new shoreline extraction method

development
kvos 7 years ago
parent 220e5557f7
commit b99c2acaf3

1
.gitignore vendored

@ -4,3 +4,4 @@
*.png
*.mp4
*.gif
*.jpg

Binary file not shown.

@ -48,11 +48,11 @@ def download_tif(image, polygon, bandsId, filepath):
# select collection
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
# Location (Narrabeen all)
polygon = [[[151.3473129272461,-33.69035274454718],
[151.2820816040039,-33.68206818063878],
[151.27281188964844,-33.74775138989556],
[151.3425064086914,-33.75231878701767],
[151.3473129272461,-33.69035274454718]]];
#polygon = [[[151.3473129272461,-33.69035274454718],
# [151.2820816040039,-33.68206818063878],
# [151.27281188964844,-33.74775138989556],
# [151.3425064086914,-33.75231878701767],
# [151.3473129272461,-33.69035274454718]]];
# location (Narrabeen-Collaroy beach)
#polygon = [[[151.301454, -33.700754],
# [151.311453, -33.702075],
@ -71,10 +71,28 @@ polygon = [[[151.3473129272461,-33.69035274454718],
# [152.678229, -31.892082],
# [152.670366, -31.886360],
# [152.676283, -31.866784]]];
# Location (Sand Engine)
#polygon = [[[4.171742, 52.070455],
# [4.223708, 52.069576],
# [4.220808, 52.025293],
# [4.147749, 52.028861],
# [4.171742, 52.070455]]];
# Location (Tairua)
#polygon = [[[175.852115, -36.985414],
# [175.872797, -36.985145],
# [175.873738, -37.000039],
# [175.853956, -36.998749],
# [175.852115, -36.985414]]];
# Location (Duck)
polygon = [[[-75.766220, 36.195928],
[-75.748282, 36.196401],
[-75.738851, 36.173974],
[-75.763546, 36.174249],
[-75.766220, 36.195928]]];
# dates
start_date = '2013-01-01'
end_date = '2018-03-25'
end_date = '2019-01-01'
# filter by location
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(start_date, end_date)
@ -83,9 +101,13 @@ print('Number of images covering the area:', n_img)
im_all = flt_col.getInfo().get('features')
satname = 'L8'
sitename = 'NARRA_all'
#sitename = 'NARRA_all'
#sitename = 'NARRA'
#sitename = 'OLDBAR'
#sitename = 'SANDMOTOR'
#sitename = 'TAIRUA'
sitename = 'DUCK'
suffix = '.tif'
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
filepath_pan = os.path.join(filepath, 'pan')
@ -106,7 +128,11 @@ for i in range(n_img):
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
timestamps.append(im_timestamp)
im_epsg = int(im_dic['bands'][0]['crs'][5:])
try:
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
except:
acc_georef.append(10)
print('No geometric rmse model property')
# delete dimensions key from dictionnary, otherwise the entire image is extracted
for j in range(len(im_bands)): del im_bands[j]['dimensions']

@ -42,12 +42,12 @@ plt.rcParams['figure.max_open_warning'] = 100
ee.Initialize()
# parameters
cloud_thresh = 0.5 # threshold for cloud cover
cloud_thresh = 0.3 # threshold for cloud cover
plot_bool = False # if you want the plots
min_contour_points = 100# minimum number of points contained in each water line
output_epsg = 28356 # GDA94 / MGA Zone 56
buffer_size = 10 # radius (in pixels) of disk for buffer (pixel classification)
min_beach_size = 50 # number of pixels in a beach (pixel classification)
min_beach_size = 30 # number of pixels in a beach (pixel classification)
# load metadata (timestamps and epsg code) for the collection
satname = 'L8'
@ -86,8 +86,7 @@ t = []
shorelines = []
#%%
for i in range(1):
i = 0
for i in [20]:#range(N):
# read pan image
fn_pan = os.path.join(file_path_pan, file_names_pan[i])
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
@ -96,6 +95,7 @@ for i in range(1):
im_pan = np.stack(bands, 2)[:,:,0]
nrows = im_pan.shape[0]
ncols = im_pan.shape[1]
# read ms image
fn_ms = os.path.join(file_path_ms, file_names_ms[i])
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
@ -125,7 +125,7 @@ for i in range(1):
continue
idx_nocloud.append(i)
# check if image for that date is already present
# check if image for that date already exists and choose the best in terms of cloud cover and georeferencing
if file_names_pan[i][len(satname)+1+len(sitename)+1:len(satname)+1+len(sitename)+1+10] in date_acquired_ts:
# find the index of the image that is repeated
@ -156,12 +156,19 @@ for i in range(1):
# pansharpen rgb image
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
# rescale pansharpened RGB for visualisation
im_display = sds.rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 100, False)
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, True)
im_classif, im_labels = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, True)
t.append(timestamps_sorted[i])
cloud_cover_ts.append(cloud_cover)
acc_georef_ts.append(acc_georef_sorted[i])
date_acquired_ts.append(file_names_pan[i][9:19])
# labels
im_sand = im_classif == 1
im_swash = im_classif == 2
@ -170,66 +177,112 @@ for i in range(1):
vec_water = im_water.reshape(ncols*nrows)
vec_swash = im_swash.reshape(ncols*nrows)
t.append(timestamps_sorted[i])
cloud_cover_ts.append(cloud_cover)
acc_georef_ts.append(acc_georef_sorted[i])
date_acquired_ts.append(file_names_pan[i][9:19])
# calculate indices
# calculate indices and stack into a vector
im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, plot_bool)
im_ndmwi = sds.nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, plot_bool)
im_nir = im_ms_ps[:,:,3]
im_swir = im_ms_ps[:,:,4]
im_ind = np.stack((im_ndwi, im_ndmwi), axis=-1)
vec_ind = im_ind.reshape(nrows*ncols,2)
# keep only beach
# remove noise and only keep the sand belonging to large beaches
morphology.remove_small_objects(im_sand, min_size=50, connectivity=2, in_place=True)
# buffer around beach
# create a buffer around beach
buffer_size = 7
se = morphology.disk(buffer_size)
im_buffer = morphology.binary_dilation(im_sand, se)
vec_buffer = im_buffer.reshape(nrows*ncols)
# display buffer
im = np.copy(im_display)
im[~im_buffer,0] = 0
im[~im_buffer,1] = 0
im[~im_buffer,2] = 0
im[~im_buffer,0] = 1
im[~im_buffer,1] = 1
im[~im_buffer,2] = 1
im2 = np.copy(im_ndmwi)
im2[~im_buffer] = np.nan
plt.figure()
