From 3df0cf212d937c9366daae82975dca0fe9850494 Mon Sep 17 00:00:00 2001 From: pbrod Date: Mon, 30 May 2016 01:58:44 +0200 Subject: [PATCH] pep8 + fixed failing doctest --- wafo/gaussian.py | 2 +- wafo/spectrum/core.py | 125 +++++++++++++++++++++--------------------- 2 files changed, 65 insertions(+), 62 deletions(-) diff --git a/wafo/gaussian.py b/wafo/gaussian.py index fb7761c..5c0d91a 100644 --- a/wafo/gaussian.py +++ b/wafo/gaussian.py @@ -113,7 +113,7 @@ class Rind(object): >>> np.allclose(val, 0.05494076, rtol=1e-2) True >>> err[0] < 1e-3, terr[0] < 1e-7 - True, True + (True, True) Compute expectation E( X1^{+}*X2^{+} ) with random correlation coefficient,Cov(X1,X2) = rho2. diff --git a/wafo/spectrum/core.py b/wafo/spectrum/core.py index 3d387ba..baee24d 100644 --- a/wafo/spectrum/core.py +++ b/wafo/spectrum/core.py @@ -1587,17 +1587,17 @@ class SpecData1D(PlotData): else: note = note + 'Density is not scaled to unity' if defnr in (-2, -1, 0, 1): - title = 'Density of (%sMm, M = %2.5g, m = %2.5g)' % ( - tmp, h[1], h[0]) + title_txt = 'Density of (%sMm, M = %2.5g, m = %2.5g)' + title = title_txt % (tmp, h[1], h[0]) elif defnr in (2, 3): - title = 'Density of (%sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % ( - tmp, h[1], -h[1], utc) + title_txt = 'Density of (%sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' + title = title_txt % (tmp, h[1], -h[1], utc) elif defnr == 4: - title = 'Density of (%sMd, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % ( - tmp, tmp, h[1], -h[1], utc) + txt = 'Density of (%sMd, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' + title = txt % (tmp, tmp, h[1], -h[1], utc) elif defnr == 5: - title = 'Density of (%sdm, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' % ( - tmp, tmp, h[1], -h[1], utc) + txt = 'Density of (%sdm, %sMm, M = %2.5g, m = %2.5g)_{v=%2.5g}' + title = txt % (tmp, tmp, h[1], -h[1], utc) f = PlotData(args=args, title=title, labx=labx, laby=laby) f.options = options @@ -1632,7 +1632,7 @@ class SpecData1D(PlotData): paramu)) * sqrt(L4*L0)/L2 err = np.abs(ftmp0 - np.fliplr(mctp2tc(np.fliplr(ftmp+err), - utc,paramu)) * + utc, paramu)) * sqrt(L4*L0)/L2) index1 = np.flatnonzero(f.args[0] > 0) index2 = np.flatnonzero(f.args[1] < 0) @@ -1780,17 +1780,17 @@ class SpecData1D(PlotData): Nstart = max(2, Nstart) symmetry = 0 - isOdd = np.mod(Nx1, 2) + is_odd = np.mod(Nx1, 2) if def_nr <= 1: # just plain Mm Nx = Nx1 * (Nx1 - 1) / 2 - IJ = (Nx1 + isOdd) / 2 + IJ = (Nx1 + is_odd) / 2 if (hg[0] + hg[Nx1 - 1] == 0 and (hg[IJ - 1] == 0 or hg[IJ - 1] + hg[IJ] == 0)): symmetry = 0 print(' Integration region symmetric') - # May save Nx1-isOdd integrations in each time step + # May save Nx1-is_odd integrations in each time step # This is not implemented yet. - # Nx = Nx1*(Nx1-1)/2-Nx1+isOdd + # Nx = Nx1*(Nx1-1)/2-Nx1+is_odd # normalizing constant: # CC = 1/ expected number of zero-up-crossings of X' # CC = 2*pi*sqrt(-R2[0]/R4[0]) @@ -1819,6 +1819,7 @@ class SpecData1D(PlotData): # opt0 = [options[n] for n in ('SCIS', 'XcScale', 'ABSEPS', 'RELEPS', # 'COVEPS', 'MAXPTS', 'MINPTS', 'seed', # 'NIT1')] + dt2 = dt ** 