forked from kilianv/CoastSat_WRL
Supprimer 'read_images.py'
parent
d3f61b57e4
commit
ea672b0689
@ -1,199 +0,0 @@
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
# Extract shorelines from Landsat images
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
|
||||
|
||||
#==========================================================#
|
||||
# Initial settings
|
||||
#==========================================================#
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import ee
|
||||
import pdb
|
||||
|
||||
# other modules
|
||||
from osgeo import gdal, ogr, osr
|
||||
import pickle
|
||||
import matplotlib.cm as cm
|
||||
from pylab import ginput
|
||||
from shapely.geometry import LineString
|
||||
|
||||
# image processing modules
|
||||
import skimage.filters as filters
|
||||
import skimage.exposure as exposure
|
||||
import skimage.transform as transform
|
||||
import sklearn.decomposition as decomposition
|
||||
import skimage.measure as measure
|
||||
import skimage.morphology as morphology
|
||||
|
||||
# machine learning modules
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.preprocessing import StandardScaler, Normalizer
|
||||
from sklearn.externals import joblib
|
||||
|
||||
# import own modules
|
||||
import functions.utils as utils
|
||||
import functions.sds as sds
|
||||
|
||||
# some other settings
|
||||
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
||||
plt.rcParams['axes.grid'] = True
|
||||
plt.rcParams['figure.max_open_warning'] = 100
|
||||
ee.Initialize()
|
||||
|
||||
#==========================================================#
|
||||
# Parameters
|
||||
#==========================================================#
|
||||
|
||||
sitename = 'NARRA'
|
||||
|
||||
cloud_thresh = 0.7 # threshold for cloud cover
|
||||
plot_bool = False # if you want the plots
|
||||
output_epsg = 28356 # GDA94 / MGA Zone 56
|
||||
buffer_size = 7 # radius (in pixels) of disk for buffer (pixel classification)
|
||||
min_beach_size = 20 # number of pixels in a beach (pixel classification)
|
||||
dist_ref = 100 # maximum distance from reference point
|
||||
min_length_wl = 200 # minimum length of shoreline LineString to be kept
|
||||
|
||||
output = dict([])
|
||||
|
||||
#==========================================================#
|
||||
# Metadata
|
||||
#==========================================================#
|
||||
|
||||
filepath = os.path.join(os.getcwd(), 'data', sitename)
|
||||
with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'rb') as f:
|
||||
metadata = pickle.load(f)
|
||||
|
||||
#%%
|
||||
#==========================================================#
|
||||
# Read S2 images
|
||||
#==========================================================#
|
||||
|
||||
satname = 'S2'
|
||||
dates = metadata[satname]['dates']
|
||||
input_epsg = metadata[satname]['epsg']
|
||||
|
||||
# path to images
|
||||
filepath10 = os.path.join(os.getcwd(), 'data', sitename, satname, '10m')
|
||||
filenames10 = os.listdir(filepath10)
|
||||
filepath20 = os.path.join(os.getcwd(), 'data', sitename, satname, '20m')
|
||||
filenames20 = os.listdir(filepath20)
|
||||
filepath60 = os.path.join(os.getcwd(), 'data', sitename, satname, '60m')
|
||||
filenames60 = os.listdir(filepath60)
|
||||
if (not len(filenames10) == len(filenames20)) or (not len(filenames20) == len(filenames60)):
|
||||
raise 'error: not the same amount of files for 10, 20 and 60 m'
|
||||
N = len(filenames10)
|
||||
|
||||
# initialise variables
|
||||
cloud_cover_ts = []
|
||||
acc_georef_ts = []
|
||||
date_acquired_ts = []
|
||||
filename_ts = []
|
||||
satname_ts = []
|
||||
timestamp = []
|
||||
shorelines = []
|
||||
idx_skipped = []
|
||||
|
||||
