diff --git a/pywafo/src/wafo/kdetools.py b/pywafo/src/wafo/kdetools.py index 65dfbdd..56d25d2 100644 --- a/pywafo/src/wafo/kdetools.py +++ b/pywafo/src/wafo/kdetools.py @@ -57,9 +57,172 @@ def sphere_volume(d, r=1.0): 'Kernel smoothing' Chapman and Hall, pp 105 """ - return (r ** d) * 2. * pi ** (d / 2.) / (d * gamma(d / 2.)) + return (r ** d) * 2.0 * pi ** (d / 2.0) / (d * gamma(d / 2.0)) -class TKDE(object): +class _KDE(object): + """ Kernel-Density Estimator base class. + + Parameters + ---------- + data : (# of dims, # of data)-array + datapoints to estimate from + hs : array-like (optional) + smooting parameter vector/matrix. + (default compute from data using kernel.get_smoothing function) + kernel : kernel function object. + kernel must have get_smoothing method + alpha : real scalar (optional) + sensitivity parameter (default 0 regular KDE) + A good choice might be alpha = 0.5 ( or 1/D) + alpha = 0 Regular KDE (hs is constant) + 0 < alpha <= 1 Adaptive KDE (Make hs change) + + + Members + ------- + d : int + number of dimensions + n : int + number of datapoints + + Methods + ------- + kde.eval_grid_fast(x0, x1,..., xd) : array + evaluate the estimated pdf on meshgrid(x0, x1,..., xd) + kde.eval_grid(x0, x1,..., xd) : array + evaluate the estimated pdf on meshgrid(x0, x1,..., xd) + kde.eval_points(points) : array + evaluate the estimated pdf on a provided set of points + kde(x0, x1,..., xd) : array + same as kde.eval_grid(x0, x1,..., xd) + """ + + def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None, xmax=None, inc=128): + self.dataset = atleast_2d(data) + self.hs = hs + self.kernel = kernel if kernel else Kernel('gauss') + self.alpha = alpha + self.xmin = xmin + self.xmax = xmax + self.inc = inc + self.initialize() + + def initialize(self): + self.d, self.n = self.dataset.shape + self._set_xlimits() + self._initialize() + + def _initialize(self): + pass + + def _set_xlimits(self): + amin = self.dataset.min(axis= -1) + amax = self.dataset.max(axis= -1) + iqr = iqrange(self.dataset, axis=-1) + sigma = np.minimum(np.std(self.dataset, axis=-1, ddof=1),iqr/1.34) + #xyzrange = amax - amin + #offset = xyzrange / 4.0 + offset = 2*sigma + if self.xmin is None: + self.xmin = amin - offset + else: + self.xmin = self.xmin * np.ones(self.d) + if self.xmax is None: + self.xmax = amax + offset + else: + self.xmax = self.xmax * np.ones(self.d) + + def eval_grid_fast(self, *args): + """Evaluate the estimated pdf on a grid. + + Parameters + ---------- + arg_0,arg_1,... arg_d-1 : vectors + Alternatively, if no vectors is passed in then + arg_i = linspace(self.xmin[i], self.xmax[i], self.inc) + + Returns + ------- + values : array-like + The values evaluated at meshgrid(*args). + + """ + if len(args) == 0: + args = [] + for i in range(self.d): + args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc)) + self.args = args + return self._eval_grid_fast(*args) + def _eval_grid_fast(self, *args): + pass + + def eval_grid(self, *args): + """Evaluate the estimated pdf on a grid. + + Parameters + ---------- + arg_0,arg_1,... arg_d-1 : vectors + Alternatively, if no vectors is passed in then + arg_i = linspace(self.xmin[i], self.xmax[i], self.inc) + + Returns + ------- + values : array-like + The values evaluated at meshgrid(*args). + + """ + + if len(args) == 0: + args = [] + for i in range(self.d): + args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc)) + self.args = args + return