You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			299 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
			
		
		
	
	
			299 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
| # python 3.5
 | |
| #requires LAStools to be installed (with the appropriate license). Note that LAStools requires no spaces in file names
 | |
| 
 | |
| #should have previously run 2017088_las_manipulation to have a las that has the buildings and veg removed
 | |
| #note that the neilson volumes script must be in the same folder
 | |
| 
 | |
| # this script will:
 | |
| #crop to a given polygon (crop away the swash zone)
 | |
| # extract values along a predefined profile,
 | |
| # do the volume analysis
 | |
| #export pngs of the surveys
 | |
| ########################### IMPORTS ###########################################
 | |
| import os
 | |
| import io
 | |
| import subprocess
 | |
| import pandas as pd
 | |
| import numpy as np
 | |
| import neilson_volumes
 | |
| import matplotlib.pyplot as plt
 | |
| from matplotlib.ticker import MultipleLocator
 | |
| import datetime
 | |
| import xlsxwriter
 | |
| import math
 | |
| from cycler import cycler
 | |
| 
 | |
| from survey_tools import call_lastools, extract_pts, update_survey_output
 | |
| 
 | |
| 
 | |
| def plot_profiles(profile_info, profile, output_loc, LL_limit):
 | |
|     #plot the profile.  expects output from CC_split_profile
 | |
| 
 | |
|     YminorLocator=MultipleLocator(0.5)
 | |
|     XminorLocator=MultipleLocator(5)
 | |
| 
 | |
| 
 | |
|     fig,ax=plt.subplots(figsize=(8, 3))
 | |
| 
 | |
|     num_plots=len(profile_info.keys())-1
 | |
|     colormap = plt.cm.jet
 | |
|     ax.set_prop_cycle(cycler('color', [colormap(i) for i in np.linspace(0, 0.9, num_plots)]))
 | |
| 
 | |
|     max_y=0
 | |
|     for date in profile_info.keys():
 | |
|         if date!='info':
 | |
| 
 | |
|             plt.plot(profile_info[date]['Chainage'], profile_info[date]['Elevation'], label=date)
 | |
|             try:
 | |
|                 if max([i for i in profile_info[date]['Elevation'] if pd.isnull(i)==False])>max_y:
 | |
|                     max_y=max([i for i in profile_info[date]['Elevation'] if pd.isnull(i)==False])
 | |
|             except:
 | |
|                 print("empty elevation section for  %s" %  date)
 | |
| 
 | |
| 
 | |
|     plt.plot([LL_limit,LL_limit], [-1,max_y], 'r--', alpha=0.5, label="Landward Limit")
 | |
| 
 | |
| 
 | |
|     plt.xlabel('Chainage (m)',weight='bold')
 | |
|     plt.ylabel('Elevation (m AHD)',weight='bold')
 | |
|     plt.legend(loc='upper right', bbox_to_anchor=(1.3,1))
 | |
|     plt.title(profile)
 | |
|     plt.rcParams['font.size']=8
 | |
| 
 | |
|     ax.set_ylim([-1,math.ceil(max_y)])
 | |
| 
 | |
|     ax.xaxis.set_minor_locator(XminorLocator)
 | |
|     ax.yaxis.set_minor_locator(YminorLocator)
 | |
|     ax.xaxis.grid(True, which='minor', color='k', linestyle='-', alpha=0.3)
 | |
|     ax.yaxis.grid(True,which='minor',color='k', linestyle='-', alpha=0.3)
 | |
| 
 | |
|     plt.grid(which='major', color='k', linestyle='-')
 | |
|     today=datetime.datetime.now().date().strftime('%Y%m%d')
 | |
|     plt.savefig(os.path.join(output_loc, '%s_%s.png' % (today, profile)),bbox_inches='tight',dpi=900)
 | |
|     plt.clf()
 | |
| 
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def CC_split_profile(file2read):
 | |
|     # this reads the profile files and splits it into dates
 | |
| 
 | |
|     file_master=pd.read_csv(file2read)
 | |
| 
 | |
|     beach_original=file_master['Beach'].tolist()
 | |
|     profile_original=file_master['Profile'].tolist()
 | |
|     date_original=file_master['Date'].tolist()
 | |
|     chainage_original=file_master['Chainage'].tolist()
 | |
|     elevation_original=file_master['Elevation'].tolist()
 | |
|     easting_original=file_master['Easting'].tolist()
 | |
|     northing_original=file_master['Northing'].tolist()
 | |
| 
 | |
|     data={}
 | |
|     i=0
 | |
| 
 | |
|     #add info on the beach and profile number
 | |
|     data['info']={'Profile':profile_original[0], 'Beach':beach_original[0]}
 | |
|     date_now=date_original[0]
 | |
| 
 | |
|     while i<len(file_master):
 | |
|         chainage_tmp=[]
 | |
|         elevation_tmp=[]
 | |
|         easting_tmp=[]
 | |