ax1 = plt.subplot(121)
plt.imshow(im)
plt.axis('off')
plt.title('RGB')
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
plt.imshow(im2, cmap='seismic')
plt.colorbar()
plt.axis('off')
plt.title('Water Index')
plt.tight_layout()
plt.draw()
# select water/sand/swash pixels that are within the buffer
int_water = vec_ind[np.logical_and(vec_buffer,vec_water),:]
int_sand = vec_ind[np.logical_and(vec_buffer,vec_sand),:]
int_swash = vec_ind[np.logical_and(vec_buffer,vec_swash),:]
# append sand and water
int_all = np.append(int_water,int_sand, axis=0)
t_ndwi = filters.threshold_otsu(int_all[:,0])
t_ndmwi = filters.threshold_otsu(int_all[:,1])
fig, ax = plt.subplots(2,1, sharex=True)
ax[0].hist(int_water[:,0], bins=100, label='water')
vals = ax[0].hist(int_water[:,0], bins=100, label='water')
ax[0].hist(int_sand[:,0], bins=100, alpha=0.5, label='sand')
ax[0].hist(int_swash[:,0], bins=100, alpha=0.5, label='swash')
ax[0].plot([t_ndwi, t_ndwi], [0, np.max(vals[0])], 'r-')
ax[0].legend()
ax[0].set_title('Water Index NIR-G')
ax[1].hist(int_water[:,1], bins=100, label='water')
vals = ax[1].hist(int_water[:,1], bins=100, label='water')
ax[1].hist(int_sand[:,1], bins=100, alpha=0.5, label='sand')
ax[1].hist(int_swash[:,1], bins=100, alpha=0.5, label='swash')
ax[1].plot([t_ndmwi, t_ndmwi], [0, np.max(vals[0])], 'r-')
ax[1].legend()
ax[1].set_title('Modified Water Index SWIR-G')
plt.draw()
int_all = np.append(int_water,int_sand, axis=0)
t1 = filters.threshold_otsu(int_all[:,0])
t2 = filters.threshold_otsu(int_all[:,1])
im_ndwi_buffer = np.copy(im_ndwi)
im_ndwi_buffer[~im_buffer] = np.nan
contours1 = measure.find_contours(im_ndwi_buffer, t_ndwi)
im_ndmwi_buffer = np.copy(im_ndmwi)
im_ndmwi_buffer[~im_buffer] = np.nan
contours1 = measure.find_contours(im_ndwi, t1)
contours2 = measure.find_contours(im_ndmwi, t1)
contours2 = measure.find_contours(im_ndmwi_buffer, t_ndmwi)
plt.figure()
ax1 = plt.subplot(1,3,1)
im = np.copy(im_display)
# define colours for plot
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
im[im_labels[:,:,k],1] = colours[k,1]
im[im_labels[:,:,k],2] = colours[k,2]
plt.imshow(im)
for i,contour in enumerate(contours2): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
plt.tight_layout()
plt.grid(False)
plt.draw()
plt.subplot(1,3,2, sharex=ax1, sharey=ax1)
plt.imshow(im_display)
for i,contour in enumerate(contours1): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='c')
for i,contour in enumerate(contours2): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='m')
for i,contour in enumerate(contours2): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
plt.tight_layout()
plt.grid(False)
plt.draw()
plt.subplot(1,3,3, sharex=ax1, sharey=ax1)
plt.imshow(im_ndmwi, cmap='seismic')
plt.colorbar()
for i,contour in enumerate(contours2): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
plt.tight_layout()
plt.grid(False)
plt.draw()
# plot of all the indices
plt.figure()
ax1 = plt.subplot(1,5,1)
plt.imshow(im_display)
@ -262,111 +315,8 @@ for i in range(1):
plt.axis('off')
plt.title('SWIR')
fig, (ax1,ax2,ax3,ax4) = plt.subplots(4,2, figsize = (8,6))
ax1[0].set_title('Probability density function')
ax1[1].set_title('Cumulative distribution')
im = im_ndwi
t1 = filters.threshold_otsu(im)
vals = ax1[0].hist(im.reshape(nrows*ncols), bins=300)
ax1[0].plot([t1, t1],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
vals = ax1[1].hist(im.reshape(nrows*ncols), bins=300, cumulative=True, histtype='step')
ax1[1].plot([t1, t1],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
ax1[0].set_ylabel('NDWI')
im = im_ndmwi
t1 = filters.threshold_otsu(im)
vals = ax2[0].hist(im.reshape(nrows*ncols), bins=300)
ax2[0].plot([t1, t1],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
vals = ax2[1].hist(im.reshape(nrows*ncols), bins=300, cumulative=True, histtype='step')
ax2[1].plot([t1, t1],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
ax2[0].set_ylabel('NDMWI')
im = im_nir
t1 = filters.threshold_otsu(im)
vals = ax3[0].hist(im.reshape(nrows*ncols), bins=300)
ax3[0].plot([t1, t1],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
vals = ax3[1].hist(im.reshape(nrows*ncols), bins=300, cumulative=True, histtype='step')
ax3[1].plot([t1, t1],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
ax3[0].set_ylabel('NIR')
im = im_swir
t1 = filters.threshold_otsu(im)
vals = ax4[0].hist(im.reshape(nrows*ncols), bins=300)
ax4[0].plot([t1, t1],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
vals = ax4[1].hist(im.reshape(nrows*ncols), bins=300, cumulative=True, histtype='step')
ax4[1].plot([t1, t1],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
ax4[0].set_ylabel('SWIR')
plt.draw()
#%%
# calculate NDWI
im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, plot_bool)
# detect edges
wl_pix = sds.find_wl_contours(im_ndwi, cloud_mask, min_contour_points, True)
# convert from pixels to world coordinates
wl_coords = sds.convert_pix2world(wl_pix, georef)
# convert to output epsg spatial reference
wl = sds.convert_epsg(wl_coords, input_epsg, output_epsg)
# classify sand pixels
im_sand = sds.classify_sand_unsupervised(im_ms_ps, im_pan, cloud_mask, wl_pix, False, min_beach_size, plot_bool)
# plot a figure to select the correct water line and discard cloudy images
plt.figure()
cmap = cm.get_cmap('jet')
plt.subplot(121)
plt.imshow(im_ms_ps[:,:,[2,1,0]])
for j,contour in enumerate(wl_pix):
colours = cmap(np.linspace(0, 1, num=len(wl_pix)))
plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color=colours[j,:])
plt.axis('image')
plt.title(file_names_pan[i])
plt.subplot(122)
centroids = []
for j,contour in enumerate(wl):
colours = cmap(np.linspace(0, 1, num=len(wl)))
centroids.append([np.mean(contour[:, 0]),np.mean(contour[:, 1])])
plt.plot(contour[:, 0], contour[:, 1], linewidth=2, color=colours[j,:])
plt.plot(np.mean(contour[:, 0]), np.mean(contour[:, 1]), 'o', color=colours[j,:])
plt.plot(refpoints[:,0], refpoints[:,1], 'k.')