self._eval_grid(*args) + + def _eval_grid(self, *args): + pass + + def _check_shape(self, points): + points = atleast_2d(points) + d, m = points.shape + if d != self.d: + if d == 1 and m == self.d: + # points was passed in as a row vector + points = np.reshape(points, (self.d, 1)) + else: + msg = "points have dimension %s, dataset has dimension %s" % (d, + self.d) + raise ValueError(msg) + return points + def eval_points(self, points): + """Evaluate the estimated pdf on a set of points. + + Parameters + ---------- + points : (# of dimensions, # of points)-array + Alternatively, a (# of dimensions,) vector can be passed in and + treated as a single point. + + Returns + ------- + values : (# of points,)-array + The values at each point. + + Raises + ------ + ValueError if the dimensionality of the input points is different than + the dimensionality of the KDE. + """ + + points = self._check_shape(points) + return self._eval_points(points) + + def _eval_points(self, points): + pass + + __call__ = eval_grid + +class TKDE(_KDE): """ Transformation Kernel-Density Estimator. Parameters @@ -75,7 +238,18 @@ class TKDE(object): sensitivity parameter (default 0 regular KDE) A good choice might be alpha = 0.5 ( or 1/D) alpha = 0 Regular KDE (hs is constant) - 0 < alpha <= 1 Adaptive KDE (Make hs change) + 0 < alpha <= 1 Adaptive KDE (Make hs change) + xmin, xmax : vectors + specifying the default argument range for the kde.eval_grid methods. + For the kde.eval_grid_fast methods the values must cover the range of the data. + (default min(data)-range(data)/4, max(data)-range(data)/4) + If a single value of xmin or xmax is given then the boundary is the is + the same for all dimensions. + inc : scalar integer + defining the default dimension of the output from kde.eval_grid methods (default 128) + (For kde.eval_grid_fast: A value below 50 is very fast to compute but + may give some inaccuracies. Values between 100 and 500 give very + accurate results) L2 : array-like vector of transformation parameters (default 1 no transformation) t(xi;L2) = xi^L2*sign(L2) for L2(i) ~= 0 @@ -91,10 +265,14 @@ class TKDE(object): Methods ------- - kde.evaluate(points) : array + kde.eval_grid_fast(x0, x1,..., xd) : array + evaluate the estimated pdf on meshgrid(x0, x1,..., xd) + kde.eval_grid(x0, x1,..., xd) : array + evaluate the estimated pdf on meshgrid(x0, x1,..., xd) + kde.eval_points(points) : array evaluate the estimated pdf on a provided set of points - kde(points) : array - same as kde.evaluate(points) + kde(x0, x1,..., xd) : array + same as kde.eval_grid(x0, x1,..., xd) Example @@ -119,29 +297,21 @@ class TKDE(object): 0.20717946, 0.15907684, 0.1201074 , 0.08941027, 0.06574882]) >>> kde.eval_grid_fast(x) - array([ 0. , 0.4614821 , 0.39554839, 0.32764086, 0.26275681, - 0.20543731, 0.15741056, 0.11863464, 0. , 0. ]) + array([ 1.06437223, 0.46203314, 0.39593137, 0.32781899, 0.26276433, + 0.20532206, 0.15723498, 0.11843998, 0.08797755, 0. ]) import pylab as plb h1 = plb.plot(x, f) # 1D probability density plot t = np.trapz(f, x) """ - def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None, + def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None, xmax=None, inc=128, L2=None): - self.dataset = atleast_2d(data) - self.hs = hs - self.kernel = kernel if kernel else Kernel('gauss') - self.alpha = alpha - self.xmin = xmin - self.xmax = xmax - self.inc = inc self.L2 = L2 - self.d, self.n = self.dataset.shape - self.initialize() + _KDE.