|         northing_tmp=[]
 | |
|         while i<len(file_master) and date_now==date_original[i]:
 | |
|             chainage_tmp.append(chainage_original[i])
 | |
|             elevation_tmp.append(elevation_original[i])
 | |
|             easting_tmp.append(easting_original[i])
 | |
|             northing_tmp.append(northing_original[i])
 | |
|             i=i+1
 | |
| 
 | |
|         data[date_now]={'Beach': beach_original[i-1], 'Profile':profile_original[i-1],'Easting': easting_tmp, 'Northing':northing_tmp, 'Elevation':elevation_tmp, 'Chainage':chainage_tmp}
 | |
| 
 | |
|         if i<len(file_master):
 | |
|             date_now=date_original[i]
 | |
| 
 | |
|     return data
 | |
| 
 | |
| def profile_plots_volume(csv_loc, LL_xlsx, output_xlsx, graph_location):
 | |
|     #get a list of all csvs which will each be analysed
 | |
|     file_list=[]
 | |
|     for file in os.listdir(csv_loc):
 | |
|         if file.endswith(".csv"):
 | |
|             file_list.append(os.path.join(csv_loc, file))
 | |
| 
 | |
|     #now read the LL file
 | |
|     LL_limit_file=pd.read_excel(LL_xlsx, 'profile_locations')
 | |
|     LL_info={}
 | |
|     for i in range(0, len(LL_limit_file)):
 | |
|         #make a dictionary that alllows you to search the LL
 | |
|         prof="%s_%s" % (LL_limit_file['Profile'][i].split(" ")[0], LL_limit_file['Profile'][i].split(" ")[-1])
 | |
| 
 | |
|         LL_info[prof]=LL_limit_file['Landward Limit'][i]
 | |
| 
 | |
|     all_dates=[]
 | |
|     results_volume={}
 | |
|     for file in file_list:
 | |
|         #read the profile data - this should have all dates
 | |
|         profile_data=CC_split_profile(file)
 | |
|         profile=profile_data['info']['Profile']
 | |
| 
 | |
|         #plot all of the profiles
 | |
|         print(profile)
 | |
|         plot_profiles(profile_data, profile, graph_location,LL_info[profile])
 | |
| 
 | |
|         results_volume[profile]={}
 | |
| 
 | |
|         #nowgo through each date and do a neilson volume calculations
 | |
|         for date in profile_data.keys():
 | |
|             if date!='info':
 | |
|                 if date not in all_dates:
 | |
|                     all_dates.append(date)
 | |
| 
 | |
|                 chainage=profile_data[date]['Chainage']
 | |
|                 elevation=[0 if pd.isnull(profile_data[date]['Elevation'][i]) else profile_data[date]['Elevation'][i] for i in range(0, len(profile_data[date]['Elevation']))]
 | |
|                 LL_limit=LL_info[profile]
 | |
|                 #do a neilson calculation to get the ZSA volume
 | |
|                 if len(elevation)>2:
 | |
|                     #if there aren't enough available points don't do it
 | |
|                     volume=neilson_volumes.volume_available(chainage, elevation, LL_limit)
 | |
|                     if volume<0:
 | |
|                         volume=0
 | |
|                         print('%s %s has a negative volume available' % (profile, date))
 | |
|                 else:
 | |
|                     volume=0
 | |
| 
 | |
|                 results_volume[profile][date]=volume
 | |
| 
 | |
|     #write an excel sheet which summarises the data
 | |
|     workbook = xlsxwriter.Workbook(output_xlsx)
 | |
|     worksheet=workbook.add_worksheet('Volumes')
 | |
| 
 | |
|     row=0
 | |
|     col=0
 | |
| 
 | |
|     worksheet.write(row, col, 'Profile')
 | |
|     for date in all_dates:
 | |
|         col=col+1
 | |
|         worksheet.write(row, col, date)
 | |
| 
 | |
|     col=0
 | |
|     row=1
 | |
| 
 | |
|     for prof in results_volume.keys():
 | |
| 
 | |
|         worksheet.write(row, col, prof)
 | |
| 
 | |
|         for date in all_dates:
 | |
|             col=col+1
 | |
|             try:
 | |
|                 vol=results_volume[prof][date]
 | |
|             except KeyError:
 | |
|                 print("error with profile %s on %s" % (prof, date))
 | |
|                 vol=None
 | |
|             worksheet.write(row, col, vol)
 | |
|         col=0
 | |
|         row=row+1
 | |
|     return results_volume
 | |
| 
 | |
| def remove_temp_files(directory):
 | |
|     for f in os.listdir(directory):
 | |
|         os.unlink(os.path.join(directory, f))
 | |
| 
 | |
|     return None
 | |
| 
 | |
| input_file = 'Parameter Files/las-manipulation-survey-2.xlsx'