plt.axis('equal')
plt.title(file_names_pan[i])
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
plt.tight_layout()
plt.draw()
# click on the left image to discard, otherwise on the closest centroid in the right image
pt_in = np.array(ginput(n=1, timeout=1000))
if pt_in[0][0] < 10000:
print('skip ' + str(i) + ' - manual')
idx_skipped.append(i)
continue
# get contour that was selected (click closest to centroid)
dist_centroid = [np.linalg.norm(_ - pt_in) for _ in centroids]
shorelines.append(wl[np.argmin(dist_centroid)])
# plot all shorelines
plt.figure()
plt.axis('equal')
for j in range(len(shorelines)):
plt.plot(shorelines[j][:,0], shorelines[j][:,1])
plt.draw()
output = {'t':t, 'shorelines':shorelines, 'cloud_cover':cloud_cover_ts, 'acc_georef':acc_georef_ts}
#with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'wb') as f:
# pickle.dump(output, f)
#
#with open(os.path.join(filepath, sitename + '_skipped' + '.pkl'), 'wb') as f:
# pickle.dump(idx_skipped, f)
#
#with open(os.path.join(filepath, sitename + '_idxnocloud' + '.pkl'), 'wb') as f:
# pickle.dump(idx_nocloud, f)

@ -10,6 +10,8 @@ Created on Thu Mar 1 11:20:35 2018
# Initial settings
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from matplotlib import gridspec
import pdb
import ee
@ -409,11 +411,11 @@ def pansharpen(im_ms, im_pan, cloud_mask, plot_bool):
if plot_bool:
plt.figure()
ax1 = plt.subplot(121)
plt.imshow(rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 100, False))
plt.imshow(rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False))
plt.axis('off')
plt.title('Original')
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
plt.imshow(rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 100, False))
plt.imshow(rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False))
plt.axis('off')
plt.title('Pansharpened')
plt.show()
@ -460,7 +462,8 @@ def nd_index(im1, im2, cloud_mask, plot_bool):
def find_wl_contours(im_ndwi, cloud_mask, min_contour_points, plot_bool):
"""
Computes normalised difference index on 2 images (2D), given a cloud mask (2D)
Finds the water line by thresholding the Normalized Difference Water Index and applying the Marching
Squares Algorithm
KV WRL 2018
@ -676,7 +679,7 @@ def classify_sand_unsupervised(im_ms_ps, im_pan, cloud_mask, wl_pix, buffer_size
# im_sand = morphology.binary_dilation(im_sand, morphology.disk(1))
if plot_bool:
im = np.copy(rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 100, False))
im = np.copy(rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False))
im[im_sand,0] = 0
im[im_sand,1] = 0
im[im_sand,2] = 1
@ -688,7 +691,7 @@ def classify_sand_unsupervised(im_ms_ps, im_pan, cloud_mask, wl_pix, buffer_size
return im_sand
def classify_image_NN(im_ms_ps, im_pan, cloud_mask, plot_bool):
def classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, plot_bool):
"""
Classifies every pixel in the image in one of 4 classes:
- sand --> label = 1
@ -714,8 +717,10 @@ def classify_image_NN(im_ms_ps, im_pan, cloud_mask, plot_bool):
True if plot is wanted
Returns: -----------
im_labels: np.ndarray
2D binary image containing True where sand pixels are located
im_classif: np.ndarray
2D image containing labels
im_labels: np.ndarray of booleans
3D image containing a boolean image for each class (im_classif == label)
"""
@ -746,16 +751,16 @@ def classify_image_NN(im_ms_ps, im_pan, cloud_mask, plot_bool):
# labels
im_sand = im_classif == 1
im_sand = morphology.remove_small_objects(im_sand, min_size=20, connectivity=2)
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
im_swash = im_classif == 2
im_water = im_classif == 3
im_labels = np.stack((im_sand,im_swash,im_water), axis=-1)
if plot_bool:
im_display = rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 100, False)
# display on top of pansharpened RGB
im_display = rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
im = np.copy(im_display)
# define colours for plot
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
@ -777,3 +782,112 @@ def classify_image_NN(im_ms_ps, im_pan, cloud_mask, plot_bool):
plt.draw()
return im_classif, im_labels
def find_wl_contours2(im_ms_ps, im_labels, cloud_mask, buffer_size, plot_bool):
"""
New mthod for extracting shorelines (more robust)
KV WRL 2018
Arguments:
-----------
im_ms_ps: np.ndarray
Pansharpened RGB + downsampled NIR and SWIR
im_labels: np.ndarray
3D image containing a boolean image for each class in the order (sand, swash, water)
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
buffer_size: int
size of the buffer around the sandy beach
plot_bool: boolean
True if plot is wanted
Returns: -----------
contours_wi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted with the Water Index
contours_mwi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted with the Modified Water Index
"""
nrows = cloud_mask.shape[0]
ncols = cloud_mask.shape[1]
im_display = rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
# calculate Normalized Difference Modified Water Index (SWIR - G)
im_mwi = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, False)
# calculate Normalized Difference Modified Water Index (NIR - G)
im_wi = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, False)
# stack indices together
im_ind = np.stack((im_wi, im_mwi), axis=-1)
vec_ind = im_ind.reshape(nrows*ncols,2)
# process labels
vec_sand = im_labels[:,:,0].reshape(ncols*nrows)
vec_swash = im_labels[:,:,1].reshape(ncols*nrows)
vec_water = im_labels[:,:,2].reshape(ncols*nrows)
# create a buffer around the sandy beach
se = morphology.disk(buffer_size)
im_buffer = morphology.binary_dilation(im_labels[:,:,0], se)
vec_buffer = im_buffer.reshape(nrows*ncols)
# select water/sand/swash pixels that are within the buffer
int_water = vec_ind[np.logical_and(vec_buffer,vec_water),:]
int_sand = vec_ind[np.logical_and(vec_buffer,vec_sand),:]
int_swash = vec_ind[np.logical_and(vec_buffer,vec_swash),:]
# threshold the sand/water intensities
int_all = np.append(int_water,int_sand, axis=0)
t_mwi = filters.threshold_otsu(int_all[:,0])
t_wi = filters.threshold_otsu(int_all[:,1])
# find contour with MS algorithm
im_wi_buffer = np.copy(im_wi)
im_wi_buffer[~im_buffer] = np.nan
im_mwi_buffer = np.copy(im_mwi)
im_mwi_buffer[~im_buffer] = np.nan
contours_wi = measure.find_contours(im_wi_buffer, t_wi)
contours_mwi = measure.find_contours(im_mwi_buffer, t_mwi)
if plot_bool:
im = np.copy(im_display)
# define colours for plot
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
im[im_labels[:,:,k],1] = colours[k,1]
im[im_labels[:,:,k],2] = colours[k,2]
fig = plt.figure()
gs = gridspec.GridSpec(2, 2, width_ratios=[3, 1])
ax1 = fig.add_subplot(gs[0,0])
vals = plt.hist(int_water[:,0], bins=100, label='water')
plt.hist(int_sand[:,0], bins=100, alpha=0.5, label='sand')
plt.hist(int_swash[:,0], bins=100, alpha=0.5, label='swash')
plt.plot([t_wi, t_wi], [0, np.max(vals[0])], 'r-')
plt.legend()
plt.title('Water Index NIR-G')
ax2 = fig.add_subplot(gs[1,0], sharex=ax1)
vals = plt.hist(int_water[:,1], bins=100, label='water')
plt.hist(int_sand[:,1], bins=100, alpha=0.5, label='sand')
plt.hist(int_swash[:,1], bins=100, alpha=0.5, label='swash')
plt.plot([t_mwi, t_mwi], [0, np.max(vals[0])], 'r-')
plt.legend()
plt.title('Modified Water Index SWIR-G')
ax3 = fig.add_subplot(gs[:,1])
plt.imshow(im)
# for i,contour in enumerate(contours_wi): plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color='r')
for i,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
plt.gcf().set_size_inches(17.99,7.55)
plt.gcf().set_tight_layout(True)
plt.draw()
return contours_wi, contours_mwi

@ -0,0 +1,883 @@
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 1 11:20:35 2018
@author: z5030440
"""
"""This script contains the functions needed for satellite derived shoreline (SDS) extraction"""
# Initial settings
import numpy as np
import matplotlib.pyplot as plt
import pdb
import ee
# other modules
from osgeo import gdal, ogr, osr
import tempfile
from urllib.request import urlretrieve
import zipfile
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
import skimage.morphology as morphology
# machine learning modules
from sklearn.cluster import KMeans
from sklearn.neural_network import MLPClassifier
from sklearn.externals import joblib
# import own modules
from functions.utils import *
# Download from ee server function
def download_tif(image, polygon, bandsId):
"""downloads tif image (region and bands) from the ee server and stores it in a temp file"""
url = ee.data.makeDownloadUrl(ee.data.getDownloadId({
'image': image.serialize(),
'region': polygon,
'bands': bandsId,
'filePerBand': 'false',
'name': 'data',
}))
local_zip, headers = urlretrieve(url)
with zipfile.ZipFile(local_zip) as local_zipfile:
return local_zipfile.extract('data.tif', tempfile.mkdtemp())
def load_image(image, polygon, bandsId):
"""
Loads an ee.Image() as a np.array. e.Image() is retrieved from the EE database.
The geographic area and bands to select can be specified
KV WRL 2018
Arguments:
-----------
image: ee.Image()
image objec from the EE database
polygon: list
coordinates of the points creating a polygon. Each point is a list with 2 values
bandsId: list
bands to select, each band is a dictionnary in the list containing the following keys:
crs, crs_transform, data_type and id. NOTE: you have to remove the key dimensions, otherwise
the entire image is retrieved.
