diff --git a/parse_stdout.py b/parse_stdout.py deleted file mode 100644 index 659c0c0..0000000 --- a/parse_stdout.py +++ /dev/null @@ -1,107 +0,0 @@ -import os -import io -import subprocess -import pandas as pd -import matplotlib.pyplot as plt - -survey_date = '20180517' -beach = 'Avoca' -output_csv_dir = 'csv' - -las_in = 'C:/Users/z3161860/Downloads/LASTools/XXFiles/S2_Delivery/avoca_20180517.las' -cp_in = 'C:/Users/z3161860/Downloads/LASTools/XXFiles/CC_Profiles/Avoca_profiles.csv' - - -def extract_pts(las_in, cp_in, survey_date, keep_only_ground=True): - """Extract elevations from a las surface based on x and y coordinates. - - Requires lastools in system path. - - Args: - las_in: input point cloud (las) - cp_in: point coordinates with columns: id, x, y, z (csv) - survey_date: survey date string, e.g. '19700101' - keep_only_ground: only keep points classified as 'ground' (boolean) - - Returns: - Dataframe containing input coordinates with extracted elevations - """ - - cmd = ['lascontrol', '-i', las_in, '-cp', cp_in, '-parse', 'sxyz'] - - if keep_only_ground == True: - cmd += ['-keep_class', '2'] - - # Call lastools - process = subprocess.Popen( - cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) - stdout, stderr = process.communicate() - errcode = process.returncode - - # Handle errors, if detected - if errcode != 0: - print("Error. lascontrol failed on {}".format( - os.path.basename(las_in))) - print(stderr.decode()) - - # Load result into pandas dataframe - df = pd.read_csv(io.BytesIO(stdout)) - - # Tidy up dataframe - df = df.drop(columns=['diff']) - df['lidar_z'] = pd.to_numeric(df['lidar_z'], errors='coerce') - df['Beach'] = beach - df = df[[ - 'Beach', 'ProfileNum', 'Easting', 'Northing', 'Chainage', 'lidar_z' - ]] - - # Rename columns - new_names = { - 'ProfileNum': 'Profile', - 'lidar_z': 'Elevation_{}'.format(survey_date), - } - df = df.rename(columns=new_names) - - return df - - -def update_survey_output(df, output_dir): - """Update survey profile output csv files with current survey. - - Args: - df: dataframe containing current survey elevations - output_dir: directory where csv files are saved - - Returns: - None - """ - # Merge current survey with existing data - profiles = df['Profile'].unique() - for profile in profiles: - csv_name = os.path.join(output_csv_dir, profile + '.csv') - - # Extract survey data for current profile - current_profile = df[df['Profile'] == profile] - try: - # Load existing results - master = pd.read_csv(csv_name) - except FileNotFoundError: - master = current_profile.copy() - - # Add (or update) current survey - current_survey_col = df.columns[-1] - master[current_survey_col] = current_profile[current_survey_col] - - # Export updated results - master.to_csv(csv_name) - - -df = extract_pts(las_in, cp_in, survey_date, keep_only_ground=True) -update_survey_output(df, output_csv_dir) - - -master.shape - -current_profile.shape - -df.shape