|  |  |  | @ -162,12 +162,22 @@ for i in range(N): | 
		
	
		
			
				|  |  |  |  |      | 
		
	
		
			
				|  |  |  |  |     # plot rgb image | 
		
	
		
			
				|  |  |  |  |     plt.figure() | 
		
	
		
			
				|  |  |  |  |     plt.subplot(121) | 
		
	
		
			
				|  |  |  |  |     plt.axis('off') | 
		
	
		
			
				|  |  |  |  |     plt.imshow(im_display) | 
		
	
		
			
				|  |  |  |  |      | 
		
	
		
			
				|  |  |  |  |     # classify image in 4 classes (sand, whitewater, water, other) with NN classifier | 
		
	
		
			
				|  |  |  |  |     im_classif, im_labels = sds.classify_image_NN_nopan(im_ms, cloud_mask, min_beach_size, plot_bool) | 
		
	
		
			
				|  |  |  |  |          | 
		
	
		
			
				|  |  |  |  |      | 
		
	
		
			
				|  |  |  |  |     plt.subplot(122) | 
		
	
		
			
				|  |  |  |  |     plt.axis('off') | 
		
	
		
			
				|  |  |  |  |     im = np.copy(im_display) | 
		
	
		
			
				|  |  |  |  |     colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]]) | 
		
	
		
			
				|  |  |  |  |     for k in range(0,im_labels.shape[2]): | 
		
	
		
			
				|  |  |  |  |         im[im_labels[:,:,k],0] = colours[k,0] | 
		
	
		
			
				|  |  |  |  |         im[im_labels[:,:,k],1] = colours[k,1] | 
		
	
		
			
				|  |  |  |  |         im[im_labels[:,:,k],2] = colours[k,2] | 
		
	
		
			
				|  |  |  |  |     plt.imshow(im) | 
		
	
		
			
				|  |  |  |  |     # store the data | 
		
	
		
			
				|  |  |  |  |     cloud_cover_ts.append(cloud_cover) | 
		
	
		
			
				|  |  |  |  |     acc_georef_ts.append(metadata[satname]['acc_georef'][i]) | 
		
	
	
		
			
				
					|  |  |  | 
 |