Returns:
-----------
image_array : np.ndarray
An array containing the image (2D if one band, otherwise 3D)
georef : np.ndarray
6 element vector containing the crs_parameters
[X_ul_corner Xscale Xshear Y_ul_corner Yshear Yscale]
"""
local_tif_filename = download_tif(image, polygon, bandsId)
dataset = gdal.Open(local_tif_filename, gdal.GA_ReadOnly)
georef = np.array(dataset.GetGeoTransform())
bands = [dataset.GetRasterBand(i + 1).ReadAsArray() for i in range(dataset.RasterCount)]
return np.stack(bands, 2), georef
def create_cloud_mask(im_qa, satname, plot_bool):
"""
Creates a cloud mask from the image containing the QA band information
KV WRL 2018
Arguments:
-----------
im_qa: np.ndarray
Image containing the QA band
satname: string
short name for the satellite (L8, L7, S2)
plot_bool: boolean
True if plot is wanted
Returns:
-----------
cloud_mask : np.ndarray of booleans
A boolean array with True where the cloud are present
"""
# convert QA bits
if satname == 'L8':
cloud_values = [2800, 2804, 2808, 2812, 6896, 6900, 6904, 6908]
elif satname == 'L7':
cloud_values = [752, 756, 760, 764]
cloud_mask = np.isin(im_qa, cloud_values)
# remove isolated cloud pixels (there are some in the swash and they cause problems)
if sum(sum(cloud_mask)) > 0:
morphology.remove_small_objects(cloud_mask, min_size=10, connectivity=1, in_place=True)
if plot_bool:
plt.figure()
plt.imshow(cloud_mask, cmap='gray')
plt.draw()
#cloud_shadow_values = [2976, 2980, 2984, 2988, 3008, 3012, 3016, 3020]
#cloud_shadow_mask = np.isin(im_qa, cloud_shadow_values)
return cloud_mask
def read_eeimage(im, polygon, sat_name, plot_bool):
"""
Read an ee.Image() object and returns the panchromatic band, multispectral bands (B, G, R, NIR, SWIR)
and a cloud mask. All outputs are at 15m resolution (bilinear interpolation for the multispectral bands)
KV WRL 2018
Arguments:
-----------
im: ee.Image()
Image to read from the Google Earth Engine database
plot_bool: boolean
True if plot is wanted
Returns:
-----------
im_pan: np.ndarray (2D)
The panchromatic band (15m)
im_ms: np.ndarray (3D)
The multispectral bands interpolated at 15m
im_cloud: np.ndarray (2D)
The cloud mask at 15m
crs_params: list
EPSG code and affine transformation parameters
"""
im_dic = im.getInfo()
# save metadata
im_meta = im_dic.get('properties')
meta = {'timestamp':im_meta['system:time_start'],
'date_acquired':im_meta['DATE_ACQUIRED'],
'geom_rmse_model':im_meta['GEOMETRIC_RMSE_MODEL'],
'gcp_model':im_meta['GROUND_CONTROL_POINTS_MODEL'],
'quality':im_meta['IMAGE_QUALITY_OLI'],
'sun_azimuth':im_meta['SUN_AZIMUTH'],
'sun_elevation':im_meta['SUN_ELEVATION']}
im_bands = im_dic.get('bands')
# delete dimensions key from dictionnary, otherwise the entire image is extracted
for i in range(len(im_bands)): del im_bands[i]['dimensions']
# load panchromatic band
pan_band = [im_bands[7]]
im_pan, crs_pan = load_image(im, polygon, pan_band)
im_pan = im_pan[:,:,0]
# load the multispectral bands (B2,B3,B4,B5,B6) = (blue,green,red,nir,swir1)
ms_bands = [im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[5]]
im_ms_30m, crs_ms = load_image(im, polygon, ms_bands)
# create cloud mask
qa_band = [im_bands[11]]
im_qa, crs_qa = load_image(im, polygon, qa_band)
im_qa = im_qa[:,:,0]
im_cloud = create_cloud_mask(im_qa, sat_name, plot_bool)
im_cloud = transform.resize(im_cloud, (im_pan.shape[0], im_pan.shape[1]),
order=0, preserve_range=True, mode='constant').astype('bool_')
# resize the image using bilinear interpolation (order 1)
im_ms = transform.resize(im_ms_30m,(im_pan.shape[0], im_pan.shape[1]),
order=1, preserve_range=True, mode='constant')
# check if -inf values (means out of image) and add to cloud mask
im_inf = np.isin(im_ms[:,:,0], -np.inf)
im_nan = np.isnan(im_ms[:,:,0])
im_cloud = np.logical_or(np.logical_or(im_cloud, im_inf), im_nan)
# get the crs parameters for the image at 15m and 30m resolution
crs = {'crs_15m':crs_pan, 'crs_30m':crs_ms, 'epsg_code':int(pan_band[0]['crs'][5:])}
if plot_bool:
# if there are -inf in the image, set them to 0 before plotting
if sum(sum(np.isin(im_ms_30m[:,:,0], -np.inf).astype(int))) > 0:
idx = np.isin(im_ms_30m[:,:,0], -np.inf)
im_ms_30m[idx,0] = 0; im_ms_30m[idx,1] = 0; im_ms_30m[idx,2] = 0;
im_ms_30m[idx,3] = 0; im_ms_30m[idx,4] = 0
plt.figure()
plt.subplot(221)
plt.imshow(im_pan, cmap='gray')
plt.title('PANCHROMATIC')
plt.subplot(222)
plt.imshow(im_ms_30m[:,:,[2,1,0]])
plt.title('RGB')
plt.subplot(223)
plt.imshow(im_ms_30m[:,:,3], cmap='gray')
plt.title('NIR')
plt.subplot(224)
plt.imshow(im_ms_30m[:,:,4], cmap='gray')
plt.title('SWIR')
plt.show()
return im_pan, im_ms, im_cloud, crs, meta
def rescale_image_intensity(im, cloud_mask, prob_high, plot_bool):
"""
Rescales the intensity of an image (multispectral or single band) by applying
a cloud mask and clipping the prob_high upper percentile. This functions allows
to stretch the contrast of an image.
KV WRL 2018
Arguments:
-----------
im: np.ndarray
Image to rescale, can be 3D (multispectral) or 2D (single band)
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
prob_high: float
probability of exceedence used to calculate the upper percentile
plot_bool: boolean
True if plot is wanted
Returns:
-----------
im_adj: np.ndarray
The rescaled image
"""
prc_low = 0 # lower percentile
vec_mask = cloud_mask.reshape(im.shape[0] * im.shape[1])
if plot_bool:
plt.figure()
if len(im.shape) > 2:
vec = im.reshape(im.shape[0] * im.shape[1], im.shape[2])
vec_adj = np.ones((len(vec_mask), im.shape[2])) * np.nan
for i in range(im.shape[2]):
prc_high = np.percentile(vec[~vec_mask, i], prob_high)
vec_rescaled = exposure.rescale_intensity(vec[~vec_mask, i], in_range=(prc_low, prc_high))
vec_adj[~vec_mask,i] = vec_rescaled
if plot_bool:
plt.subplot(np.floor(im.shape[2]/2) + 1, np.floor(im.shape[2]/2), i+1)
plt.hist(vec[~vec_mask, i], bins=200, label='original')
plt.hist(vec_rescaled, bins=200, alpha=0.5, label='rescaled')
plt.legend()
plt.title('Band' + str(i+1))
plt.show()
im_adj = vec_adj.reshape(im.shape[0], im.shape[1], im.shape[2])
if plot_bool:
plt.figure()
ax1 = plt.subplot(121)
plt.imshow(im[:,:,[2,1,0]])
plt.axis('off')
plt.title('Original')
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
plt.imshow(im_adj[:,:,[2,1,0]])
plt.axis('off')
plt.title('Rescaled')
plt.show()
else:
vec = im.reshape(im.shape[0] * im.shape[1])
vec_adj = np.ones(len(vec_mask)) * np.nan
prc_high = np.percentile(vec[~vec_mask], prob_high)
vec_rescaled = exposure.rescale_intensity(vec[~vec_mask], in_range=(prc_low, prc_high))
vec_adj[~vec_mask] = vec_rescaled
if plot_bool:
plt.hist(vec[~vec_mask], bins=200, label='original')
plt.hist(vec_rescaled, bins=200, alpha=0.5, label='rescaled')
plt.legend()
plt.title('Single band')
plt.show()
im_adj = vec_adj.reshape(im.shape[0], im.shape[1])
if plot_bool:
plt.figure()
ax1 = plt.subplot(121)
plt.imshow(im, cmap='gray')
plt.axis('off')
plt.title('Original')
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
plt.imshow(im_adj, cmap='gray')
plt.axis('off')
plt.title('Rescaled')
plt.show()
return im_adj
def hist_match(source, template):
"""
Adjust the pixel values of a grayscale image such that its histogram
matches that of a target image
Arguments:
-----------
source: np.ndarray
Image to transform; the histogram is computed over the flattened
array
template: np.ndarray
Template image; can have different dimensions to source
Returns:
-----------
matched: np.ndarray
The transformed output image
"""
oldshape = source.shape
source = source.ravel()
template = template.ravel()
# get the set of unique pixel values and their corresponding indices and
# counts
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
return_counts=True)
t_values, t_counts = np.unique(template, return_counts=True)
# take the cumsum of the counts and normalize by the number of pixels to
# get the empirical cumulative distribution functions for the source and
# template images (maps pixel value --> quantile)
s_quantiles = np.cumsum(s_counts).astype(np.float64)
s_quantiles /= s_quantiles[-1]
t_quantiles = np.cumsum(t_counts).astype(np.float64)
t_quantiles /= t_quantiles[-1]
# interpolate linearly to find the pixel values in the template image
# that correspond most closely to the quantiles in the source image
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
return interp_t_values[bin_idx].reshape(oldshape)
def pansharpen(im_ms, im_pan, cloud_mask, plot_bool):
"""
Pansharpens a multispectral image (3D), using the panchromatic band (2D)
and a cloud mask
KV WRL 2018
Arguments:
-----------
im_ms: np.ndarray
Multispectral image to pansharpen (3D)
im_pan: np.ndarray
Panchromatic band (2D)
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
plot_bool: boolean
True if plot is wanted
Returns:
-----------
im_ms_ps: np.ndarray
Pansharpened multisoectral image (3D)
"""
# reshape image into vector and apply cloud mask
vec = im_ms.reshape(im_ms.shape[0] * im_ms.shape[1], im_ms.shape[2])
vec_mask = cloud_mask.reshape(im_ms.shape[0] * im_ms.shape[1])
vec = vec[~vec_mask, :]
# apply PCA to RGB bands
pca = decomposition.PCA()
vec_pcs = pca.fit_transform(vec)
# replace 1st PC with pan band (after matching histograms)
vec_pan = im_pan.reshape(im_pan.shape[0] * im_pan.shape[1])
vec_pan = vec_pan[~vec_mask]
vec_pcs[:,0] = hist_match(vec_pan, vec_pcs[:,0])
vec_ms_ps = pca.inverse_transform(vec_pcs)
# reshape vector into image
vec_ms_ps_full = np.ones((len(vec_mask), im_ms.shape[2])) * np.nan
vec_ms_ps_full[~vec_mask,:] = vec_ms_ps
im_ms_ps = vec_ms_ps_full.reshape(im_ms.shape[0], im_ms.shape[1], im_ms.shape[2])
if plot_bool:
plt.figure()
ax1 = plt.subplot(121)
plt.imshow(rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False))
plt.axis('off')
plt.title('Original')
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
plt.imshow(rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False))
plt.axis('off')
plt.title('Pansharpened')
plt.show()
return im_ms_ps
def nd_index(im1, im2, cloud_mask, plot_bool):
"""
Computes normalised difference index on 2 images (2D), given a cloud mask (2D)
KV WRL 2018
Arguments:
-----------
im1, im2: np.ndarray
Images (2D) with which to calculate the ND index
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
plot_bool: boolean
True if plot is wanted
Returns: -----------
im_nd: np.ndarray
Image (2D) containing the ND index
"""
vec_mask = cloud_mask.reshape(im1.shape[0] * im1.shape[1])
vec_nd = np.ones(len(vec_mask)) * np.nan
vec1 = im1.reshape(im1.shape[0] * im1.shape[1])
vec2 = im2.reshape(im2.shape[0] * im2.shape[1])
temp = np.divide(vec1[~vec_mask] - vec2[~vec_mask],
vec1[~vec_mask] + vec2[~vec_mask])
vec_nd[~vec_mask] = temp
im_nd = vec_nd.reshape(im1.shape[0], im1.shape[1])
if plot_bool:
plt.figure()
plt.imshow(im_nd, cmap='seismic')
plt.colorbar()
plt.title('Normalised index')
plt.show()
return im_nd
def find_wl_contours(im_ndwi, cloud_mask, min_contour_points, plot_bool):
"""
Finds the water line by thresholding the Normalized Difference Water Index and applying the Marching
Squares Algorithm
KV WRL 2018
Arguments:
-----------
im_ndwi: np.ndarray
Image (2D) with the NDWI (water index)
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
min_contour_points: int
minimum number of points in each contour line
plot_bool: boolean
True if plot is wanted
Returns: -----------
contours_wl: list of np.arrays
contains the (row,column) coordinates of the contour lines
"""
# reshape image to vector
vec_ndwi = im_ndwi.reshape(im_ndwi.shape[0] * im_ndwi.shape[1])
vec_mask = cloud_mask.reshape(cloud_mask.shape[0] * cloud_mask.shape[1])
vec = vec_ndwi[~vec_mask]
# apply otsu's threshold
t_otsu = filters.threshold_otsu(vec)
# use Marching Squares algorithm to detect contours on ndwi image
contours = measure.find_contours(im_ndwi, t_otsu)
# filter water lines
contours_wl = []
for i, contour in enumerate(contours):
# remove contour points that are around clouds (nan values)
if np.any(np.isnan(contour)):
index_nan = np.where(np.isnan(contour))[0]
contour = np.delete(contour, index_nan, axis=0)
# remove contours that have only few points (less than min_contour_points)
if contour.shape[0] > min_contour_points:
contours_wl.append(contour)
if plot_bool:
# plot otsu's histogram segmentation
plt.figure()
vals = plt.hist(vec, bins=200)
plt.plot([t_otsu, t_otsu],[0, np.max(vals[0])], 'r-', label='Otsu threshold')
plt.legend()
plt.show()
# plot the water line contours on top of water index
plt.figure()
plt.imshow(im_ndwi, cmap='seismic')
plt.colorbar()
for i,contour in enumerate(contours_wl): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
plt.axis('image')
plt.title('Detected water lines')
plt.show()
return contours_wl
def convert_pix2world(points, crs_vec):
"""
Converts pixel coordinates (row,columns) to world projected coordinates
performing an affine transformation
KV WRL 2018
Arguments:
-----------
points: np.ndarray or list of np.ndarray
array with 2 columns (rows first and columns second)
crs_vec: np.ndarray
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: -----------
points_converted: np.ndarray or list of np.ndarray
converted coordinates, first columns with X and second column with Y
"""
# make affine transformation matrix
aff_mat = np.array([[crs_vec[1], crs_vec[2], crs_vec[0]],
[crs_vec[4], crs_vec[5], crs_vec[3]],
[0, 0, 1]])
# create affine transformation
tform = transform.AffineTransform(aff_mat)
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
tmp = arr[:,[1,0]]
points_converted.append(tform(tmp))
elif type(points) is np.ndarray:
tmp = points[:,[1,0]]
points_converted = tform(tmp)
else:
print('invalid input type')
raise
return points_converted
def convert_epsg(points, epsg_in, epsg_out):
"""
Converts from one spatial reference to another using the epsg codes
KV WRL 2018
Arguments:
-----------
points: np.ndarray or list of np.ndarray
array with 2 columns (rows first and columns second)
epsg_in: int
epsg code of the spatial reference in which the input is
epsg_out: int
epsg code of the spatial reference in which the output will be
Returns: -----------
points_converted: np.ndarray or list of np.ndarray
converted coordinates
"""
# define input and output spatial references
inSpatialRef = osr.SpatialReference()
inSpatialRef.ImportFromEPSG(epsg_in)
outSpatialRef = osr.SpatialReference()
outSpatialRef.ImportFromEPSG(epsg_out)
# create a coordinates transform
coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
# transform points
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
points_converted.append(np.array(coordTransform.TransformPoints(arr)))
elif type(points) is np.ndarray:
points_converted = np.array(coordTransform.TransformPoints(points))
else:
print('invalid input type')
raise
return points_converted
def classify_sand_unsupervised(im_ms_ps, im_pan, cloud_mask, wl_pix, buffer_size, min_beach_size, plot_bool):
"""
Classifies sand pixels using an unsupervised algorithm (Kmeans)
Set buffer size to False if you want to classify the entire image,
otherwise buffer size defines the buffer around the shoreline in which
pixels are considered for classification.
This classification is not robust and is only used to train a supervised algorithm
KV WRL 2018
Arguments:
-----------
im_ms_ps: np.ndarray
Pansharpened RGB + downsampled NIR and SWIR
im_pan:
Panchromatic band
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
wl_pix: list of np.ndarray
list of arrays containig the pixel coordinates of the water line
buffer_size: int or False
radius of the disk used to create a buffer around the water line
when False, the entire image is considered for kmeans
min_beach_size: int
minimum number of connected pixels belonging to a single beach
plot_bool: boolean
True if plot is wanted
Returns: -----------
im_sand: np.ndarray
2D binary image containing True where sand pixels are located
"""
# reshape the 2D images into vectors
vec_ms_ps = im_ms_ps.reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1], im_ms_ps.shape[2])
vec_pan = im_pan.reshape(im_pan.shape[0]*im_pan.shape[1])
vec_mask = cloud_mask.reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1])
# add B,G,R,NIR and pan bands to the vector of features
vec_features = np.zeros((vec_ms_ps.shape[0], 5))
vec_features[:,[0,1,2,3]] = vec_ms_ps[:,[0,1,2,3]]
vec_features[:,4] = vec_pan
if buffer_size:
# create binary image with ones where the detected water lines is
im_buffer = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1]))
for i, contour in enumerate(wl_pix):
indices = [(int(_[0]), int(_[1])) for _ in list(np.round(contour))]
for j, idx in enumerate(indices):
im_buffer[idx] = 1
# perform a dilation on the binary image
se = morphology.disk(buffer_size)
im_buffer = morphology.binary_dilation(im_buffer, se)
vec_buffer = (im_buffer == 1).reshape(im_ms_ps.shape[0] * im_ms_ps.shape[1])
else:
vec_buffer = np.ones((vec_pan.shape[0]))
# add cloud mask to buffer
vec_buffer= np.logical_and(vec_buffer, ~vec_mask)
# perform kmeans (6 clusters)
kmeans = KMeans(n_clusters=6, random_state=0).fit(vec_features[vec_buffer,:])
labels = np.ones((len(vec_mask))) * np.nan
labels[vec_buffer] = kmeans.labels_
im_labels = labels.reshape(im_ms_ps.shape[0], im_ms_ps.shape[1])
# find the class with maximum reflection in the B,G,R,Pan
im_sand = im_labels == np.argmax(np.mean(kmeans.cluster_centers_[:,[0,1,2,4]], axis=1))
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
im_sand = morphology.binary_erosion(im_sand, morphology.disk(1))
# im_sand = morphology.binary_dilation(im_sand, morphology.disk(1))
if plot_bool:
im = np.copy(rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False))
im[im_sand,0] = 0
im[im_sand,1] = 0
im[im_sand,2] = 1
plt.figure()
plt.imshow(im)
plt.axis('image')
plt.title('Sand classification')
plt.show()
return im_sand
def classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, plot_bool):
"""
Classifies every pixel in the image in one of 4 classes:
- sand --> label = 1
- whitewater (breaking waves and swash) --> label = 2
- water --> label = 3
- other (vegetation, buildings, rocks...) --> label = 0
The classifier is a Neural Network, trained with 7000 pixels for the class SAND and 1500 pixels for
each of the other classes. This is because the class of interest for my application is SAND and I
wanted to minimize the classification error for that class
KV WRL 2018
Arguments:
-----------
im_ms_ps: np.ndarray
Pansharpened RGB + downsampled NIR and SWIR
im_pan:
Panchromatic band
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
plot_bool: boolean
True if plot is wanted
Returns: -----------
im_classif: np.ndarray
2D image containing labels
im_labels: np.ndarray of booleans
3D image containing a boolean image for each class (im_classif == label)
"""
# load classifier
clf = joblib.load('functions/NeuralNet_classif.pkl')
# calculate features
n_features = 10
im_features = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1], n_features))
im_features[:,:,[0,1,2,3,4]] = im_ms_ps
im_features[:,:,5] = im_pan
im_features[:,:,6] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, False) # (NIR-G)
im_features[:,:,7] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,2], cloud_mask, False) # ND(NIR-R)
im_features[:,:,8] = nd_index(im_ms_ps[:,:,0], im_ms_ps[:,:,2], cloud_mask, False) # ND(B-R)
im_features[:,:,9] = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, False) # ND(SWIR-G)
# remove NaNs and clouds
vec_features = im_features.reshape((im_ms_ps.shape[0] * im_ms_ps.shape[1], n_features))
vec_cloud = cloud_mask.reshape(cloud_mask.shape[0]*cloud_mask.shape[1])
vec_nan = np.any(np.isnan(vec_features), axis=1)
vec_mask = np.logical_or(vec_cloud, vec_nan)
vec_features = vec_features[~vec_mask, :]
# predict with NN classifier
labels = clf.predict(vec_features)
# recompose image
vec_classif = np.zeros((cloud_mask.shape[0]*cloud_mask.shape[1]))
vec_classif[~vec_mask] = labels
im_classif = vec_classif.reshape((im_ms_ps.shape[0], im_ms_ps.shape[1]))
# labels
im_sand = im_classif == 1
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
im_swash = im_classif == 2
im_water = im_classif == 3
im_labels = np.stack((im_sand,im_swash,im_water), axis=-1)
if plot_bool:
# display on top of pansharpened RGB
im_display = rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
im = np.copy(im_display)
# define colours for plot
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
im[im_labels[:,:,k],1] = colours[k,1]
im[im_labels[:,:,k],2] = colours[k,2]
plt.figure()
ax1 = plt.subplot(121)
plt.imshow(im_display)
plt.axis('off')
plt.title('Image')
ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
plt.imshow(im)
plt.axis('off')
plt.title('NN classifier')
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
plt.tight_layout()
plt.draw()
return im_classif, im_labels
def find_wl_contours2(im_ms_ps, im_labels, cloud_mask, buffer_size, plot_bool):
"""
New mthod for extracting shorelines (more robust)
KV WRL 2018
Arguments:
-----------
im_ms_ps: np.ndarray
Pansharpened RGB + downsampled NIR and SWIR
im_labels: np.ndarray
3D image containing a boolean image for each class in the order (sand, swash, water)
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
buffer_size: int
size of the buffer around the sandy beach
plot_bool: boolean
True if plot is wanted
Returns: -----------
contours_wi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted with the Water Index
contours_mwi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted with the Modified Water Index
"""
nrows = cloud_mask.shape[0]
ncols = cloud_mask.shape[1]
im_display = rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
# calculate Normalized Difference Modified Water Index (SWIR - G)
im_mwi = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, False)
# calculate Normalized Difference Modified Water Index (NIR - G)
im_wi = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, False)
# stack indices together
im_ind = np.stack((im_wi, im_mwi), axis=-1)
vec_ind = im_ind.reshape(nrows*ncols,2)
# process labels
vec_sand = im_labels[:,:,0].reshape(ncols*nrows)
vec_swash = im_labels[:,:,1].reshape(ncols*nrows)
vec_water = im_labels[:,:,2].reshape(ncols*nrows)
# create a buffer around the sandy beach
se = morphology.disk(buffer_size)
im_buffer = morphology.binary_dilation(im_labels[:,:,0], se)
vec_buffer = im_buffer.reshape(nrows*ncols)
# select water/sand/swash pixels that are within the buffer
int_water = vec_ind[np.logical_and(vec_buffer,vec_water),:]
int_sand = vec_ind[np.logical_and(vec_buffer,vec_sand),:]
int_swash = vec_ind[np.logical_and(vec_buffer,vec_swash),:]
