|
|
|
@ -57,9 +57,172 @@ def sphere_volume(d, r=1.0):
|
|
|
|
|
'Kernel smoothing'
|
|
|
|
|
Chapman and Hall, pp 105
|
|
|
|
|
"""
|
|
|
|
|
return (r ** d) * 2. * pi ** (d / 2.) / (d * gamma(d / 2.))
|
|
|
|
|
return (r ** d) * 2.0 * pi ** (d / 2.0) / (d * gamma(d / 2.0))
|
|
|
|
|
|
|
|
|
|
class TKDE(object):
|
|
|
|
|
class _KDE(object):
|
|
|
|
|
""" Kernel-Density Estimator base class.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
data : (# of dims, # of data)-array
|
|
|
|
|
datapoints to estimate from
|
|
|
|
|
hs : array-like (optional)
|
|
|
|
|
smooting parameter vector/matrix.
|
|
|
|
|
(default compute from data using kernel.get_smoothing function)
|
|
|
|
|
kernel : kernel function object.
|
|
|
|
|
kernel must have get_smoothing method
|
|
|
|
|
alpha : real scalar (optional)
|
|
|
|
|
sensitivity parameter (default 0 regular KDE)
|
|
|
|
|
A good choice might be alpha = 0.5 ( or 1/D)
|
|
|
|
|
alpha = 0 Regular KDE (hs is constant)
|
|
|
|
|
0 < alpha <= 1 Adaptive KDE (Make hs change)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Members
|
|
|
|
|
-------
|
|
|
|
|
d : int
|
|
|
|
|
number of dimensions
|
|
|
|
|
n : int
|
|
|
|
|
number of datapoints
|
|
|
|
|
|
|
|
|
|
Methods
|
|
|
|
|
-------
|
|
|
|
|
kde.eval_grid_fast(x0, x1,..., xd) : array
|
|
|
|
|
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
|
|
|
|
|
kde.eval_grid(x0, x1,..., xd) : array
|
|
|
|
|
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
|
|
|
|
|
kde.eval_points(points) : array
|
|
|
|
|
evaluate the estimated pdf on a provided set of points
|
|
|
|
|
kde(x0, x1,..., xd) : array
|
|
|
|
|
same as kde.eval_grid(x0, x1,..., xd)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None, xmax=None, inc=128):
|
|
|
|
|
self.dataset = atleast_2d(data)
|
|
|
|
|
self.hs = hs
|
|
|
|
|
self.kernel = kernel if kernel else Kernel('gauss')
|
|
|
|
|
self.alpha = alpha
|
|
|
|
|
self.xmin = xmin
|
|
|
|
|
self.xmax = xmax
|
|
|
|
|
self.inc = inc
|
|
|
|
|
self.initialize()
|
|
|
|
|
|
|
|
|
|
def initialize(self):
|
|
|
|
|
self.d, self.n = self.dataset.shape
|
|
|
|
|
self._set_xlimits()
|
|
|
|
|
self._initialize()
|
|
|
|
|
|
|
|
|
|
def _initialize(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def _set_xlimits(self):
|
|
|
|
|
amin = self.dataset.min(axis= -1)
|
|
|
|
|
amax = self.dataset.max(axis= -1)
|
|
|
|
|
iqr = iqrange(self.dataset, axis=-1)
|
|
|
|
|
sigma = np.minimum(np.std(self.dataset, axis=-1, ddof=1),iqr/1.34)
|
|
|
|
|
#xyzrange = amax - amin
|
|
|
|
|
#offset = xyzrange / 4.0
|
|
|
|
|
offset = 2*sigma
|
|
|
|
|
if self.xmin is None:
|
|
|
|
|
self.xmin = amin - offset
|
|
|
|
|
else:
|
|
|
|
|
self.xmin = self.xmin * np.ones(self.d)
|
|
|
|
|
if self.xmax is None:
|
|
|
|
|
self.xmax = amax + offset
|
|
|
|
|
else:
|
|
|
|
|
self.xmax = self.xmax * np.ones(self.d)
|
|
|
|
|
|
|
|
|
|
def eval_grid_fast(self, *args):
|
|
|
|
|
"""Evaluate the estimated pdf on a grid.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
values : array-like
|
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if len(args) == 0:
|
|
|
|
|
args = []
|
|
|
|
|
for i in range(self.d):
|
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
|
self.args = args
|
|
