|
|
|
@ -865,51 +865,52 @@ class FitDistribution(rv_frozen):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
_WAFODIST = ppimport('wafo.stats.distributions')
|
|
|
|
|
#nbinom(10, 0.75).rvs(3)
|
|
|
|
|
import matplotlib
|
|
|
|
|
matplotlib.interactive(True)
|
|
|
|
|
t = _WAFODIST.bernoulli(0.75).rvs(3)
|
|
|
|
|
x = np.r_[5, 10]
|
|
|
|
|
npr = np.r_[9, 9]
|
|
|
|
|
t2 = _WAFODIST.bd0(x, npr)
|
|
|
|
|
#Examples MLE and better CI for phat.par[0]
|
|
|
|
|
R = _WAFODIST.weibull_min.rvs(1, size=100);
|
|
|
|
|
phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan])
|
|
|
|
|
Lp = phat.profile(i=0)
|
|
|
|
|
Lp.plot()
|
|
|
|
|
Lp.get_CI(alpha=0.1)
|
|
|
|
|
R = 1. / 990
|
|
|
|
|
x = phat.isf(R)
|
|
|
|
|
|
|
|
|
|
# CI for x
|
|
|
|
|
Lx = phat.profile(i=0, x=x)
|
|
|
|
|
Lx.plot()
|
|
|
|
|
Lx.get_CI(alpha=0.2)
|
|
|
|
|
|
|
|
|
|
# CI for logSF=log(SF)
|
|
|
|
|
Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link)
|
|
|
|
|
Lpr.plot()
|
|
|
|
|
Lpr.get_CI(alpha=0.075)
|
|
|
|
|
|
|
|
|
|
_WAFODIST.dlaplace.stats(0.8, loc=0)
|
|
|
|
|
# pass
|
|
|
|
|
t = _WAFODIST.planck(0.51000000000000001)
|
|
|
|
|
t.ppf(0.5)
|
|
|
|
|
t = _WAFODIST.zipf(2)
|
|
|
|
|
t.ppf(0.5)
|
|
|
|
|
import pylab as plb
|
|
|
|
|
_WAFODIST.rice.rvs(1)
|
|
|
|
|
x = plb.linspace(-5, 5)
|
|
|
|
|
y = _WAFODIST.genpareto.cdf(x, 0)
|
|
|
|
|
#plb.plot(x,y)
|
|
|
|
|
#plb.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
on = ones((2, 3))
|
|
|
|
|
r = _WAFODIST.genpareto.rvs(0, size=100)
|
|
|
|
|
pht = _WAFODIST.genpareto.fit(r, 1, par_fix=[0, 0, nan])
|
|
|
|
|
lp = pht.profile()
|
|
|
|
|
pass
|
|
|
|
|
# _WAFODIST = ppimport('wafo.stats.distributions')
|
|
|
|
|
# #nbinom(10, 0.75).rvs(3)
|
|
|
|
|
# import matplotlib
|
|
|
|
|
# matplotlib.interactive(True)
|
|
|
|
|
# t = _WAFODIST.bernoulli(0.75).rvs(3)
|
|
|
|
|
# x = np.r_[5, 10]
|
|
|
|
|
# npr = np.r_[9, 9]
|
|
|
|
|
# t2 = _WAFODIST.bd0(x, npr)
|
|
|
|
|
# #Examples MLE and better CI for phat.par[0]
|
|
|
|
|
# R = _WAFODIST.weibull_min.rvs(1, size=100);
|
|
|
|
|
# phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan])
|
|
|
|
|
# Lp = phat.profile(i=0)
|
|
|
|
|
# Lp.plot()
|
|
|
|
|
# Lp.get_CI(alpha=0.1)
|
|
|
|
|
# R = 1. / 990
|
|
|
|
|
# x = phat.isf(R)
|
|
|
|
|
#
|
|
|
|
|
# # CI for x
|
|
|
|
|
# Lx = phat.profile(i=0, x=x)
|
|
|
|
|
# Lx.plot()
|
|
|
|
|
# Lx.get_CI(alpha=0.2)
|
|
|
|
|
#
|
|
|
|
|
# # CI for logSF=log(SF)
|
|
|
|
|
# Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link)
|
|
|
|
|
# Lpr.plot()
|
|
|
|
|
# Lpr.get_CI(alpha=0.075)
|
|
|
|
|
#
|
|
|
|
|
# _WAFODIST.dlaplace.stats(0.8, loc=0)
|
|
|
|
|
## pass
|
|
|
|
|
# t = _WAFODIST.planck(0.51000000000000001)
|
|
|
|
|
# t.ppf(0.5)
|
|
|
|
|
# t = _WAFODIST.zipf(2)
|
|
|
|
|
# t.ppf(0.5)
|
|
|
|
|
# import pylab as plb
|
|
|
|
|
# _WAFODIST.rice.rvs(1)
|
|
|
|
|
# x = plb.linspace(-5, 5)
|
|
|
|
|
# y = _WAFODIST.genpareto.cdf(x, 0)
|
|
|
|
|
# #plb.plot(x,y)
|
|
|
|
|
# #plb.show()
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# on = ones((2, 3))
|
|
|
|
|
# r = _WAFODIST.genpareto.rvs(0, size=100)
|
|
|
|
|
# pht = _WAFODIST.genpareto.fit(r, 1, par_fix=[0, 0, nan])
|
|
|
|
|
# lp = pht.profile()
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
main()
|
|
|
|
|