 | |
| params_file=pd.read_excel(input_file, sheet_name="PARAMS")
 | |
| 
 | |
| for i in range(0, len(params_file)): #0, len(params_file)
 | |
|     print("Starting to process %s" % params_file['Beach'][i])
 | |
|     beach=params_file['Beach'][i]
 | |
|     survey_date=params_file['SURVEY DATE'][i]
 | |
|     original_las=params_file['INPUT LAS'][i]
 | |
|     classified_las_dir=params_file['LAS CLASSIFIED FOLDER'][i]
 | |
|     shp_swash_dir=params_file['SHP SWASH FOLDER'][i]
 | |
|     crop_heatmap_poly=params_file['HEATMAP CROP POLY'][i]
 | |
|     output_las_dir=params_file['LAS OUTPUT FOLDER'][i]
 | |
|     zone_MGA=params_file['ZONE MGA'][i]
 | |
|     output_poly_dir=params_file['SHP RASTER FOLDER'][i]
 | |
|     output_tif_dir=params_file['TIF OUTPUT FOLDER'][i]
 | |
|     cp_csv=params_file['INPUT CSV'][i]
 | |
|     profile_limit_file=params_file['PROFILE LIMIT FILE'][i]
 | |
|     csv_output_dir=params_file['CSV OUTPUT FOLDER'][i]
 | |
|     graph_loc = params_file['PNG OUTPUT FOLDER'][i]
 | |
|     volume_output=params_file['CSV VOLUMES FOLDER'][i]
 | |
|     tmp_dir=params_file['TMP FOLDER'][i]
 | |
| 
 | |
|     # Get base name of input las
 | |
|     las_basename = os.path.splitext(os.path.basename(original_las))[0]
 | |
| 
 | |
|     # Get name of input point cloud
 | |
|     input_las = os.path.join(classified_las_dir, las_basename + '.las')
 | |
| 
 | |
|     # Get name of swash cropping polygon
 | |
|     crop_swash_poly = os.path.join(shp_swash_dir, las_basename + '.shp')
 | |
| 
 | |
|     # Crop point cloud to swash boundary
 | |
|     las_data = call_lastools('lasclip', input=input_las, output='-stdout',
 | |
|                              args=['-poly', crop_swash_poly], verbose=False)
 | |
|     # crop_las(input_las5, crop_swash_poly, final_las, path_2_lastools)
 | |
| 
 | |
|     # Apply sea-side clipping polygon
 | |
|     las_data = call_lastools('lasclip', input=las_data, output='-stdout',
 | |
|                              args=['-poly', crop_heatmap_poly], verbose=False)
 | |
|     # crop_las(final_las, heatmap_crop_poly, heatmap_las, path_2_lastools)
 | |
| 
 | |
|     # Create clipping polygon for heatmap raster
 | |
|     shp_name = os.path.join(output_poly_dir, las_basename + '.shp')
 | |
|     call_lastools('lasboundary', input=las_data, output=shp_name, verbose=False)
 | |
|     # las_boundary(heatmap_las, output_poly_name, output_poly_dir, path_2_lastools, zone_MGA)
 | |
| 
 | |
|     #make a raster
 | |
|     # make_raster(heatmap_las, output_raster, path_2_lastools, keep_only_ground=True)
 | |
|     tif_name = os.path.join(output_tif_dir, las_basename + '.tif')
 | |
|     call_lastools('blast2dem', input=las_data, output=tif_name,
 | |
|                   args=['-step', 0.2], verbose=False)
 | |
| 
 | |
|     #extract the points and get volumes
 | |
|     df = extract_pts(
 | |
|         las_data,
 | |
|         cp_csv,
 | |
|         survey_date,
 | |
|         beach,
 | |
|         args=['-parse', 'sxyz', '-keep_class', '2'],
 | |
|         verbose=False)
 | |
|     update_survey_output(df, csv_output_dir)
 | |
| 
 | |
| 
 | |
| 
 | |
|     #colourise the point cloud
 | |
| 
 | |
| 
 | |
|     #delete the temp files from the tmp_dir and the interim_dir
 | |
|     remove_temp_files(tmp_dir)
 | |
|     #remove_temp_files(int_dir)
 | |
| 
 | |
| csv_names = [f for f in os.listdir(csv_output_dir) if f.endswith('.csv')]
 | |
| ch_limits = pd.read_excel(profile_limit_file, index_col='Profile')
 | |
| 
 | |
| for csv_name in csv_names:
 | |
|     profile_name = os.path.splitext(csv_name)[0]
 | |
|     profiles = pd.read_csv(os.path.join(csv_output_dir, csv_name))
 | |
| 
 | |
|     # Remove metadata, and extract profile coordinates
 | |
|     profiles = profiles.loc[:, 'Chainage':].set_index('Chainage')
 | |
| 
 | |
|     # Remove landward section of profiles (behind beach)
 | |
|     ch_min = ch_limits.loc[profile_name, 'Landward Limit']
 | |
|     # profiles = profiles.loc[ch_min:]
 | |
| 
 | |
|     profiles.plot(title=profile_name)
 | |
|     plt.show()
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| print("doing the volume analysis")
 | |
| # test=profile_plots_volume(csv_output_dir, profile_limit_file, volume_output, graph_loc)
 |