|
|
|
return self._eval_grid_fast(*args)
|
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def eval_grid(self, *args):
|
|
|
|
|
"""Evaluate the estimated pdf on a grid.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
values : array-like
|
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if len(args) == 0:
|
|
|
|
|
args = []
|
|
|
|
|
for i in range(self.d):
|
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
|
self.args = args
|
|
|
|
|
return self._eval_grid(*args)
|
|
|
|
|
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def _check_shape(self, points):
|
|
|
|
|
points = atleast_2d(points)
|
|
|
|
|
d, m = points.shape
|
|
|
|
|
if d != self.d:
|
|
|
|
|
if d == 1 and m == self.d:
|
|
|
|
|
# points was passed in as a row vector
|
|
|
|
|
points = np.reshape(points, (self.d, 1))
|
|
|
|
|
else:
|
|
|
|
|
msg = "points have dimension %s, dataset has dimension %s" % (d,
|
|
|
|
|
self.d)
|
|
|
|
|
raise ValueError(msg)
|
|
|
|
|
return points
|
|
|
|
|
def eval_points(self, points):
|
|
|
|
|
"""Evaluate the estimated pdf on a set of points.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
points : (# of dimensions, # of points)-array
|
|
|
|
|
Alternatively, a (# of dimensions,) vector can be passed in and
|
|
|
|
|
treated as a single point.
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
values : (# of points,)-array
|
|
|
|
|
The values at each point.
|
|
|
|
|
|
|
|
|
|
Raises
|
|
|
|
|
------
|
|
|
|
|
ValueError if the dimensionality of the input points is different than
|
|
|
|
|
the dimensionality of the KDE.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
points = self._check_shape(points)
|
|
|
|
|
return self._eval_points(points)
|
|
|
|
|
|
|
|
|
|
def _eval_points(self, points):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
__call__ = eval_grid
|
|
|
|
|
|
|
|
|
|
class TKDE(_KDE):
|
|
|
|
|
""" Transformation Kernel-Density Estimator.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
@ -76,6 +239,17 @@ class TKDE(object):
|
|
|
|
|
A good choice might be alpha = 0.5 ( or 1/D)
|
|
|
|
|
alpha = 0 Regular KDE (hs is constant)
|
|
|
|
|
0 < alpha <= 1 Adaptive KDE (Make hs change)
|
|
|
|
|
xmin, xmax : vectors
|
|
|
|
|
specifying the default argument range for the kde.eval_grid methods.
|
|
|
|
|
For the kde.eval_grid_fast methods the values must cover the range of the data.
|
|
|
|
|
(default min(data)-range(data)/4, max(data)-range(data)/4)
|
|
|
|
|
If a single value of xmin or xmax is given then the boundary is the is
|
|
|
|
|
the same for all dimensions.
|
|
|
|
|
inc : scalar integer
|
|
|
|
|
defining the default dimension of the output from kde.eval_grid methods (default 128)
|
|
|
|
|
(For kde.eval_grid_fast: A value below 50 is very fast to compute but
|
|
|
|
|
may give some inaccuracies. Values between 100 and 500 give very
|
|
|
|
|
accurate results)
|
|
|
|
|
L2 : array-like
|
|
|
|
|
vector of transformation parameters (default 1 no transformation)
|
|
|
|
|
t(xi;L2) = xi^L2*sign(L2) for L2(i) ~= 0
|
|
|
|
@ -91,10 +265,14 @@ class TKDE(object):
|
|
|
|
|
|
|
|
|
|
Methods
|
|
|
|
|
-------
|
|
|
|
|
kde.evaluate(points) : array
|
|
|
|
|
kde.eval_grid_fast(x0, x1,..., xd) : array
|
|
|
|
|
