Removed reference to ppimport

master
Per.Andreas.Brodtkorb 15 years ago
parent 4e40a3e5a9
commit 3623d76102

@ -865,51 +865,52 @@ class FitDistribution(rv_frozen):
def main():
_WAFODIST = ppimport('wafo.stats.distributions')
#nbinom(10, 0.75).rvs(3)
import matplotlib
matplotlib.interactive(True)
t = _WAFODIST.bernoulli(0.75).rvs(3)
x = np.r_[5, 10]
npr = np.r_[9, 9]
t2 = _WAFODIST.bd0(x, npr)
#Examples MLE and better CI for phat.par[0]
R = _WAFODIST.weibull_min.rvs(1, size=100);
phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan])
Lp = phat.profile(i=0)
Lp.plot()
Lp.get_CI(alpha=0.1)
R = 1. / 990
x = phat.isf(R)
# CI for x
Lx = phat.profile(i=0, x=x)
Lx.plot()
Lx.get_CI(alpha=0.2)
# CI for logSF=log(SF)
Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link)
Lpr.plot()
Lpr.get_CI(alpha=0.075)
_WAFODIST.dlaplace.stats(0.8, loc=0)
# pass
t = _WAFODIST.planck(0.51000000000000001)
t.ppf(0.5)
t = _WAFODIST.zipf(2)
t.ppf(0.5)
import pylab as plb
_WAFODIST.rice.rvs(1)
x = plb.linspace(-5, 5)
y = _WAFODIST.genpareto.cdf(x, 0)
#plb.plot(x,y)
#plb.show()
on = ones((2, 3))
r = _WAFODIST.genpareto.rvs(0, size=100)
pht = _WAFODIST.genpareto.fit(r, 1, par_fix=[0, 0, nan])
lp = pht.profile()
pass
# _WAFODIST = ppimport('wafo.stats.distributions')
# #nbinom(10, 0.75).rvs(3)
# import matplotlib
# matplotlib.interactive(True)
# t = _WAFODIST.bernoulli(0.75).rvs(3)
# x = np.r_[5, 10]
# npr = np.r_[9, 9]
# t2 = _WAFODIST.bd0(x, npr)
# #Examples MLE and better CI for phat.par[0]
# R = _WAFODIST.weibull_min.rvs(1, size=100);
# phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan])
# Lp = phat.profile(i=0)
# Lp.plot()
# Lp.get_CI(alpha=0.1)
# R = 1. / 990
# x = phat.isf(R)
#
# # CI for x
# Lx = phat.profile(i=0, x=x)
# Lx.plot()
# Lx.get_CI(alpha=0.2)
#
# # CI for logSF=log(SF)
# Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link)
# Lpr.plot()
# Lpr.get_CI(alpha=0.075)
#
# _WAFODIST.dlaplace.stats(0.8, loc=0)
## pass
# t = _WAFODIST.planck(0.51000000000000001)
# t.ppf(0.5)
# t = _WAFODIST.zipf(2)
# t.ppf(0.5)
# import pylab as plb
# _WAFODIST.rice.rvs(1)
# x = plb.linspace(-5, 5)
# y = _WAFODIST.genpareto.cdf(x, 0)
# #plb.plot(x,y)
# #plb.show()
#
#
# on = ones((2, 3))
# r = _WAFODIST.genpareto.rvs(0, size=100)
# pht = _WAFODIST.genpareto.fit(r, 1, par_fix=[0, 0, nan])
# lp = pht.profile()
if __name__ == '__main__':
main()

Loading…
Cancel
Save