__init__(self, data, hs, kernel, alpha, xmin, xmax, inc) - def initialize(self): - self._set_xlimits() + def _initialize(self): + self._check_xmin() tdataset = self._dat2gaus(self.dataset) xmin = self.xmin if xmin is not None: @@ -151,39 +321,12 @@ class TKDE(object): xmax = self._dat2gaus(xmax) self.tkde = KDE(tdataset, self.hs, self.kernel, self.alpha, xmin, xmax, self.inc) - def _set_xlimits(self): - amin = self.dataset.min(axis=-1) - amax = self.dataset.max(axis=-1) - xyzrange = amax-amin - offset = xyzrange/4.0 - if self.xmin is None: - self.xmin = amin - offset - else: - self.xmin = self.xmin * np.ones(self.d) - if self.xmax is None: - self.xmax = amax + offset - else: - self.xmax = self.xmax * np.ones(self.d) - + def _check_xmin(self): if self.L2 is not None: + amin = self.dataset.min(axis= -1) L2 = np.atleast_1d(self.L2) * np.ones(self.d) # default no transformation - self.xmin = np.where(L2!=1, np.maximum(self.xmin, amin/2.0), self.xmin) + self.xmin = np.where(L2 != 1, np.maximum(self.xmin, amin / 100.0), self.xmin) - - def _check_shape(self, points): - points = atleast_2d(points) - d, m = points.shape - if d != self.d: - if d == 1 and m == self.d: - # points was passed in as a row vector - points = np.reshape(points, (self.d, 1)) - m = 1 - else: - msg = "points have dimension %s, dataset has dimension %s" % (d, - self.d) - raise ValueError(msg) - return points - def _dat2gaus(self, points): if self.L2 is None: return points # default no transformation @@ -203,7 +346,7 @@ class TKDE(object): points = copy.copy(tpoints) for i, v2 in enumerate(L2.tolist()): - points[i] = np.exp(tpoints[i]) if v2 == 0 else tpoints[i] ** (1.0/v2) + points[i] = np.exp(tpoints[i]) if v2 == 0 else tpoints[i] ** (1.0 / v2) return points def _scale_pdf(self, pdf, points): @@ -211,29 +354,32 @@ class TKDE(object): return pdf L2 = np.atleast_1d(self.L2) * np.ones(self.d) # default no transformation for i, v2 in enumerate(L2.tolist()): - factor = v2 * np.sign(v2) if v2 else 1 + factor = v2 * np.sign(v2) if v2 else 1 pdf *= np.where(v2 == 1, 1, points[i] ** (v2 - 1) * factor) if (np.abs(np.diff(pdf)).max() > 10).any(): msg = ''' Numerical problems may have occured due to the power transformation. Check the KDE for spurious spikes''' warnings.warn(msg) return pdf - def eval_grid_fast(self, *args): + + def eval_grid_fast2(self, *args): """Evaluate the estimated pdf on a grid. - + Parameters ---------- arg_0,arg_1,... arg_d-1 : vectors - Alternatively, if no vectors is passed in then - arg_i = linspace(self.xmin[i], self.xmax[i], self.inc) - + Alternatively, if no vectors is passed in then + arg_i = gauss2dat(linspace(dat2gauss(self.xmin[i]), dat2gauss(self.xmax[i]), self.inc)) + Returns ------- values : array-like - The values evaluated at meshgrid(*args). - - """ + The values evaluated at meshgrid(*args). + """ + return self._eval_grid_fast(*args) + + def _eval_grid_fast(self, *args): if self.L2 is None: f = self.tkde.eval_grid_fast(*args) self.args = self.tkde.args @@ -241,48 +387,28 @@ class TKDE(object): #targs = self._dat2gaus(list(args)) if len(args) else args tf = self.tkde.eval_grid_fast() self.args = self._gaus2dat(list(self.tkde.args)) - points = meshgrid(*self.args) if self.d>1 else self.args + points = meshgrid(*self.args) if self.d > 1 else self.args f = self._scale_pdf(tf, points) if len(args): - if self.d==1: - pdf = interpolate.interp1d(points[0],f, bounds_error=False, fill_value=0.0) - elif self.d==2: - pdf = interpolate.interp2d(points[0],points[1], f, bounds_error=False, fill_value=0.0) + if self.d == 1: + pdf = interpolate.interp1d(points[0], f, bounds_error=False, fill_value=0.0) + elif self.d == 2: + pdf = interpolate.interp2d(points[0], points[1], f, bounds_error=False, fill_value=0.0) #ipoints = meshgrid(*args) if self.d>1 else args fi = pdf(*args) #fi.shape = ipoints[0].shape return fi return f - def eval_grid(self, *args): - """Evaluate the estimated pdf on a grid. - - Parameters - ---------- - arg_0,arg_1,... arg_d-1 : vectors - Alternatively, if no vectors is passed in then - arg_i = linspace(self.xmin[i], self.xmax[i], self.inc) - - Returns - ------- - values : array-like - The values evaluated at meshgrid(*args). - - """ - if len(args)==0: - args = [] - for i in range(self.d): - args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc)) - self.args = args + def _eval_grid(self, *args): if self.L2 is None: return self.tkde.eval_grid(*args) targs = self._dat2gaus(list(args)) tf = self.tkde.eval_grid(*targs) - points = meshgrid(*args) if self.d>1 else self.args + points = meshgrid(*args) if self.d > 1 else self.args f = self._scale_pdf(tf, points) return f - - return self.tkde.eval_grid(*args) - def evaluate(self, points): + + def _eval_points(self, points): """Evaluate the estimated pdf on a set of points. Parameters @@ -302,16 +428,14 @@ class TKDE(object): the dimensionality of the KDE. """ if self.L2 is None: - return self.tkde(points) - points = self._check_shape(points) + return self.tkde.eval_points(points) + tpoints = self._dat2gaus(points) - tf = self.tkde(tpoints) + tf = self.tkde.eval_points(tpoints) f = self._scale_pdf(tf, points) return f - __call__ = evaluate - -class KDE(object): +class KDE(_KDE): """ Kernel-Density Estimator. Parameters @@ -328,7 +452,17 @@ class KDE(object): A good choice might be alpha = 0.5 ( or 1/D) alpha = 0 Regular KDE (hs is constant) 0 < alpha <= 1 Adaptive KDE (Make hs change) - + xmin, xmax : vectors + specifying the default argument range for the kde.eval_grid methods. + For the kde.eval_grid_fast methods the values must cover the range of the data. + (default min(data)-range(data)/4, max(data)-range(data)/4) + If a single value of xmin or xmax is given then the boundary is the is + the same for all dimensions. + inc : scalar integer + defining the default dimension of the output from kde.eval_grid methods (default 128) + (For kde.eval_grid_fast: A value below 50 is very fast to compute but + may give some inaccuracies. Values between 100 and 500 give very + accurate results) Members ------- @@ -339,10 +473,14 @@ class KDE(object): Methods ------- - kde.evaluate(points) : array + kde.eval_grid_fast(x0, x1,..., xd) : array + evaluate the estimated pdf on meshgrid(x0, x1,..., xd) + kde.eval_grid(x0, x1,..., xd) : array + evaluate the estimated pdf on meshgrid(x0, x1,..., xd) + kde.eval_points(points) : array evaluate the estimated pdf on a provided set of points - kde(points) : array - same as kde.evaluate(points) + kde(x0, x1,..., xd) : array + same as kde.eval_grid(x0, x1,..., xd) Example @@ -367,18 +505,18 @@ class KDE(object): 0.21409279, 0.12738463, 0.07460326, 0.03956191, 0.01887164]) >>> kde0 = wk.KDE(data, hs=0.5, alpha=0.0) - >>> kde0.evaluate(x) + >>> kde0.eval_points(x) array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 , 0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821]) >>> kde0.eval_grid(x) array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 , - 0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821]) + 0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821]) >>> f = kde0.eval_grid_fast() >>> np.interp(x, kde0.args[0], f) - array([ 0.21165996, 0.41218257, 0.54961961, 0.51713209, 0.38292245, - 0.25864661, 0.16113184, 0.08055992, 0.03576856, 0.03576856]) + array([ 0.21227584, 0.41256459, 0.5495661 , 0.5176579 , 0.38431616, + 0.2591162 , 0.15978948, 0.07889179, 0.02769818, 0.00791829]) import pylab as plb h1 = plb.plot(x, f) # 1D probability density plot @@ -386,41 +524,18 @@ class KDE(object): """ def __init__(self, data, hs=None, kernel=None, alpha=0.0, xmin=None, xmax=None, inc=128): - self.kernel = kernel if kernel else Kernel('gauss') - self.hs = hs - self.alpha = alpha - - self.dataset = atleast_2d(data) - self.d, self.n = self.dataset.shape - self.xmin = xmin - self.xmax = xmax - self.inc = inc - self.initialize() - - def initialize(self): - self._set_xlimits() + _KDE.__init__(self, data, hs, kernel, alpha, xmin, xmax, inc) + + def _initialize(self): self._compute_smoothing() if self.alpha > 0: pilot = KDE(self.dataset, hs=self.hs, kernel=self.kernel, alpha=0) - f = pilot(self.dataset) # get a pilot estimate by regular KDE (alpha=0) + f = pilot.eval_points(self.dataset) # get a pilot estimate by regular KDE (alpha=0) g = np.exp(np.mean(np.log(f))) self._lambda = (f / g) ** (-self.alpha) else: self._lambda = np.ones(self.n) - - def _set_xlimits(self): - amin = self.dataset.min(axis=-1) - amax = self.dataset.max(axis=-1) - xyzrange = amax-amin - if self.xmin is None: - self.xmin = amin-xyzrange/4.0 - else: - self.xmin = self.xmin * np.ones(self.d) - if self.xmax is None: - self.xmax = amax + xyzrange/4.0 - else: - self.xmax = self.xmax * np.ones(self.d) - + def _compute_smoothing(self): """Computes the smoothing matrix """ @@ -451,41 +566,21 @@ class KDE(object): self.hs = h self._norm_factor = deth * self.n - def eval_grid_fast(self, *args): - """Evaluate the estimated pdf on a grid. - - Parameters - ---------- - arg_0,arg_1,... arg_d-1 : vectors - Alternatively, if no vectors is passed in then - arg_i = linspace(self.xmin[i], self.xmax[i], self.inc) - Returns - ------- - values : array-like - The values evaluated at meshgrid(*args). - - """ - if len(args)==0: - args = [] - for i in range(self.d): - args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc)) - self.args = args - return self._eval_grid_fast(*args) def _eval_grid_fast(self, *args): # TODO: This does not work correctly yet! Check it. X = np.vstack(args) d, inc = X.shape - dx = X[:,1]-X[:,0] + dx = X[:, 1] - X[:, 0] Xn = [] - nfft0 = 2*inc + nfft0 = 2 * inc nfft = (nfft0,)*d - x0 = np.linspace(-inc, inc, nfft0+1) + x0 = np.linspace(-inc, inc, nfft0 + 1) for i in range(d): - Xn.append(x0[:-1]*dx[i]) + Xn.append(x0[:-1] * dx[i]) - Xnc = meshgrid(*Xn) if d>1 else Xn + Xnc = meshgrid(*Xn) if d > 1 else Xn shape0 = Xnc[0].shape for i in range(d): @@ -494,7 +589,7 @@ class KDE(object): Xn = np.dot(self.inv_hs, np.vstack(Xnc)) # Obtain the kernel weights. - kw = self.kernel(Xn)/(self._norm_factor * self.kernel.norm_factor(d, self.n)) + kw = self.kernel(Xn) / (self._norm_factor * self.kernel.norm_factor(d, self.n)) kw.shape = shape0 kw = np.fft.ifftshift(kw) fftn = np.fft.fftn @@ -504,58 +599,23 @@ class KDE(object): c = gridcount(self.dataset, X) # Perform the convolution. - z = np.real(ifftn(fftn(c,s=nfft)*fftn(kw))) - - ix = (slice(0,inc),)*d - return z[ix]*(z[ix]>0.0) - - def eval_grid(self, *args): - """Evaluate the estimated pdf on a grid. + z = np.real(ifftn(fftn(c, s=nfft) * fftn(kw))) - Parameters - ---------- - arg_0,arg_1,... arg_d-1 : vectors - Alternatively, if no vectors is passed in then - arg_i = linspace(self.xmin[i], self.xmax[i], self.inc) - - Returns - ------- - values : array-like - The values evaluated at meshgrid(*args). - - """ - - if len(args)==0: - args = [] - for i in range(self.d): - args.append(np.linspace(self.xmin[i], self.xmax[i], self.inc)) - self.args = args - return self._eval_grid(*args) - + ix = (slice(0, inc),)*d + return z[ix] * (z[ix] > 0.0) + def _eval_grid(self, *args): - grd = meshgrid(*args) if len(args)>1 else list(args) + grd = meshgrid(*args) if len(args) > 1 else list(args) shape0 = grd[0].shape d = len(grd) for i in range(d): grd[i] = grd[i].ravel() - f = self.evaluate(np.vstack(grd)) + f = self.eval_points(np.vstack(grd)) return f.reshape(shape0) - def _check_shape(self, points): - points = atleast_2d(points) - d, m = points.shape - if d != self.d: - if d == 1 and m == self.d: - # points was passed in as a row vector - points = np.reshape(points, (self.d, 1)) - m = 1 - else: - msg = "points have dimension %s, dataset has dimension %s" % (d, - self.d) - raise ValueError(msg) - return points - def evaluate(self, points): + + def _eval_points(self, points): """Evaluate the estimated pdf on a set of points. Parameters @@ -574,8 +634,6 @@ class KDE(object): ValueError if the dimensionality of the input points is different than the dimensionality of the KDE. """ - - points = self._check_shape(points) d, m = points.shape result = np.zeros((m,)) @@ -598,8 +656,6 @@ class KDE(object): return result - __call__ = evaluate - class _Kernel(object): def __init__(self, r=1.0, stats=None): @@ -624,7 +680,7 @@ class _Kernel(object): ''' return self._effective_support() def _effective_support(self): - return -self.r, self.r + return - self.r, self.r __call__ = kernel class _KernelMulti(_Kernel): @@ -690,27 +746,27 @@ mkernel_triangular = _KernelTriangular(stats=_stats_tria) class _KernelGaussian(_Kernel): def _kernel(self, x): - sigma = self.r/4.0 - x2 = (x/sigma) ** 2 + sigma = self.r / 4.0 + x2 = (x / sigma) ** 2 return exp(-0.5 * x2.sum(axis=0)) def norm_factor(self, d=1, n=None): - sigma = self.r/4.0 + sigma = self.r / 4.0 return (2 * pi * sigma) ** (d / 2.0) def deriv4_6_8_10(self, t, numout=4): ''' Returns 4th, 6th, 8th and 10th derivatives of the kernel function. ''' - phi0 = exp(-0.5*t**2)/sqrt(2*pi) + phi0 = exp(-0.5 * t ** 2) / sqrt(2 * pi) p4 = [1, 0, -6, 0, +3] - p4val = np.polyval(p4,t)*phi0 - if numout==1: + p4val = np.polyval(p4, t) * phi0 + if numout == 1: return p4val out = [p4val] pn = p4 - for ix in range(numout-1): + for ix in range(numout - 1): pnp1 = np.polyadd(-np.r_[pn, 0], np.polyder(pn)) pnp2 = np.polyadd(-np.r_[pnp1, 0], np.polyder(pnp1)) - out.append(np.polyval(pnp2, t)*phi0) + out.append(np.polyval(pnp2, t) * phi0) pn = pnp2 return out @@ -898,7 +954,7 @@ class Kernel(object): # R= int(mkernel(x)^2), mu2= int(x^2*mkernel(x)) mu2, R, Rdd = self.stats() AMISEconstant = (8 * sqrt(pi) * R / (3 * mu2 ** 2 * n)) ** (1. / 5) - iqr = np.abs(np.percentile(A, 75, axis=1) - np.percentile(A, 25, axis=1))# interquartile range + iqr = iqrange(A, axis=1) # interquartile