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
|
|
|
|
|
kde.eval_grid(x0, x1,..., xd) : array
|
|
|
|
|
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
|
|
|
|
|
kde.eval_points(points) : array
|
|
|
|
|
evaluate the estimated pdf on a provided set of points
|
|
|
|
|
kde(points) : array
|
|
|
|
|
same as kde.evaluate(points)
|
|
|
|
|
kde(x0, x1,..., xd) : array
|
|
|
|
|
same as kde.eval_grid(x0, x1,..., xd)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
@ -119,8 +297,8 @@ class TKDE(object):
|
|
|
|
|
0.20717946, 0.15907684, 0.1201074 , 0.08941027, 0.06574882])
|
|
|
|
|
|
|
|
|
|
>>> kde.eval_grid_fast(x)
|
|
|
|
|
array([ 0. , 0.4614821 , 0.39554839, 0.32764086, 0.26275681,
|
|
|
|
|
0.20543731, 0.15741056, 0.11863464, 0. , 0. ])
|
|
|
|
|
array([ 1.06437223, 0.46203314, 0.39593137, 0.32781899, 0.26276433,
|
|
|
|
|
0.20532206, 0.15723498, 0.11843998, 0.08797755, 0. ])
|
|
|
|
|
|
|
|
|
|
import pylab as plb
|
|
|
|
|
h1 = plb.plot(x, f) # 1D probability density plot
|
|
|
|
@ -129,19 +307,11 @@ class TKDE(object):
|
|
|
|
|
|
|
|
|
|
def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None,
|
|
|
|
|
xmax=None, inc=128, L2=None):
|
|
|
|
|
self.dataset = atleast_2d(data)
|
|
|
|
|
self.hs = hs
|
|
|
|
|
self.kernel = kernel if kernel else Kernel('gauss')
|
|
|
|
|
self.alpha = alpha
|
|
|
|
|
self.xmin = xmin
|
|
|
|
|
self.xmax = xmax
|
|
|
|
|
self.inc = inc
|
|
|
|
|
self.L2 = L2
|
|
|
|
|
self.d, self.n = self.dataset.shape
|
|
|
|
|
self.initialize()
|
|
|
|
|
_KDE.__init__(self, data, hs, kernel, alpha, xmin, xmax, inc)
|
|
|
|
|
|
|
|
|
|
def initialize(self):
|
|
|
|
|
self._set_xlimits()
|
|
|
|
|
def _initialize(self):
|
|
|
|
|
self._check_xmin()
|
|
|
|
|
tdataset = self._dat2gaus(self.dataset)
|
|
|
|
|
xmin = self.xmin
|
|
|
|
|
if xmin is not None:
|
|
|
|
@ -151,38 +321,11 @@ class TKDE(object):
|
|
|
|
|
xmax = self._dat2gaus(xmax)
|
|
|
|
|
self.tkde = KDE(tdataset, self.hs, self.kernel, self.alpha, xmin, xmax,
|
|
|
|
|
self.inc)
|
|
|
|
|
def _set_xlimits(self):
|
|
|
|
|
amin = self.dataset.min(axis=-1)
|
|
|
|
|
amax = self.dataset.max(axis=-1)
|
|
|
|
|
xyzrange = amax-amin
|
|
|
|
|
offset = xyzrange/4.0
|
|
|
|
|
if self.xmin is None:
|
|
|
|
|
self.xmin = amin - offset
|
|
|
|
|
else:
|
|
|
|
|
self.xmin = self.xmin * np.ones(self.d)
|
|
|
|
|
if self.xmax is None:
|
|
|
|
|
self.xmax = amax + offset
|
|
|
|
|
else:
|
|
|
|
|
self.xmax = self.xmax * np.ones(self.d)
|
|
|
|
|
|
|
|
|
|
def _check_xmin(self):
|
|
|
|
|
if self.L2 is not None:
|
|
|
|
|
amin = self.dataset.min(axis= -1)
|
|
|
|
|
L2 = np.atleast_1d(self.L2) * np.ones(self.d) # default no transformation
|
|
|
|
|
self.xmin = np.where(L2!=1, np.maximum(self.xmin, amin/2.0), self.xmin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _check_shape(self, points):
|
|
|
|
|
points = atleast_2d(points)
|
|
|
|
|
d, m = points.shape
|
|
|
|
|
if d != self.d:
|
|
|
|
|
if d == 1 and m == self.d:
|
|
|
|
|
# points was passed in as a row vector
|
|
|
|
|
points = np.reshape(points, (self.d, 1))
|
|
|
|
|
m = 1
|
|
|
|
|
else:
|
|
|
|
|
msg = "points have dimension %s, dataset has dimension %s" % (d,
|
|
|
|
|
self.d)
|
|
|
|
|
raise ValueError(msg)
|
|
|
|
|
return points