spacing = '=========================================================='
|
||||
msg = ' %s\n %s\n %s' % (spacing, satname, spacing)
|
||||
print(msg)
|
||||
|
||||
for i in range(N):
|
||||
|
||||
# read 10m bands
|
||||
fn = os.path.join(filepath10, filenames10[i])
|
||||
data = gdal.Open(fn, gdal.GA_ReadOnly)
|
||||
georef = np.array(data.GetGeoTransform())
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im10 = np.stack(bands, 2)
|
||||
im10 = im10/10000 # TOA scaled to 10000
|
||||
|
||||
# if image is only zeros, skip it
|
||||
if sum(sum(sum(im10))) < 1:
|
||||
print('skip ' + str(i) + ' - no data')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
nrows = im10.shape[0]
|
||||
ncols = im10.shape[1]
|
||||
|
||||
# read 20m band (SWIR1)
|
||||
fn = os.path.join(filepath20, filenames20[i])
|
||||
data = gdal.Open(fn, gdal.GA_ReadOnly)
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im20 = np.stack(bands, 2)
|
||||
im20 = im20[:,:,0]
|
||||
im20 = im20/10000 # TOA scaled to 10000
|
||||
im_swir = transform.resize(im20, (nrows, ncols), order=1, preserve_range=True, mode='constant')
|
||||
im_swir = np.expand_dims(im_swir, axis=2)
|
||||
|
||||
# append down-sampled swir band to the 10m bands
|
||||
im_ms = np.append(im10, im_swir, axis=2)
|
||||
|
||||
# read 60m band (QA)
|
||||
fn = os.path.join(filepath60, filenames60[i])
|
||||
data = gdal.Open(fn, gdal.GA_ReadOnly)
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im60 = np.stack(bands, 2)
|
||||
im_qa = im60[:,:,0]
|
||||
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
|
||||
cloud_mask = transform.resize(cloud_mask,(nrows, ncols), order=0, preserve_range=True, mode='constant')
|
||||
# check if -inf or nan values on any band and add to cloud mask
|
||||
for k in range(im_ms.shape[2]):
|
||||
im_inf = np.isin(im_ms[:,:,k], -np.inf)
|
||||
im_nan = np.isnan(im_ms[:,:,k])
|
||||
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
||||
|
||||
# calculate cloud cover and if above threshold, skip it
|
||||
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
||||
if cloud_cover > cloud_thresh:
|
||||
print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
# rescale image intensity for display purposes
|
||||
im_display = sds.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False)
|
||||
|
||||
# plot rgb image
|
||||
plt.figure()
|
||||
plt.subplot(121)
|
||||
plt.axis('off')
|
||||
plt.imshow(im_display)
|
||||
|
||||
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
|
||||
im_classif, im_labels = sds.classify_image_NN_nopan(im_ms, cloud_mask, min_beach_size, plot_bool)
|
||||
|
||||
plt.subplot(122)
|
||||
plt.axis('off')
|
||||
im = np.copy(im_display)
|
||||
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
|
||||
for k in range(0,im_labels.shape[2]):
|
||||
im[im_labels[:,:,k],0] = colours[k,0]
|
||||
im[im_labels[:,:,k],1] = colours[k,1]
|
||||
im[im_labels[:,:,k],2] = colours[k,2]
|
||||
plt.imshow(im)
|
||||
# store the data
|
||||
cloud_cover_ts.append(cloud_cover)
|
||||
acc_georef_ts.append(metadata[satname]['acc_georef'][i])
|
||||
filename_ts.append(filenames10[i])
|
||||
satname_ts.append(satname)
|
||||
date_acquired_ts.append(filenames10[i][:10])
|
||||
timestamp.append(metadata[satname]['dates'][i])
|
||||
|
||||
# store in output structure
|
||||
output[satname] = {'dates':timestamp, 'idx_skipped':idx_skipped,
|
||||
'metadata':{'filenames':filename_ts, 'satname':satname_ts, 'cloud_cover':cloud_cover_ts,
|
||||
'acc_georef':acc_georef_ts}}
|
||||
|
||||
# save output
|
||||
#with open(os.path.join(filepath, sitename + '_output' + satname + '.pkl'), 'wb') as f:
|
||||
# pickle.dump(output, f)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue