forked from kilianv/CoastSat_WRL
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
5.6 KiB
Python
162 lines
5.6 KiB
Python
# -*- coding: utf-8 -*-
|
|
|
|
#==========================================================#
|
|
# Download L8 images of a given area between given dates
|
|
#==========================================================#
|
|
|
|
# Initial settings
|
|
import os
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import pdb
|
|
import ee
|
|
|
|
# other modules
|
|
from osgeo import gdal, ogr, osr
|
|
from urllib.request import urlretrieve
|
|
import zipfile
|
|
from datetime import datetime
|
|
import pytz
|
|
import pickle
|
|
|
|
# image processing modules
|
|
import skimage.filters as filters
|
|
import skimage.exposure as exposure
|
|
import skimage.transform as transform
|
|
import sklearn.decomposition as decomposition
|
|
import skimage.measure as measure
|
|
|
|
# import own modules
|
|
import functions.utils as utils
|
|
|
|
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
|
ee.Initialize()
|
|
|
|
def download_tif(image, polygon, bandsId, filepath):
|
|
"""downloads tif image (region and bands) from the ee server and stores it in a temp file"""
|
|
url = ee.data.makeDownloadUrl(ee.data.getDownloadId({
|
|
'image': image.serialize(),
|
|
'region': polygon,
|
|
'bands': bandsId,
|
|
'filePerBand': 'false',
|
|
'name': 'data',
|
|
}))
|
|
local_zip, headers = urlretrieve(url)
|
|
with zipfile.ZipFile(local_zip) as local_zipfile:
|
|
return local_zipfile.extract('data.tif', filepath)
|
|
|
|
# select collection
|
|
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
|
|
# Location (Narrabeen all)
|
|
#polygon = [[[151.3473129272461,-33.69035274454718],
|
|
# [151.2820816040039,-33.68206818063878],
|
|
# [151.27281188964844,-33.74775138989556],
|
|
# [151.3425064086914,-33.75231878701767],
|
|
# [151.3473129272461,-33.69035274454718]]];
|
|
# location (Narrabeen-Collaroy beach)
|
|
#polygon = [[[151.301454, -33.700754],
|
|
# [151.311453, -33.702075],
|
|
# [151.307237, -33.739761],
|
|
# [151.294220, -33.736329],
|
|
# [151.301454, -33.700754]]];
|
|
# location (Oldbar beach)
|
|
#polygon = [[[152.664508, -31.896163],
|
|
# [152.665827, -31.897112],
|
|
# [152.631516, -31.924846],
|
|
# [152.629285, -31.923362],
|
|
# [152.664508, -31.896163]]]
|
|
# location (Oldbar inlet)
|
|
#polygon = [[[152.676283, -31.866784],
|
|
# [152.709174, -31.869993],
|
|
# [152.678229, -31.892082],
|
|
# [152.670366, -31.886360],
|
|
# [152.676283, -31.866784]]];
|
|
# Location (Sand Engine)
|
|
#polygon = [[[4.171742, 52.070455],
|
|
# [4.223708, 52.069576],
|
|
# [4.220808, 52.025293],
|
|
# [4.147749, 52.028861],
|
|
# [4.171742, 52.070455]]];
|
|
# Location (Tairua)
|
|
#polygon = [[[175.852115, -36.985414],
|
|
# [175.872797, -36.985145],
|
|
# [175.873738, -37.000039],
|
|
# [175.853956, -36.998749],
|
|
# [175.852115, -36.985414]]];
|
|
# Location (Duck)
|
|
polygon = [[[-75.766220, 36.195928],
|
|
[-75.748282, 36.196401],
|
|
[-75.738851, 36.173974],
|
|
[-75.763546, 36.174249],
|
|
[-75.766220, 36.195928]]];
|
|
|
|
# dates
|
|
start_date = '2013-01-01'
|
|
end_date = '2019-01-01'
|
|
# filter by location
|
|
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(start_date, end_date)
|
|
|
|
n_img = flt_col.size().getInfo()
|
|
print('Number of images covering the area:', n_img)
|
|
im_all = flt_col.getInfo().get('features')
|
|
|
|
satname = 'L8'
|
|
#sitename = 'NARRA_all'
|
|
#sitename = 'NARRA'
|
|
#sitename = 'OLDBAR'
|
|
#sitename = 'SANDMOTOR'
|
|
#sitename = 'TAIRUA'
|
|
sitename = 'DUCK'
|
|
|
|
suffix = '.tif'
|
|
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
|
|
filepath_pan = os.path.join(filepath, 'pan')
|
|
filepath_ms = os.path.join(filepath, 'ms')
|
|
|
|
all_names_pan = []
|
|
all_names_ms = []
|
|
timestamps = []
|
|
acc_georef = []
|
|
# loop through all images
|
|
for i in range(n_img):
|
|
# find each image in ee database
|
|
im = ee.Image(im_all[i].get('id'))
|
|
im_dic = im.getInfo()
|
|
im_bands = im_dic.get('bands')
|
|
im_date = im_dic['properties']['DATE_ACQUIRED']
|
|
t = im_dic['properties']['system:time_start']
|
|
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
|
timestamps.append(im_timestamp)
|
|
im_epsg = int(im_dic['bands'][0]['crs'][5:])
|
|
try:
|
|
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
|
|
except:
|
|
acc_georef.append(10)
|
|
print('No geometric rmse model property')
|
|
|
|
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
|
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
|
pan_band = [im_bands[7]]
|
|
ms_bands = [im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[5], im_bands[11]]
|
|
|
|
filename_pan = satname + '_' + sitename + '_' + im_date + '_pan' + suffix
|
|
filename_ms = satname + '_' + sitename + '_' + im_date + '_ms' + suffix
|
|
|
|
print(i)
|
|
if any(filename_pan in _ for _ in all_names_pan):
|
|
filename_pan = satname + '_' + sitename + '_' + im_date + '_pan' + '_r' + suffix
|
|
filename_ms = satname + '_' + sitename + '_' + im_date + '_ms' + '_r' + suffix
|
|
all_names_pan.append(filename_pan)
|
|
|
|
local_data_pan = download_tif(im, polygon, pan_band, filepath_pan)
|
|
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
|
|
local_data_ms = download_tif(im, polygon, ms_bands, filepath_ms)
|
|
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
|
|
|
|
|
|
with open(os.path.join(filepath, sitename + '_timestamps' + '.pkl'), 'wb') as f:
|
|
pickle.dump(timestamps, f)
|
|
with open(os.path.join(filepath, sitename + '_epsgcode' + '.pkl'), 'wb') as f:
|
|
pickle.dump(im_epsg, f)
|
|
with open(os.path.join(filepath, sitename + '_accuracy_georef' + '.pkl'), 'wb') as f:
|
|
pickle.dump(acc_georef, f) |