|
|
|
|
|
self.xmin = np.where(L2 != 1, np.maximum(self.xmin, amin / 100.0), self.xmin)
|
|
|
|
|
|
|
|
|
|
def _dat2gaus(self, points):
|
|
|
|
|
if self.L2 is None:
|
|
|
|
@ -218,14 +361,15 @@ class TKDE(object):
|
|
|
|
|
transformation. Check the KDE for spurious spikes'''
|
|
|
|
|
warnings.warn(msg)
|
|
|
|
|
return pdf
|
|
|
|
|
def eval_grid_fast(self, *args):
|
|
|
|
|
|
|
|
|
|
def eval_grid_fast2(self, *args):
|
|
|
|
|
"""Evaluate the estimated pdf on a grid.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
|
arg_i = gauss2dat(linspace(dat2gauss(self.xmin[i]), dat2gauss(self.xmax[i]), self.inc))
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
@ -233,7 +377,9 @@ class TKDE(object):
|
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
return self._eval_grid_fast(*args)
|
|
|
|
|
|
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
|
if self.L2 is None:
|
|
|
|
|
f = self.tkde.eval_grid_fast(*args)
|
|
|
|
|
self.args = self.tkde.args
|
|
|
|
@ -253,26 +399,7 @@ class TKDE(object):
|
|
|
|
|
#fi.shape = ipoints[0].shape
|
|
|
|
|
return fi
|
|
|
|
|
return f
|
|
|
|
|
def eval_grid(self, *args):
|
|
|
|
|
"""Evaluate the estimated pdf on a grid.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
values : array-like
|
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if len(args)==0:
|
|
|
|
|
args = []
|
|
|
|
|
for i in range(self.d):
|
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
|
self.args = args
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
if self.L2 is None:
|
|
|
|
|
return self.tkde.eval_grid(*args)
|
|
|
|
|
targs = self._dat2gaus(list(args))
|
|
|
|
@ -281,8 +408,7 @@ class TKDE(object):
|
|
|
|
|
f = self._scale_pdf(tf, points)
|
|
|
|
|
return f
|
|
|
|
|
|
|
|
|
|
return self.tkde.eval_grid(*args)
|
|
|
|
|
def evaluate(self, points):
|
|
|
|
|
def _eval_points(self, points):
|
|
|
|
|
"""Evaluate the estimated pdf on a set of points.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
@ -302,16 +428,14 @@ class TKDE(object):
|
|
|
|
|
the dimensionality of the KDE.
|
|
|
|
|
"""
|
|
|
|
|
if self.L2 is None:
|
|
|
|
|
return self.tkde(points)
|
|
|
|
|
points = self._check_shape(points)
|
|
|
|
|
return self.tkde.eval_points(points)
|
|
|
|
|
|
|
|
|
|
tpoints = self._dat2gaus(points)
|
|
|
|
|
tf = self.tkde(tpoints)
|
|
|
|
|
tf = self.tkde.eval_points(tpoints)
|
|
|
|
|
f = self._scale_pdf(tf, points)
|
|
|
|
|
return f
|
|
|
|
|
|
|
|
|
|
__call__ = evaluate
|
|
|
|
|
|
|
|
|
|
class KDE(object):
|
|
|
|
|
class KDE(_KDE):
|
|
|
|
|
""" Kernel-Density Estimator.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
@ -328,7 +452,17 @@ class KDE(object):
|
|
|
|
|
A good choice might be alpha = 0.5 ( or 1/D)
|
|
|
|
|
alpha = 0 Regular KDE (hs is constant)
|
|
|
|
|
0 < alpha <= 1 Adaptive KDE (Make hs change)
|
|
|
|
|
|
|
|
|
|
xmin, xmax : vectors
|
|
|
|
|
specifying the default argument range for the kde.eval_grid methods.
|
|
|
|
|
For the kde.eval_grid_fast methods the values must cover the range of the data.
|
|
|
|
|
(default min(data)-range(data)/4, max(data)-range(data)/4)
|
|
|
|
|
If a single value of xmin or xmax is given then the boundary is the is
|
|
|
|
|
the same for all dimensions.
