diff --git a/read_images.py b/read_images.py deleted file mode 100644 index 261b452..0000000 --- a/read_images.py +++ /dev/null @@ -1,199 +0,0 @@ -#==========================================================# -#==========================================================# -# Extract shorelines from Landsat images -#==========================================================# -#==========================================================# - - -#==========================================================# -# Initial settings -#==========================================================# - -import os -import numpy as np -import matplotlib.pyplot as plt -import ee -import pdb - -# other modules -from osgeo import gdal, ogr, osr -import pickle -import matplotlib.cm as cm -from pylab import ginput -from shapely.geometry import LineString - -# image processing modules -import skimage.filters as filters -import skimage.exposure as exposure -import skimage.transform as transform -import sklearn.decomposition as decomposition -import skimage.measure as measure -import skimage.morphology as morphology - -# machine learning modules -from sklearn.model_selection import train_test_split -from sklearn.neural_network import MLPClassifier -from sklearn.preprocessing import StandardScaler, Normalizer -from sklearn.externals import joblib - -# import own modules -import functions.utils as utils -import functions.sds as sds - -# some other settings -np.seterr(all='ignore') # raise/ignore divisions by 0 and nans -plt.rcParams['axes.grid'] = True -plt.rcParams['figure.max_open_warning'] = 100 -ee.Initialize() - -#==========================================================# -# Parameters -#==========================================================# - -sitename = 'NARRA' - -cloud_thresh = 0.7 # threshold for cloud cover -plot_bool = False # if you want the plots -output_epsg = 28356 # GDA94 / MGA Zone 56 -buffer_size = 7 # radius (in pixels) of disk for buffer (pixel classification) -min_beach_size = 20 # number of pixels in a beach (pixel classification) -dist_ref = 100 # maximum distance from reference point -min_length_wl = 200 # minimum length of shoreline LineString to be kept - -output = dict([]) - -#==========================================================# -# Metadata -#==========================================================# - -filepath = os.path.join(os.getcwd(), 'data', sitename) -with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'rb') as f: - metadata = pickle.load(f) - -#%% -#==========================================================# -# Read S2 images -#==========================================================# - -satname = 'S2' -dates = metadata[satname]['dates'] -input_epsg = metadata[satname]['epsg'] - -# path to images -filepath10 = os.path.join(os.getcwd(), 'data', sitename, satname, '10m') -filenames10 = os.listdir(filepath10) -filepath20 = os.path.join(os.getcwd(), 'data', sitename, satname, '20m') -filenames20 = os.listdir(filepath20) -filepath60 = os.path.join(os.getcwd(), 'data', sitename, satname, '60m') -filenames60 = os.listdir(filepath60) -if (not len(filenames10) == len(filenames20)) or (not len(filenames20) == len(filenames60)): - raise 'error: not the same amount of files for 10, 20 and 60 m' -N = len(filenames10) - -# initialise variables -cloud_cover_ts = [] -acc_georef_ts = [] -date_acquired_ts = [] -filename_ts = [] -satname_ts = [] -timestamp = [] -shorelines = [] -idx_skipped = [] - -spacing = '==========================================================' -msg = ' %s\n %s\n %s' % (spacing, satname, spacing) -print(msg) - -for i in range(N): - - # read 10m bands - fn = os.path.join(filepath10, filenames10[i]) - data = gdal.Open(fn, gdal.GA_ReadOnly) - georef = np.array(data.GetGeoTransform()) - bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)] - im10 = np.stack(bands, 2) - im10 = im10/10000 # TOA scaled to 10000 - - # if image is only zeros, skip it - if sum(sum(sum(im10))) < 1: - print('skip ' + str(i) + ' - no data') - idx_skipped.append(i) - continue - - nrows = im10.shape[0] - ncols = im10.shape[1] - - # read 20m band (SWIR1) - fn = os.path.join(filepath20, filenames20[i]) - data = gdal.Open(fn, gdal.GA_ReadOnly) - bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)] - im20 = np.stack(bands, 2) - im20 = im20[:,:,0] - im20 = im20/10000 # TOA scaled to 10000 - im_swir = transform.resize(im20, (nrows, ncols), order=1, preserve_range=True, mode='constant') - im_swir = np.expand_dims(im_swir, axis=2) - - # append down-sampled swir band to the 10m bands - im_ms = np.append(im10, im_swir, axis=2) - - # read 60m band (QA) - fn = os.path.join(filepath60, filenames60[i]) - data = gdal.Open(fn, gdal.GA_ReadOnly) - bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)] - im60 = np.stack(bands, 2) - im_qa = im60[:,:,0] - cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool) - cloud_mask = transform.resize(cloud_mask,(nrows, ncols), order=0, preserve_range=True, mode='constant') - # check if -inf or nan values on any band and add to cloud mask - for k in range(im_ms.shape[2]): - im_inf = np.isin(im_ms[:,:,k], -np.inf) - im_nan = np.isnan(im_ms[:,:,k]) - cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan) - - # calculate cloud cover and if above threshold, skip it - cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1]) - if cloud_cover > cloud_thresh: - print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)') - idx_skipped.append(i) - continue - - # rescale image intensity for display purposes - im_display = sds.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False) - - # plot rgb image - plt.figure() - plt.subplot(121) - plt.axis('off') - plt.imshow(im_display) - - # classify image in 4 classes (sand, whitewater, water, other) with NN classifier - im_classif, im_labels = sds.classify_image_NN_nopan(im_ms, cloud_mask, min_beach_size, plot_bool) - - plt.subplot(122) - plt.axis('off') - im = np.copy(im_display) - colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]]) - for k in range(0,im_labels.shape[2]): - im[im_labels[:,:,k],0] = colours[k,0] - im[im_labels[:,:,k],1] = colours[k,1] - im[im_labels[:,:,k],2] = colours[k,2] - plt.imshow(im) - # store the data - cloud_cover_ts.append(cloud_cover) - acc_georef_ts.append(metadata[satname]['acc_georef'][i]) - filename_ts.append(filenames10[i]) - satname_ts.append(satname) - date_acquired_ts.append(filenames10[i][:10]) - timestamp.append(metadata[satname]['dates'][i]) - -# store in output structure -output[satname] = {'dates':timestamp, 'idx_skipped':idx_skipped, - 'metadata':{'filenames':filename_ts, 'satname':satname_ts, 'cloud_cover':cloud_cover_ts, - 'acc_georef':acc_georef_ts}} - -# save output -#with open(os.path.join(filepath, sitename + '_output' + satname + '.pkl'), 'wb') as f: -# pickle.dump(output, f) - - - \ No newline at end of file