# threshold the sand/water intensities
int_all = np.append(int_water,int_sand, axis=0)
t_mwi = filters.threshold_otsu(int_all[:,0])
t_wi = filters.threshold_otsu(int_all[:,1])
# find contour with MS algorithm
im_wi_buffer = np.copy(im_wi)
im_wi_buffer[~im_buffer] = np.nan
im_mwi_buffer = np.copy(im_mwi)
im_mwi_buffer[~im_buffer] = np.nan
contours_wi = measure.find_contours(im_wi_buffer, t_wi)
contours_mwi = measure.find_contours(im_mwi_buffer, t_mwi)
if plot_bool:
im = np.copy(im_display)
# define colours for plot
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
im[im_labels[:,:,k],1] = colours[k,1]
im[im_labels[:,:,k],2] = colours[k,2]
plt.figure()
plt.imshow(im)
for i,contour in enumerate(contours_wi): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='k')
for i,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=3, color='g')
plt.draw()
fig, ax = plt.subplots(2,1, sharex=True)
vals = ax[0].hist(int_water[:,0], bins=100, label='water')
ax[0].hist(int_sand[:,0], bins=100, alpha=0.5, label='sand')
ax[0].hist(int_swash[:,0], bins=100, alpha=0.5, label='swash')
ax[0].plot([t_wi, t_wi], [0, np.max(vals[0])], 'r-')
ax[0].legend()
ax[0].set_title('Water Index NIR-G')
vals = ax[1].hist(int_water[:,1], bins=100, label='water')
ax[1].hist(int_sand[:,1], bins=100, alpha=0.5, label='sand')
ax[1].hist(int_swash[:,1], bins=100, alpha=0.5, label='swash')
ax[1].plot([t_mwi, t_mwi], [0, np.max(vals[0])], 'r-')
ax[1].legend()
ax[1].set_title('Modified Water Index SWIR-G')
plt.draw()
return contours_wi, contours_mwi

@ -0,0 +1,213 @@
# -*- coding: utf-8 -*-
#==========================================================#
# Run Neural Network on image to extract sandy pixels
#==========================================================#
# Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from matplotlib import gridspec
from datetime import datetime, timedelta
import pytz
import ee
import pdb
import time
import pandas as pd
# other modules
from osgeo import gdal, ogr, osr
import pickle
import matplotlib.cm as cm
from pylab import ginput
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
import skimage.morphology as morphology
from scipy import ndimage
import imageio
# machine learning modules
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler, Normalizer
from sklearn.externals import joblib
# import own modules
import functions.utils as utils
import functions.sds as sds
# some settings
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
plt.rcParams['axes.grid'] = True
plt.rcParams['figure.max_open_warning'] = 100
ee.Initialize()
# parameters
cloud_thresh = 0.3 # threshold for cloud cover
plot_bool = False # if you want the plots
prob_high = 100 # upper probability to clip and rescale pixel intensity
min_contour_points = 100# minimum number of points contained in each water line
output_epsg = 28356 # GDA94 / MGA Zone 56
buffer_size = 10 # radius (in pixels) of disk for buffer (pixel classification)
min_beach_size = 20 # number of pixels in a beach (pixel classification)
# load metadata (timestamps and epsg code) for the collection
satname = 'L8'
#sitename = 'NARRA_all'
#sitename = 'NARRA'
#sitename = 'OLDBAR'
#sitename = 'OLDBAR_inlet'
#sitename = 'SANDMOTOR'
sitename = 'TAIRUA'
#sitename = 'DUCK'
# Load metadata
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
with open(os.path.join(filepath, sitename + '_timestamps' + '.pkl'), 'rb') as f:
timestamps = pickle.load(f)
timestamps_sorted = sorted(timestamps)
daysall = (datetime(2019,1,1,tzinfo=pytz.utc) - datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds()
# path to images
file_path_pan = os.path.join(os.getcwd(), 'data', satname, sitename, 'pan')
file_path_ms = os.path.join(os.getcwd(), 'data', satname, sitename, 'ms')
file_names_pan = os.listdir(file_path_pan)
file_names_ms = os.listdir(file_path_ms)
N = len(file_names_pan)
# initialise some variables
idx_skipped = []
idx_nocloud = []
n_features = 10
train_pos = np.nan*np.ones((1,n_features))
train_neg = np.nan*np.ones((1,n_features))
columns = ('B','G','R','NIR','SWIR','Pan','WI','VI','BR', 'mWI', 'class')
#%%
for i in range(N):
# read pan image
fn_pan = os.path.join(file_path_pan, file_names_pan[i])
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
im_pan = np.stack(bands, 2)[:,:,0]
nrow = im_pan.shape[0]
ncol = im_pan.shape[1]
# read ms image
fn_ms = os.path.join(file_path_ms, file_names_ms[i])
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
im_ms = np.stack(bands, 2)
# cloud mask
im_qa = im_ms[:,:,5]
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
cloud_mask = transform.resize(cloud_mask, (im_pan.shape[0], im_pan.shape[1]),
order=0, preserve_range=True,
mode='constant').astype('bool_')
# resize the image using bilinear interpolation (order 1)
im_ms = transform.resize(im_ms,(im_pan.shape[0], im_pan.shape[1]),
order=1, preserve_range=True, mode='constant')
# check if -inf or nan values and add to cloud mask
im_inf = np.isin(im_ms[:,:,0], -np.inf)
im_nan = np.isnan(im_ms[:,:,0])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# skip if cloud cover is more than the threshold
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
if cloud_cover > cloud_thresh:
print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)')
idx_skipped.append(i)
continue
idx_nocloud.append(i)
# pansharpen rgb image
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
im_classif, im_labels = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, plot_bool)
im_display = sds.rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 100, False)
im = np.copy(im_display)
# define colours for plot
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
for k in range(0,im_labels.shape[2]):
im[im_labels[:,:,k],0] = colours[k,0]
im[im_labels[:,:,k],1] = colours[k,1]
im[im_labels[:,:,k],2] = colours[k,2]
# fig = plt.figure()
# plt.suptitle(date_im, fontsize=17, fontweight='bold')
# ax1 = plt.subplot(121)
# plt.imshow(im_display)
# plt.axis('off')
# ax2 = plt.subplot(122, sharex=ax1, sharey=ax1)
# plt.imshow(im)
# plt.axis('off')
# plt.gcf().set_size_inches(17.99,7.55)
# plt.tight_layout()
# orange_patch = mpatches.Patch(color=[1,128/255,0/255], label='sand')
# white_patch = mpatches.Patch(color=[204/255,1,1], label='swash/whitewater')
# blue_patch = mpatches.Patch(color=[0,0,204/255], label='water')
# plt.legend(handles=[orange_patch,white_patch,blue_patch], bbox_to_anchor=(0.95, 0.2))
# plt.draw()
date_im = timestamps_sorted[i].strftime('%d %b %Y')
daysnow = (timestamps_sorted[i] - datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds()
fig = plt.figure()
gs = gridspec.GridSpec(2, 2, height_ratios=[1, 20])
ax1 = fig.add_subplot(gs[0,:])
plt.plot(0,0,'ko',daysall,0,'ko')
plt.plot([0,daysall],[0,0],'k-')
plt.plot(daysnow,0,'ro')
plt.text(0,0.05,'2013')
plt.text(daysall,0.05,'2019')
plt.plot((datetime(2014,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0,'ko',markersize=3)
plt.plot((datetime(2015,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0,'ko',markersize=3)
plt.plot((datetime(2016,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0,'ko',markersize=3)
plt.plot((datetime(2017,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0,'ko',markersize=3)
plt.plot((datetime(2018,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0,'ko',markersize=3)
plt.text((datetime(2014,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0.05,'2014')
plt.text((datetime(2015,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0.05,'2015')