2 rind = Rind(**options) if (Nx > 1): # (M,m) or (M,m)v distribution wanted @@ -1892,15 +1893,16 @@ class SpecData1D(PlotData): # positive wave period # self._covinput_mmt_pdf(BIG, R, tn, ts, tnold) BIG[:Ntdc, :Ntdc] = covinput(BIG[:Ntdc, :Ntdc], R, Ntd, 0) - [fxind, err0, terr0] = rind(BIG[:Ntdc, :Ntdc], ex[:Ntdc], - a_lo, a_up, indI, xc, Nt) + fxind, err0, terr0 = rind(BIG[:Ntdc, :Ntdc], ex[:Ntdc], + a_lo, a_up, indI, xc, Nt) + err0 = err0 ** 2 # fxind = CC*rind(BIG(1:Ntdc,1:Ntdc),ex(1:Ntdc),xc,Nt,NIT1, # speed1,indI,a_lo,a_up) if (Nx < 2): # Density of TMm given the Max and the Min. Note that the # density is not scaled to unity pdf[0, 0, Ntd] = fxind[0] - err[0, 0, Ntd] = err0[0] ** 2 + err[0, 0, Ntd] = err0[0] terr[0, 0, Ntd] = terr0[0] # GOTO 100 else: @@ -1910,24 +1912,24 @@ class SpecData1D(PlotData): for i in range(1, Nx1): J = IJ + i pdf[:i, i, 0] += fxind[IJ:J].T * dt # *CC - err[:i, i, 0] += (err0[IJ + 1:J].T * dt) ** 2 - terr[:i, i, 0] += (terr0[IJ:J].T * dt) + err[:i, i, 0] += err0[IJ + 1:J].T * dt2 + terr[:i, i, 0] += terr0[IJ:J].T * dt IJ = J elif def_nr == 1: # joint density of (M,m,TMm) for i in range(1, Nx1): J = IJ + i - pdf[:i, i, Ntd] = fxind[IJ:J].T # %*CC - err[:i, i, Ntd] = (err0[IJ:J].T) ** 2 # %*CC - terr[:i, i, Ntd] = (terr0[IJ:J].T) # %*CC + pdf[:i, i, Ntd] = fxind[IJ:J].T # *CC + err[:i, i, Ntd] = err0[IJ:J].T # *CC + terr[:i, i, Ntd] = terr0[IJ:J].T # *CC IJ = J - # end %do + # end do # joint density of level v separated (M,m)v elif def_nr == 2: for i in range(1, Nx1): J = IJ + Nx1 - pdf[1:Nx1, i, 0] += fxind[IJ:J].T * dt # %*CC - err[1:Nx1, i, 0] += (err0[IJ:J].T * dt) ** 2 - terr[1:Nx1, i, 0] += (terr0[IJ:J].T * dt) + pdf[1:Nx1, i, 0] += fxind[IJ:J].T * dt # *CC + err[1:Nx1, i, 0] += err0[IJ:J].T * dt2 + terr[1:Nx1, i, 0] += terr0[IJ:J].T * dt IJ = J # end %do elif def_nr == 3: @@ -1935,13 +1937,13 @@ class SpecData1D(PlotData): for i in range(1, Nx1): J = IJ + Nx1 pdf[1:Nx1, i, Ntd] += fxind[IJ:J].T # %*CC - err[1:Nx1, i, Ntd] += (err0[IJ:J].T) ** 2 - terr[1:Nx1, i, Ntd] += (terr0[IJ:J].T) + err[1:Nx1, i, Ntd] += err0[IJ:J].T + terr[1:Nx1, i, Ntd] += terr0[IJ:J].T IJ = J # end do # end SELECT # end ENDIF - # waitTxt = sprintf('%s Ready: %d of %d',datestr(now),Ntd,Ntime) + # waitTxt = '%s Ready: %d of %d' % (datestr(now),Ntd,Ntime) # fwaitbar(Ntd/Ntime,h11,waitTxt) # end %do @@ -1969,14 +1971,15 @@ class SpecData1D(PlotData): R, tn, ts, tnold) fxind, err0, terr0 = rind(BIG[:Ntdc, :Ntdc], ex[:Ntdc], a_lo, a_up, indI, xc, Nt) - + err0 = err0 ** 2 # tnold = tn + tns = tn - ts if def_nr in [3, 4]: if (Nx == 1): # Joint density (TMd,TMm) given the Max and min # Note the density is not scaled to unity pdf[0, ts, tn] = fxind[0] # *CC - err[0, ts, tn] = err0[0] ** 2 # *CC + err[0, ts, tn] = err0[0] # *CC terr[0, ts, tn] = terr0[0] # *CC else: # level u separated Max2min and wave period @@ -1986,8 +1989,8 @@ class SpecData1D(PlotData): for i in range(1, Nx1): J = IJ + Nx1 pdf[1:Nx1, i, ts] += fxind[IJ:J].T * dt - err[1:Nx1, i, ts] += (err0[IJ:J].T * dt) ** 2 - terr[1:Nx1, i, ts] += (terr0[IJ:J].T * dt) + err[1:Nx1, i, ts] += err0[IJ:J].T * dt2 + terr[1:Nx1, i, ts] += terr0[IJ:J].T * dt IJ = J # end %do # end @@ -1995,9 +1998,9 @@ class SpecData1D(PlotData): if (Nx == 1): # Joint density (Tdm,TMm) given the Max and min # Note the density is not scaled to unity - pdf[0, tn - ts, tn] = fxind[0] # *CC - err[0, tn - ts, tn] = err0[0] ** 2 - terr[0, tn - ts, tn] = terr0[0] + pdf[0, tns, tn] = fxind[0] # *CC + err[0, tns, tn] = err0[0] + terr[0, tns, tn] = terr0[0] else: # level u separated Max2min and wave period # from the crossing of level u to the @@ -2007,9 +2010,9 @@ class SpecData1D(PlotData): for i in range(1, Nx1): # = 2:Nx1 J = IJ + Nx1 # *CC - pdf[1:Nx1, i, tn - ts] += fxind[IJ:J].T * dt - err[1:Nx1, i, tn - ts] += (err0[IJ:J].T * dt) ** 2 - terr[1:Nx1, i, tn - ts] += (terr0[IJ:J].T * dt) + pdf[1:Nx1, i, tns] += fxind[IJ:J].T * dt + err[1:Nx1, i, tns] += err0[IJ:J].T * dt2 + terr[1:Nx1, i, tns] += terr0[IJ:J].T * dt IJ = J # end %do # end @@ -2029,17 +2032,18 @@ class SpecData1D(PlotData): # [fxind,err0] = rind(BIG(1:Ntdc,1:Ntdc),ex,a_lo,a_up, # indI, xc,Nt,opt0{:}) # tnold = tn + tns = tn - ts if (Nx == 1): # % THEN # Joint density of (TMd,TMm),(Tdm,TMm) given # the max and the min. # Note that the density is not scaled to unity pdf[0, ts, tn] = fxind[0] # %*CC - err[0, ts, tn] = err0[0] ** 2 - err[0, ts, tn] = terr0(1) - if (ts < tn - ts): # %THEN - pdf[0, tn - ts, tn] = fxind[0] # *CC - err[0, tn - ts, tn] = err0[0] ** 2 - terr[0, tn - ts, tn] = terr0[0] + err[0, ts, tn] = err0[0] + err[0, ts, tn] = terr0[0] + if (ts < tns): # %THEN + pdf[0, tns, tn] = fxind[0] # *CC + err[0, tns, tn] = err0[0] ** 2 + terr[0, tns, tn] = terr0[0] # end # GOTO 350 else: @@ -2051,34 +2055,33 @@ class SpecData1D(PlotData): J = IJ + Nx1 # *CC pdf[1:Nx1, i, ts] += fxind[IJ:J] * dt - err[1:Nx1, i, ts] += (err0[IJ:J] * dt) ** 2 - terr[1:Nx1, i, ts] += (terr0[IJ:J] * dt) - if (ts < tn - ts): - # exploiting the symmetry - # %*CC - pdf[i, 1:Nx1, tn - ts] += fxind[IJ:J] * dt - err[i, 1:Nx1, tn - ts] += (err0[IJ:J] * dt) ** 2 - terr[i, 1:Nx1, tn - ts] += (terr0[IJ:J] * dt) + err[1:Nx1, i, ts] += err0[IJ:J] * dt2 + terr[1:Nx1, i, ts] += terr0[IJ:J] * dt + if (ts < tns): + # exploiting the symmetry + # *CC + pdf[i, 1:Nx1, tns] += fxind[IJ:J] * dt + err[i, 1:Nx1, tns] += err0[IJ:J] * dt2 + terr[i, 1:Nx1, tns] += terr0[IJ:J] * dt # end IJ = J - # end %do + # end do elif def_nr == 5: # level u separated Max2min and wave period # from the crossing of level u to min (M,m,Tdm) for i in range(1, Nx1): # = 2:Nx1, J = IJ + Nx1 - pdf[1:Nx1, i, tn - ts] += fxind[IJ:J] * dt - err[1:Nx1, i, tn - ts] += (err0[IJ:J] * dt) ** 2 - terr[ - 1:Nx1, i, tn - ts] += (terr0[IJ:J] * dt) - if (ts < tn - ts + 1): + pdf[1:Nx1, i, tns] += fxind[IJ:J] * dt + err[1:Nx1, i, tns] += err0[IJ:J] * dt2 + terr[1:Nx1, i, tns] += terr0[IJ:J] * dt + if (ts < tns + 1): # exploiting the symmetry pdf[i, 1:Nx1, ts] += fxind[IJ:J] * dt - err[i, 1:Nx1, ts] += (err0[IJ:J] * dt) ** 2 - terr[i, 1:Nx1, ts] += (terr0[IJ:J] * dt) + err[i, 1:Nx1, ts] += err0[IJ:J] * dt2 + terr[i, 1:Nx1, ts] += terr0[IJ:J] * dt # end %ENDIF IJ = J - # end %do + # end do # end %END SELECT # end # 350