diff --git a/pywafo/src/wafo/stats/estimation.py b/pywafo/src/wafo/stats/estimation.py index de0553e..81a000b 100644 --- a/pywafo/src/wafo/stats/estimation.py +++ b/pywafo/src/wafo/stats/estimation.py @@ -865,51 +865,52 @@ class FitDistribution(rv_frozen): def main(): - _WAFODIST = ppimport('wafo.stats.distributions') - #nbinom(10, 0.75).rvs(3) - import matplotlib - matplotlib.interactive(True) - t = _WAFODIST.bernoulli(0.75).rvs(3) - x = np.r_[5, 10] - npr = np.r_[9, 9] - t2 = _WAFODIST.bd0(x, npr) - #Examples MLE and better CI for phat.par[0] - R = _WAFODIST.weibull_min.rvs(1, size=100); - phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan]) - Lp = phat.profile(i=0) - Lp.plot() - Lp.get_CI(alpha=0.1) - R = 1. / 990 - x = phat.isf(R) - - # CI for x - Lx = phat.profile(i=0, x=x) - Lx.plot() - Lx.get_CI(alpha=0.2) - - # CI for logSF=log(SF) - Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link) - Lpr.plot() - Lpr.get_CI(alpha=0.075) - - _WAFODIST.dlaplace.stats(0.8, loc=0) -# pass - t = _WAFODIST.planck(0.51000000000000001) - t.ppf(0.5) - t = _WAFODIST.zipf(2) - t.ppf(0.5) - import pylab as plb - _WAFODIST.rice.rvs(1) - x = plb.linspace(-5, 5) - y = _WAFODIST.genpareto.cdf(x, 0) - #plb.plot(x,y) - #plb.show() - - - on = ones((2, 3)) - r = _WAFODIST.genpareto.rvs(0, size=100) - pht = _WAFODIST.genpareto.fit(r, 1, par_fix=[0, 0, nan]) - lp = pht.profile() + pass +# _WAFODIST = ppimport('wafo.stats.distributions') +# #nbinom(10, 0.75).rvs(3) +# import matplotlib +# matplotlib.interactive(True) +# t = _WAFODIST.bernoulli(0.75).rvs(3) +# x = np.r_[5, 10] +# npr = np.r_[9, 9] +# t2 = _WAFODIST.bd0(x, npr) +# #Examples MLE and better CI for phat.par[0] +# R = _WAFODIST.weibull_min.rvs(1, size=100); +# phat = _WAFODIST.weibull_min.fit(R, 1, 1, par_fix=[nan, 0, nan]) +# Lp = phat.profile(i=0) +# Lp.plot() +# Lp.get_CI(alpha=0.1) +# R = 1. / 990 +# x = phat.isf(R) +# +# # CI for x +# Lx = phat.profile(i=0, x=x) +# Lx.plot() +# Lx.get_CI(alpha=0.2) +# +# # CI for logSF=log(SF) +# Lpr = phat.profile(i=0, logSF=log(R), link=phat.dist.link) +# Lpr.plot() +# Lpr.get_CI(alpha=0.075) +# +# _WAFODIST.dlaplace.stats(0.8, loc=0) +## pass +# t = _WAFODIST.planck(0.51000000000000001) +# t.ppf(0.5) +# t = _WAFODIST.zipf(2) +# t.ppf(0.5) +# import pylab as plb +# _WAFODIST.rice.rvs(1) +# x = plb.linspace(-5, 5) +# y = _WAFODIST.genpareto.cdf(x, 0) +# #plb.plot(x,y) +# #plb.show() +# +# +# on = ones((2, 3)) +# r = _WAFODIST.genpareto.rvs(0, size=100) +# pht = _WAFODIST.genpareto.fit(r, 1, par_fix=[0, 0, nan]) +# lp = pht.profile() if __name__ == '__main__': main()