plt.text((datetime(2016,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0.05,'2016')
plt.text((datetime(2017,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0.05,'2017')
plt.text((datetime(2018,1,1,tzinfo=pytz.utc)- datetime(2013,1,1,tzinfo=pytz.utc)).total_seconds(),0.05,'2018')
plt.axis('off')
ax2 = fig.add_subplot(gs[1,0])
plt.imshow(im_display)
plt.axis('off')
plt.title(date_im, fontsize=17, fontweight='bold')
ax3 = fig.add_subplot(gs[1,1])
plt.imshow(im)
plt.axis('off')
orange_patch = mpatches.Patch(color=[1,128/255,0/255], label='sand')
white_patch = mpatches.Patch(color=[204/255,1,1], label='swash/whitewater')
blue_patch = mpatches.Patch(color=[0,0,204/255], label='water')
plt.legend(handles=[orange_patch,white_patch,blue_patch], bbox_to_anchor=(0.95, 0.2))
plt.gcf().set_size_inches(17.99,7.55)
plt.gcf().set_tight_layout(True)
plt.draw()
plt.savefig(os.path.join(filepath,'plots_classif', file_names_pan[i][len(satname)+1+len(sitename)+1:len(satname)+1+len(sitename)+1+10] + '.jpg'), dpi = 300)
plt.close()
# create gif
images = []
filenames = os.listdir(os.path.join(filepath, 'plots_classif'))
with imageio.get_writer(sitename + '.gif', mode='I', duration=0.4) as writer:
for filename in filenames:
image = imageio.imread(os.path.join(filepath,'plots_classif',filename))
writer.append_data(image)

@ -0,0 +1,183 @@
# -*- coding: utf-8 -*-
#==========================================================#
# Extract shorelines from Landsat images
#==========================================================#
# Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
import ee
import pdb
# other modules
from osgeo import gdal, ogr, osr
import pickle
import matplotlib.cm as cm
from pylab import ginput
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
import skimage.morphology as morphology
# machine learning modules
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler, Normalizer
from sklearn.externals import joblib
# import own modules
import functions.utils as utils
import functions.sds as sds
# some settings
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
plt.rcParams['axes.grid'] = True
plt.rcParams['figure.max_open_warning'] = 100
ee.Initialize()
# parameters
cloud_thresh = 0.3 # threshold for cloud cover
plot_bool = False # if you want the plots
min_contour_points = 100# minimum number of points contained in each water line
output_epsg = 28356 # GDA94 / MGA Zone 56
buffer_size = 7 # radius (in pixels) of disk for buffer (pixel classification)
min_beach_size = 50 # number of pixels in a beach (pixel classification)
# load metadata (timestamps and epsg code) for the collection
satname = 'L8'
sitename = 'NARRA'
#sitename = 'OLDBAR'
# Load metadata
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
with open(os.path.join(filepath, sitename + '_timestamps' + '.pkl'), 'rb') as f:
timestamps = pickle.load(f)
with open(os.path.join(filepath, sitename + '_accuracy_georef' + '.pkl'), 'rb') as f:
acc_georef = pickle.load(f)
with open(os.path.join(filepath, sitename + '_epsgcode' + '.pkl'), 'rb') as f:
input_epsg = pickle.load(f)
with open(os.path.join(filepath, sitename + '_refpoints' + '.pkl'), 'rb') as f:
refpoints = pickle.load(f)
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
timestamps_sorted = sorted(timestamps)
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
# path to images
file_path_pan = os.path.join(os.getcwd(), 'data', satname, sitename, 'pan')
file_path_ms = os.path.join(os.getcwd(), 'data', satname, sitename, 'ms')
file_names_pan = os.listdir(file_path_pan)
file_names_ms = os.listdir(file_path_ms)
N = len(file_names_pan)
# initialise some variables
cloud_cover_ts = []
date_acquired_ts = []
acc_georef_ts = []
idx_skipped = []
idx_nocloud = []
t = []
shorelines = []
idx_keep = []
#%%
for i in range(N):
# read pan image
fn_pan = os.path.join(file_path_pan, file_names_pan[i])
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
im_pan = np.stack(bands, 2)[:,:,0]
nrows = im_pan.shape[0]
ncols = im_pan.shape[1]
# read ms image
fn_ms = os.path.join(file_path_ms, file_names_ms[i])
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
im_ms = np.stack(bands, 2)
# cloud mask
im_qa = im_ms[:,:,5]
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
cloud_mask = transform.resize(cloud_mask, (im_pan.shape[0], im_pan.shape[1]),
order=0, preserve_range=True,
mode='constant').astype('bool_')
# resize the image using bilinear interpolation (order 1)
im_ms = transform.resize(im_ms,(im_pan.shape[0], im_pan.shape[1]),
order=1, preserve_range=True, mode='constant')
# check if -inf or nan values and add to cloud mask
im_inf = np.isin(im_ms[:,:,0], -np.inf)
im_nan = np.isnan(im_ms[:,:,0])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# calculate cloud cover and skip image if too high
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
if cloud_cover > cloud_thresh:
print('skip ' + str(i) + ' - cloudy (' + str(cloud_cover) + ')')
idx_skipped.append(i)
continue
idx_nocloud.append(i)
# check if image for that date already exists and choose the best in terms of cloud cover and georeferencing
if file_names_pan[i][len(satname)+1+len(sitename)+1:len(satname)+1+len(sitename)+1+10] in date_acquired_ts:
# find the index of the image that is repeated
idx_samedate = utils.find_indices(date_acquired_ts, lambda e : e == file_names_pan[i][9:19])
idx_samedate = idx_samedate[0]
print('cloud cover ' + str(cloud_cover) + ' - ' + str(cloud_cover_ts[idx_samedate]))
print('acc georef ' + str(acc_georef_sorted[i]) + ' - ' + str(acc_georef_ts[idx_samedate]))
# keep image with less cloud cover or best georeferencing accuracy
if cloud_cover < cloud_cover_ts[idx_samedate] - 0.01:
skip = False
elif acc_georef_sorted[i] < acc_georef_ts[idx_samedate]:
skip = False
else:
skip = True
if skip:
print('skip ' + str(i) + ' - repeated')
idx_skipped.append(i)
continue
else:
# del shorelines[idx_samedate]
del t[idx_samedate]
del cloud_cover_ts[idx_samedate]
del date_acquired_ts[idx_samedate]
del acc_georef_ts[idx_samedate]
print('keep ' + str(i) + ' - deleted ' + str(idx_samedate))
# pansharpen rgb image
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
# rescale pansharpened RGB for visualisation
im_display = sds.rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 100, False)
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, plot_bool)
idx_keep.append(i)
if sum(sum(im_labels[:,:,0])) == 0 :
print('skip ' + str(i) + ' - no sand')
idx_skipped.append(i)
continue
# extract shorelines (new method)
contours_wi, contours_mwi = sds.find_wl_contours2(im_ms_ps, im_labels, cloud_mask, buffer_size, True)
t.append(timestamps_sorted[i])
cloud_cover_ts.append(cloud_cover)
acc_georef_ts.append(acc_georef_sorted[i])
date_acquired_ts.append(file_names_pan[i][9:19])

@ -54,10 +54,10 @@ min_beach_size = 50 # number of pixels in a beach (pixel classification)
# load metadata (timestamps and epsg code) for the collection
satname = 'L8'
sitename = 'NARRA_all'
#sitename = 'NARRA_all'
#sitename = 'NARRA'
#sitename = 'OLDBAR'
#sitename = 'OLDBAR_inlet'
sitename = 'OLDBAR_inlet'
# Load metadata
@ -120,7 +120,8 @@ for i in range(N):
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
im_classif, im_labels = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, True)
im_classif, im_labels = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, True)
# # calculate NDWI
# im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, plot_bool)
# # detect edges

Loading…
Cancel
Save