Remove 'parse_stdout.py'
parent
3adc2a84fb
commit
e49e5e31d0
@ -1,107 +0,0 @@
|
||||
import os
|
||||
import io
|
||||
import subprocess
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
survey_date = '20180517'
|
||||
beach = 'Avoca'
|
||||
output_csv_dir = 'csv'
|
||||
|
||||
las_in = 'C:/Users/z3161860/Downloads/LASTools/XXFiles/S2_Delivery/avoca_20180517.las'
|
||||
cp_in = 'C:/Users/z3161860/Downloads/LASTools/XXFiles/CC_Profiles/Avoca_profiles.csv'
|
||||
|
||||
|
||||
def extract_pts(las_in, cp_in, survey_date, keep_only_ground=True):
|
||||
"""Extract elevations from a las surface based on x and y coordinates.
|
||||
|
||||
Requires lastools in system path.
|
||||
|
||||
Args:
|
||||
las_in: input point cloud (las)
|
||||
cp_in: point coordinates with columns: id, x, y, z (csv)
|
||||
survey_date: survey date string, e.g. '19700101'
|
||||
keep_only_ground: only keep points classified as 'ground' (boolean)
|
||||
|
||||
Returns:
|
||||
Dataframe containing input coordinates with extracted elevations
|
||||
"""
|
||||
|
||||
cmd = ['lascontrol', '-i', las_in, '-cp', cp_in, '-parse', 'sxyz']
|
||||
|
||||
if keep_only_ground == True:
|
||||
cmd += ['-keep_class', '2']
|
||||
|
||||
# Call lastools
|
||||
process = subprocess.Popen(
|
||||
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
stdout, stderr = process.communicate()
|
||||
errcode = process.returncode
|
||||
|
||||
# Handle errors, if detected
|
||||
if errcode != 0:
|
||||
print("Error. lascontrol failed on {}".format(
|
||||
os.path.basename(las_in)))
|
||||
print(stderr.decode())
|
||||
|
||||
# Load result into pandas dataframe
|
||||
df = pd.read_csv(io.BytesIO(stdout))
|
||||
|
||||
# Tidy up dataframe
|
||||
df = df.drop(columns=['diff'])
|
||||
df['lidar_z'] = pd.to_numeric(df['lidar_z'], errors='coerce')
|
||||
df['Beach'] = beach
|
||||
df = df[[
|
||||
'Beach', 'ProfileNum', 'Easting', 'Northing', 'Chainage', 'lidar_z'
|
||||
]]
|
||||
|
||||
# Rename columns
|
||||
new_names = {
|
||||
'ProfileNum': 'Profile',
|
||||
'lidar_z': 'Elevation_{}'.format(survey_date),
|
||||
}
|
||||
df = df.rename(columns=new_names)
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def update_survey_output(df, output_dir):
|
||||
"""Update survey profile output csv files with current survey.
|
||||
|
||||
Args:
|
||||
df: dataframe containing current survey elevations
|
||||
output_dir: directory where csv files are saved
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# Merge current survey with existing data
|
||||
profiles = df['Profile'].unique()
|
||||
for profile in profiles:
|
||||
csv_name = os.path.join(output_csv_dir, profile + '.csv')
|
||||
|
||||
# Extract survey data for current profile
|
||||
current_profile = df[df['Profile'] == profile]
|
||||
try:
|
||||
# Load existing results
|
||||
master = pd.read_csv(csv_name)
|
||||
except FileNotFoundError:
|
||||
master = current_profile.copy()
|
||||
|
||||
# Add (or update) current survey
|
||||
current_survey_col = df.columns[-1]
|
||||
master[current_survey_col] = current_profile[current_survey_col]
|
||||
|
||||
# Export updated results
|
||||
master.to_csv(csv_name)
|
||||
|
||||
|
||||
df = extract_pts(las_in, cp_in, survey_date, keep_only_ground=True)
|
||||
update_survey_output(df, output_csv_dir)
|
||||
|
||||
|
||||
master.shape
|
||||
|
||||
current_profile.shape
|
||||
|
||||
df.shape
|
Loading…
Reference in New Issue