|
|
|
|
|
inc : scalar integer
|
|
|
|
|
defining the default dimension of the output from kde.eval_grid methods (default 128)
|
|
|
|
|
(For kde.eval_grid_fast: A value below 50 is very fast to compute but
|
|
|
|
|
may give some inaccuracies. Values between 100 and 500 give very
|
|
|
|
|
accurate results)
|
|
|
|
|
|
|
|
|
|
Members
|
|
|
|
|
-------
|
|
|
|
@ -339,10 +473,14 @@ class KDE(object):
|
|
|
|
|
|
|
|
|
|
Methods
|
|
|
|
|
-------
|
|
|
|
|
kde.evaluate(points) : array
|
|
|
|
|
kde.eval_grid_fast(x0, x1,..., xd) : array
|
|
|
|
|
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
|
|
|
|
|
kde.eval_grid(x0, x1,..., xd) : array
|
|
|
|
|
evaluate the estimated pdf on meshgrid(x0, x1,..., xd)
|
|
|
|
|
kde.eval_points(points) : array
|
|
|
|
|
evaluate the estimated pdf on a provided set of points
|
|
|
|
|
kde(points) : array
|
|
|
|
|
same as kde.evaluate(points)
|
|
|
|
|
kde(x0, x1,..., xd) : array
|
|
|
|
|
same as kde.eval_grid(x0, x1,..., xd)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
@ -367,7 +505,7 @@ class KDE(object):
|
|
|
|
|
0.21409279, 0.12738463, 0.07460326, 0.03956191, 0.01887164])
|
|
|
|
|
|
|
|
|
|
>>> kde0 = wk.KDE(data, hs=0.5, alpha=0.0)
|
|
|
|
|
>>> kde0.evaluate(x)
|
|
|
|
|
>>> kde0.eval_points(x)
|
|
|
|
|
array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 ,
|
|
|
|
|
0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821])
|
|
|
|
|
|
|
|
|
@ -377,8 +515,8 @@ class KDE(object):
|
|
|
|
|
|
|
|
|
|
>>> f = kde0.eval_grid_fast()
|
|
|
|
|
>>> np.interp(x, kde0.args[0], f)
|
|
|
|
|
array([ 0.21165996, 0.41218257, 0.54961961, 0.51713209, 0.38292245,
|
|
|
|
|
0.25864661, 0.16113184, 0.08055992, 0.03576856, 0.03576856])
|
|
|
|
|
array([ 0.21227584, 0.41256459, 0.5495661 , 0.5176579 , 0.38431616,
|
|
|
|
|
0.2591162 , 0.15978948, 0.07889179, 0.02769818, 0.00791829])
|
|
|
|
|
|
|
|
|
|
import pylab as plb
|
|
|
|
|
h1 = plb.plot(x, f) # 1D probability density plot
|
|
|
|
@ -386,41 +524,18 @@ class KDE(object):
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None, xmax=None, inc=128):
|
|
|
|
|
self.kernel = kernel if kernel else Kernel('gauss')
|
|
|
|
|
self.hs = hs
|
|
|
|
|
self.alpha = alpha
|
|
|
|
|
|
|
|
|
|
self.dataset = atleast_2d(data)
|
|
|
|
|
self.d, self.n = self.dataset.shape
|
|
|
|
|
self.xmin = xmin
|
|
|
|
|
self.xmax = xmax
|
|
|
|
|
self.inc = inc
|
|
|
|
|
self.initialize()
|
|
|
|
|
_KDE.__init__(self, data, hs, kernel, alpha, xmin, xmax, inc)
|
|
|
|
|
|
|
|
|
|
def initialize(self):
|
|
|
|
|
self._set_xlimits()
|
|
|
|
|
def _initialize(self):
|
|
|
|
|
self._compute_smoothing()
|
|
|
|
|
if self.alpha > 0:
|
|
|
|
|
pilot = KDE(self.dataset, hs=self.hs, kernel=self.kernel, alpha=0)
|
|
|
|
|
f = pilot(self.dataset) # get a pilot estimate by regular KDE (alpha=0)
|
|
|
|
|
f = pilot.eval_points(self.dataset) # get a pilot estimate by regular KDE (alpha=0)
|
|
|
|
|
g = np.exp(np.mean(np.log(f)))
|
|
|
|
|
self._lambda = (f / g) ** (-self.alpha)
|
|
|
|
|
else:
|
|
|
|
|
self._lambda = np.ones(self.n)
