|
|
@ -264,6 +264,7 @@ for i in range(0, len(params_file)): #0, len(params_file)
|
|
|
|
update_survey_output(df, csv_output_dir)
|
|
|
|
update_survey_output(df, csv_output_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#colourise the point cloud
|
|
|
|
#colourise the point cloud
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -271,5 +272,27 @@ for i in range(0, len(params_file)): #0, len(params_file)
|
|
|
|
remove_temp_files(tmp_dir)
|
|
|
|
remove_temp_files(tmp_dir)
|
|
|
|
#remove_temp_files(int_dir)
|
|
|
|
#remove_temp_files(int_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
csv_names = [f for f in os.listdir(csv_output_dir) if f.endswith('.csv')]
|
|
|
|
|
|
|
|
ch_limits = pd.read_excel(profile_limit_file, index_col='Profile')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for csv_name in csv_names:
|
|
|
|
|
|
|
|
profile_name = os.path.splitext(csv_name)[0]
|
|
|
|
|
|
|
|
profiles = pd.read_csv(os.path.join(csv_output_dir, csv_name))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Remove metadata, and extract profile coordinates
|
|
|
|
|
|
|
|
profiles = profiles.loc[:, 'Chainage':].set_index('Chainage')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Remove landward section of profiles (behind beach)
|
|
|
|
|
|
|
|
ch_min = ch_limits.loc[profile_name, 'Landward Limit']
|
|
|
|
|
|
|
|
# profiles = profiles.loc[ch_min:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
profiles.plot(title=profile_name)
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("doing the volume analysis")
|
|
|
|
print("doing the volume analysis")
|
|
|
|
test=profile_plots_volume(csv_output_dir, profile_limit_file, volume_output, graph_loc)
|
|
|
|
# test=profile_plots_volume(csv_output_dir, profile_limit_file, volume_output, graph_loc)
|
|
|
|