] += fxind[IJ:J] * dt
err[1:Nx1, i, tns] += err0[IJ:J] * dt2
terr[1:Nx1, i, tns] += terr0[IJ:J] * dt
if (ts < tns + 1):
# exploiting the symmetry
pdf[i, 1:Nx1, ts] += fxind[IJ:J] * dt
err[i, 1:Nx1, ts] += (err0[IJ:J] * dt) ** 2
terr[i, 1:Nx1, ts] += (terr0[IJ:J] * dt)
err[i, 1:Nx1, ts] += err0[IJ:J] * dt2
terr[i, 1:Nx1, ts] += terr0[IJ:J] * dt
# end %ENDIF
IJ = J
# end %do
# end do
# end %END SELECT
# end
# 350

Loading…
Cancel
Save