|
|
|
|
|
|
|
|
|
|
def _set_xlimits(self):
|
|
|
|
|
amin = self.dataset.min(axis=-1)
|
|
|
|
|
amax = self.dataset.max(axis=-1)
|
|
|
|
|
xyzrange = amax-amin
|
|
|
|
|
if self.xmin is None:
|
|
|
|
|
self.xmin = amin-xyzrange/4.0
|
|
|
|
|
else:
|
|
|
|
|
self.xmin = self.xmin * np.ones(self.d)
|
|
|
|
|
if self.xmax is None:
|
|
|
|
|
self.xmax = amax + xyzrange/4.0
|
|
|
|
|
else:
|
|
|
|
|
self.xmax = self.xmax * np.ones(self.d)
|
|
|
|
|
|
|
|
|
|
def _compute_smoothing(self):
|
|
|
|
|
"""Computes the smoothing matrix
|
|
|
|
|
"""
|
|
|
|
@ -451,27 +566,7 @@ class KDE(object):
|
|
|
|
|
self.hs = h
|
|
|
|
|
self._norm_factor = deth * self.n
|
|
|
|
|
|
|
|
|
|
def eval_grid_fast(self, *args):
|
|
|
|
|
"""Evaluate the estimated pdf on a grid.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
values : array-like
|
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
if len(args)==0:
|
|
|
|
|
args = []
|
|
|
|
|
for i in range(self.d):
|
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
|
self.args = args
|
|
|
|
|
return self._eval_grid_fast(*args)
|
|
|
|
|
def _eval_grid_fast(self, *args):
|
|
|
|
|
# TODO: This does not work correctly yet! Check it.
|
|
|
|
|
X = np.vstack(args)
|
|
|
|
@ -509,29 +604,6 @@ class KDE(object):
|
|
|
|
|
ix = (slice(0, inc),)*d
|
|
|
|
|
return z[ix] * (z[ix] > 0.0)
|
|
|
|
|
|
|
|
|
|
def eval_grid(self, *args):
|
|
|
|
|
"""Evaluate the estimated pdf on a grid.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
arg_0,arg_1,... arg_d-1 : vectors
|
|
|
|
|
Alternatively, if no vectors is passed in then
|
|
|
|
|
arg_i = linspace(self.xmin[i], self.xmax[i], self.inc)
|
|
|
|
|
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
values : array-like
|
|
|
|
|
The values evaluated at meshgrid(*args).
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
if len(args)==0:
|
|
|
|
|
args = []
|
|
|
|
|
for i in range(self.d):
|
|
|
|
|
args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc))
|
|
|
|
|
self.args = args
|
|
|
|
|
return self._eval_grid(*args)
|
|
|
|
|
|
|
|
|
|
def _eval_grid(self, *args):
|
|
|
|
|
|
|
|
|
|
grd = meshgrid(*args) if len(args) > 1 else list(args)
|
|
|
|
@ -539,23 +611,11 @@ class KDE(object):
|
|
|
|
|
d = len(grd)
|
|
|
|
|
for i in range(d):
|
|
|
|
|
grd[i] = grd[i].ravel()
|
|
|
|
|
f = self.evaluate(np.vstack(grd))
|
|
|
|
|
f = self.eval_points(np.vstack(grd))
|
|
|
|
|
return f.reshape(shape0)
|
|
|
|
|
|
|
|
|
|
def _check_shape(self, points):
|
|
|
|
|
points = atleast_2d(points)
|
|
|
|
|
d, m = points.shape
|
|
|
|
|
if d != self.d:
|
|
|
|
|
if d == 1 and m == self.d:
|
|
|
|
|
# points was passed in as a row vector
|
|
|
|
|
points = np.reshape(points, (self.d, 1))
|
|
|
|
|
m = 1
|
|
|
|
|
else:
|
|
|
|
|
msg = "points have dimension %s, dataset has dimension %s" % (d,
|
|
|
|
|
self.d)
|
|
|
|
|
raise ValueError(msg)
|
|
|
|
|
return points
|
|
|
|
|
def evaluate(self, points):
|
|
|
|
|
|
|
|
|
|
def _eval_points(self, points):
|
|
|
|
|
"""Evaluate the estimated pdf on a set of points.
