forked from kilianv/CoastSat_WRL
Supprimer 'sds_extract.py'
parent
d075943d72
commit
d3f61b57e4
@ -1,111 +0,0 @@
|
|||||||
# -*- coding: utf-8 -*-
|
|
||||||
|
|
||||||
#==========================================================#
|
|
||||||
# Extract shorelines from Landsat images
|
|
||||||
#==========================================================#
|
|
||||||
|
|
||||||
# Initial settings
|
|
||||||
import ee
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import matplotlib.cm as cm
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from datetime import datetime
|
|
||||||
import pickle
|
|
||||||
import pdb
|
|
||||||
import pytz
|
|
||||||
|
|
||||||
|
|
||||||
# image processing modules
|
|
||||||
import skimage.filters as filters
|
|
||||||
import skimage.exposure as exposure
|
|
||||||
import skimage.transform as transform
|
|
||||||
import sklearn.decomposition as decomposition
|
|
||||||
import skimage.morphology as morphology
|
|
||||||
import skimage.measure as measure
|
|
||||||
|
|
||||||
# my modules
|
|
||||||
import functions.utils as utils
|
|
||||||
import functions.sds as sds
|
|
||||||
|
|
||||||
# some settings
|
|
||||||
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
|
||||||
plt.rcParams['axes.grid'] = False
|
|
||||||
plt.rcParams['figure.max_open_warning'] = 100
|
|
||||||
ee.Initialize()
|
|
||||||
|
|
||||||
# parameters
|
|
||||||
cloud_thresh = 0.5 # threshold for cloud cover
|
|
||||||
plot_bool = True # if you want the plots
|
|
||||||
min_contour_points = 100# minimum number of points contained in each water line
|
|
||||||
output_epsg = 28356 # GDA94 / MGA Zone 56
|
|
||||||
buffer_size = 10 # radius of disk for buffer (sand classif parameter)
|
|
||||||
min_beach_size = 50 # number of pixels in a beach (sand classif parameter)
|
|
||||||
|
|
||||||
# select collection
|
|
||||||
satname = 'L8'
|
|
||||||
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA') # Landsat 8 Tier 1 TOA
|
|
||||||
|
|
||||||
# location (Narrabeen-Collaroy beach)
|
|
||||||
polygon = [[[151.3473129272461,-33.69035274454718],
|
|
||||||
[151.2820816040039,-33.68206818063878],
|
|
||||||
[151.27281188964844,-33.74775138989556],
|
|
||||||
[151.3425064086914,-33.75231878701767],
|
|
||||||
[151.3473129272461,-33.69035274454718]]];
|
|
||||||
|
|
||||||
# dates
|
|
||||||
start_date = '2013-01-01'
|
|
||||||
end_date = '2018-12-31'
|
|
||||||
|
|
||||||
# filter by location and date
|
|
||||||
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(start_date, end_date)
|
|
||||||
|
|
||||||
n_img = flt_col.size().getInfo()
|
|
||||||
print('Number of images covering the polygon:', n_img)
|
|
||||||
im_all = flt_col.getInfo().get('features')
|
|
||||||
|
|
||||||
i = 0 # first image
|
|
||||||
|
|
||||||
# find image in ee database
|
|
||||||
im = ee.Image(im_all[i].get('id'))
|
|
||||||
|
|
||||||
# load image as np.array
|
|
||||||
im_pan, im_ms, cloud_mask, crs, meta = sds.read_eeimage(im, polygon, satname, plot_bool)
|
|
||||||
|
|
||||||
# mask -inf or nan values on the image and add to cloud_mask
|
|
||||||
im_inf = np.isin(im_ms[:,:,0], -np.inf)
|
|
||||||
im_nan = np.isnan(im_ms[:,:,0])
|
|
||||||
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
|
||||||
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
|
||||||
print('Cloud cover : ' + str(int(round(100*cloud_cover))) + ' %')
|
|
||||||
|
|
||||||
# pansharpen rgb image
|
|
||||||
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
|
|
||||||
|
|
||||||
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
|
|
||||||
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
|
|
||||||
|
|
||||||
# calculate NDWI
|
|
||||||
im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, plot_bool)
|
|
||||||
|
|
||||||
# edge detection
|
|
||||||
wl_pix = sds.find_wl_contours(im_ndwi, cloud_mask, min_contour_points, plot_bool)
|
|
||||||
|
|
||||||
plt.figure()
|
|
||||||
plt.imshow(im_ms_ps[:,:,[2,1,0]])
|
|
||||||
for i,contour in enumerate(wl_pix): plt.plot(contour[:, 1], contour[:, 0], linewidth=2)
|
|
||||||
plt.axis('image')
|
|
||||||
plt.title('Detected water lines')
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
# convert from pixels to world coordinates
|
|
||||||
wl_coords = sds.convert_pix2world(wl_pix, crs['crs_15m'])
|
|
||||||
|
|
||||||
# convert to output epsg spatial reference
|
|
||||||
wl = sds.convert_epsg(wl_coords, crs['epsg_code'], output_epsg)
|
|
||||||
|
|
||||||
# classify sand pixels with Kmeans
|
|
||||||
#im_sand = sds.classify_sand_unsupervised(im_ms_ps, im_pan, cloud_mask, wl_pix, buffer_size, min_beach_size, plot_bool)
|
|
||||||
|
|
||||||
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
|
|
||||||
im_classif = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, plot_bool)
|
|
Loading…
Reference in New Issue