range stdA = np.std(A, axis=1, ddof=1) # % use of interquartile range guards against outliers. # % the use of interquartile range is better if @@ -1043,34 +1099,34 @@ class Kernel(object): # TODO: replace the iteration in the end with a Newton Raphson scheme A = np.atleast_2d(data) - d, n= A.shape + d, n = A.shape # R= int(mkernel(x)^2), mu2= int(x^2*mkernel(x)) mu2, R, Rdd = self.stats() AMISEconstant = (8 * sqrt(pi) * R / (3 * mu2 ** 2 * n)) ** (1. / 5) - STEconstant = R /(mu2**(2)*n) + STEconstant = R / (mu2 ** (2) * n) - sigmaA = self.hns(A)/AMISEconstant + sigmaA = self.hns(A) / AMISEconstant if h0 is None: - h0 = sigmaA*AMISEconstant + h0 = sigmaA * AMISEconstant h = np.asarray(h0, dtype=float) - nfft = inc*2 - amin = A.min(axis=1) # Find the minimum value of A. - amax = A.max(axis=1) #Find the maximum value of A. - arange = amax-amin # Find the range of A. + nfft = inc * 2 + amin = A.min(axis=1) # Find the minimum value of A. + amax = A.max(axis=1) #Find the maximum value of A. + arange = amax - amin # Find the range of A. #% xa holds the x 'axis' vector, defining a grid of x values where #% the k.d. function will be evaluated. - ax1 = amin-arange/8.0 - bx1 = amax+arange/8.0 + ax1 = amin - arange / 8.0 + bx1 = amax + arange / 8.0 - kernel2 = Kernel('gaus') - mu2,R,Rdd = kernel2.stats() - STEconstant2 = R /(mu2**(2)*n) + kernel2 = Kernel('gauss') + mu2, R, Rdd = kernel2.stats() + STEconstant2 = R / (mu2 ** (2) * n) fft = np.fft.fft ifft = np.fft.ifft @@ -1079,61 +1135,61 @@ class Kernel(object): ax = ax1[dim] bx = bx1[dim] - xa = np.linspace(ax,bx,inc) - xn = np.linspace(0,bx-ax,inc) + xa = np.linspace(ax, bx, inc) + xn = np.linspace(0, bx - ax, inc) - c = gridcount(A[dim],xa) + c = gridcount(A[dim], xa) # Step 1 - psi6NS = -15/(16*sqrt(pi)*s**7) - psi8NS = 105/(32*sqrt(pi)*s**9) + psi6NS = -15 / (16 * sqrt(pi) * s ** 7) + psi8NS = 105 / (32 * sqrt(pi) * s ** 9) # Step 2 k40, k60 = kernel2.deriv4_6_8_10(0, numout=2) - g1 = (-2*k40/(mu2*psi6NS*n))**(1.0/7) - g2 = (-2*k60/(mu2*psi8NS*n))**(1.0/9) + g1 = (-2 * k40 / (mu2 * psi6NS * n)) ** (1.0 / 7) + g2 = (-2 * k60 / (mu2 * psi8NS * n)) ** (1.0 / 9) # Estimate psi6 given g2. - kw4, kw6 = kernel2.deriv4_6_8_10(xn/g2, numout=2) # kernel weights. - kw = np.r_[kw6,0,kw6[-1:0:-1]] # Apply fftshift to kw. - z = np.real(ifft(fft(c,nfft)*fft(kw))) # convolution. - psi6 = np.sum(c*z[:inc])/(n*(n-1)*g2**7) + kw4, kw6 = kernel2.deriv4_6_8_10(xn / g2, numout=2) # kernel weights. + kw = np.r_[kw6, 0, kw6[-1:0:-1]] # Apply fftshift to kw. + z = np.real(ifft(fft(c, nfft) * fft(kw))) # convolution. + psi6 = np.sum(c * z[:inc]) / (n * (n - 1) * g2 ** 7) # Estimate psi4 given g1. - kw4 = kernel2.deriv4_6_8_10(xn/g1, numout=1) # kernel weights. - kw = np.r_[kw4,0,kw4[-1:0:-1]] #Apply 'fftshift' to kw. - z = np.real(ifft(fft(c,nfft)*fft(kw))) # convolution. - psi4 = np.sum(c*z[:inc])/(n*(n-1)*g1**5) + kw4 = kernel2.deriv4_6_8_10(xn / g1, numout=1) # kernel weights. + kw = np.r_[kw4, 0, kw4[-1:0:-1]] #Apply 'fftshift' to kw. + z = np.real(ifft(fft(c, nfft) * fft(kw))) # convolution. + psi4 = np.sum(c * z[:inc]) / (n * (n - 1) * g1 ** 5) - h1 = h[dim] + h1 = h[dim] h_old = 0 count = 0 - while ((abs(h_old-h1)>max(releps*h1,abseps)) and (count < maxit)): + while ((abs(h_old - h1) > max(releps * h1, abseps)) and (count < maxit)): count += 1 h_old = h1 # Step 3 - gamma=((2*k40*mu2*psi4*h1**5)/(-psi6*R))**(1.0/7) + gamma = ((2 * k40 * mu2 * psi4 * h1 ** 5) / (-psi6 * R)) ** (1.0 / 7) # Now estimate psi4 given gamma. - kw4 = kernel2.deriv4_6_8_10(xn/gamma, numout=1) #kernel weights. - kw = np.r_[kw4,0,kw4[-1:0:-1]] # Apply 'fftshift' to kw. - z = np.real(ifft(fft(c,nfft)*fft(kw))) # convolution. + kw4 = kernel2.deriv4_6_8_10(xn / gamma, numout=1) #kernel weights. + kw = np.r_[kw4, 0, kw4[-1:0:-1]] # Apply 'fftshift' to kw. + z = np.real(ifft(fft(c, nfft) * fft(kw))) # convolution. - psi4Gamma = np.sum(c*z[:inc])/(n*(n-1)*gamma**5) + psi4Gamma = np.sum(c * z[:inc]) / (n * (n - 1) * gamma ** 5) # Step 4 - h1 = (STEconstant2/psi4Gamma)**(1.0/5) + h1 = (STEconstant2 / psi4Gamma) ** (1.0 / 5) # Kernel other than Gaussian scale bandwidth - h1 = h1*(STEconstant/STEconstant2)**(1.0/5) + h1 = h1 * (STEconstant / STEconstant2) ** (1.0 / 5) - if count>= maxit: + if count >= maxit: warnings.warn('The obtained value did not converge.') h[dim] = h1 @@ -1142,9 +1198,9 @@ class Kernel(object): def norm_factor(self, d=1, n=None): return self.kernel.norm_factor(d, n) - def evaluate(self, X): - return self.kernel(np.atleast_2d(X)) - __call__ = evaluate + def eval_points(self, points): + return self.kernel(np.atleast_2d(points)) + __call__ = eval_points def mkernel(X, kernel): ''' @@ -1297,6 +1353,39 @@ def accum(accmap, a, func=None, size=None, fill_value=0, dtype=None): return out +def iqrange(data, axis=None): + ''' + Returns the Inter Quartile Range of data + + Parameters + ---------- + data : array-like + Input array or object that can be converted to an array. + axis : {None, int}, optional + Axis along which the percentiles are computed. The default (axis=None) + is to compute the median along a flattened version of the array. + Returns + ------- + r : array-like + abs(np.percentile(data, 75, axis)-np.percentile(data, 25, axis)) + + Notes + ----- + IQRANGE is a robust measure of spread. The use of interquartile range + guards against outliers if the distribution have heavy tails. + + Example + ------- + >>> a = np.arange(101) + >>> iqrange(a) + 50.0 + + See also + -------- + np.std + ''' + return np.abs(np.percentile(data, 75, axis=axis)-np.percentile(data, 25, axis=axis)) + def bitget(int_type, offset): ''' Returns the value of the bit at the offset position in int_type. diff --git a/pywafo/src/wafo/test/test_kdetools.py b/pywafo/src/wafo/test/test_kdetools.py index a850a45..23c00eb 100644 --- a/pywafo/src/wafo/test/test_kdetools.py +++ b/pywafo/src/wafo/test/test_kdetools.py @@ -24,15 +24,17 @@ def test0_KDE1D(): >>> kde0.eval_grid(x) array([ 0.2039735 , 0.40252503, 0.54595078, 0.52219649, 0.3906213 , - 0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821]) - + 0.26381501, 0.16407362, 0.08270612, 0.02991145, 0.00720821]) + >>> kde0.eval_grid_fast(x) + array([ 0.32343789, 0.51366167, 0.55643329, 0.43688805, 0.28972471, + 0.19445277, 0.12473331, 0.06195215, 0.02087712, 0.00449567]) >>> f = kde0.eval_grid_fast(); f - array([ 0.07264948, 0.14135253, 0.24141397, 0.36045498, 0.46962192, - 0.53604004, 0.5427015 , 0.49767387, 0.42419428, 0.34349993, - 0.26650289, 0.19666903, 0.13569857, 0.0857818 , 0.04868357, - 0.02432961]) + array([ 0.02076721, 0.0612371 , 0.14515308, 0.27604202, 0.42001793, + 0.51464781, 0.52131018, 0.45976136, 0.37621768, 0.29589521, + 0.21985316, 0.1473364 , 0.08502256, 0.04063749, 0.0155788 , + 0.00466938]) >>> np.trapz(f,kde0.args) - array([ 0.97384215]) + array([ 0.99416766]) ''' def test1_TKDE1D(): '''