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
@ -574,8 +634,6 @@ class KDE(object):
|
|
|
|
|
ValueError if the dimensionality of the input points is different than
|
|
|
|
|
the dimensionality of the KDE.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
points = self._check_shape(points)
|
|
|
|
|
d, m = points.shape
|
|
|
|
|
|
|
|
|
|
result = np.zeros((m,))
|
|
|
|
@ -598,8 +656,6 @@ class KDE(object):
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
__call__ = evaluate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class _Kernel(object):
|
|
|
|
|
def __init__(self, r=1.0, stats=None):
|
|
|
|
@ -898,7 +954,7 @@ class Kernel(object):
|
|
|
|
|
# R= int(mkernel(x)^2), mu2= int(x^2*mkernel(x))
|
|
|
|
|
mu2, R, Rdd = self.stats()
|
|
|
|
|
AMISEconstant = (8 * sqrt(pi) * R / (3 * mu2 ** 2 * n)) ** (1. / 5)
|
|
|
|
|
iqr = np.abs(np.percentile(A, 75, axis=1) - np.percentile(A, 25, axis=1))# interquartile range
|
|
|
|
|
iqr = iqrange(A, axis=1) # interquartile range
|
|
|
|
|
stdA = np.std(A, axis=1, ddof=1)
|
|
|
|
|
# % use of interquartile range guards against outliers.
|
|
|
|
|
# % the use of interquartile range is better if
|
|
|
|
@ -1068,7 +1124,7 @@ class Kernel(object):
|
|
|
|
|
ax1 = amin - arange / 8.0
|
|
|
|
|
bx1 = amax + arange / 8.0
|
|
|
|
|
|
|
|
|
|
kernel2 = Kernel('gaus')
|
|
|
|
|
kernel2 = Kernel('gauss')
|
|
|
|
|
mu2, R, Rdd = kernel2.stats()
|
|
|
|
|
STEconstant2 = R / (mu2 ** (2) * n)
|
|
|
|
|
fft = np.fft.fft
|
|
|
|
@ -1142,9 +1198,9 @@ class Kernel(object):
|
|
|
|
|
|
|
|
|
|
def norm_factor(self, d=1, n=None):
|
|
|
|
|
return self.kernel.norm_factor(d, n)
|
|
|
|
|
def evaluate(self, X):
|
|
|
|
|
return self.kernel(np.atleast_2d(X))
|
|
|
|
|
__call__ = evaluate
|
|
|
|
|
def eval_points(self, points):
|
|
|
|
|
return self.kernel(np.atleast_2d(points))
|
|
|
|
|
__call__ = eval_points
|
|
|
|
|
|
|
|
|
|
def mkernel(X, kernel):
|
|
|
|
|
'''
|
|
|
|
@ -1297,6 +1353,39 @@ def accum(accmap, a, func=None, size=None, fill_value=0, dtype=None):
|
|
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
def iqrange(data, axis=None):
|
|
|
|
|
'''
|
|
|
|
|
Returns the Inter Quartile Range of data
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
|
----------
|
|
|
|
|
data : array-like
|
|
|
|
|
Input array or object that can be converted to an array.
|
|
|
|
|
axis : {None, int}, optional
|
|
|
|
|
Axis along which the percentiles are computed. The default (axis=None)
|
|
|
|
|
is to compute the median along a flattened version of the array.
|
|
|
|
|
Returns
|
|
|
|
|
-------
|
|
|
|
|
r : array-like
|
|
|
|
|
abs(np.percentile(data, 75, axis)-np.percentile(data, 25, axis))
|
|
|
|
|
|
|
|
|
|
Notes
|
|
|
|
|
-----
|
|
|
|
|
IQRANGE is a robust measure of spread. The use of interquartile range
|
|
|
|
|
guards against outliers if the distribution have heavy tails.
|
|
|
|
|
|
|
|
|
|
Example
|
|
|
|
|
-------
|
|
|
|
|
>>> a = np.arange(101)
|
|
|
|
|
>>> iqrange(a)
|
|
|
|
|
50.0
|
|
|
|
|
|
|
|
|
|
See also
|
|
|
|
|
--------
|
|
|
|
|
np.std
|
|
|
|
|
'''
|
|
|
|
|
return np.abs(np.percentile(data, 75, axis=axis)-np.percentile(data, 25, axis=axis))
|
|
|
|
|
|
|
|
|
|
def bitget(int_type, offset):
|
|
|
|
|
'''
|
|
|
|
|
Returns the value of the bit at the offset position in int_type.
|
|
|
|
|