important update of the repository.
Jupyter notebook shows how to use the toolbox.,
Kilian Vos 6 years ago
parent b015083ea8
commit a2390e393b

8
.gitignore vendored

@ -0,0 +1,8 @@
*.pyc
*.mat
*.tif
*.png
*.mp4
*.gif
*.jpg
*.pkl

@ -0,0 +1,199 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Shoreline extraction from satellite images"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook shows how to download satellite images (Landsat 5,7,8 and Sentinel-2) from Google Earth Engine and apply the shoreline detection algorithm described in *Vos K., Harley M.D., Splinter K.D., Simmons J.A., Turner I.L. (in review). Capturing intra-annual to multi-decadal shoreline variability from publicly available satellite imagery, Coastal Engineering*. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initial settings"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Python packages required to run this notebook can be installed by running the following anaconda command:\n",
"*\"conda env create -f environment.yml\"*. This will create a new enviroment with all the relevant packages installed. You will also need to sign up for Google Earth Engine (https://earthengine.google.com and go to signup) and authenticate on the computer so that python can access via your login."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pickle\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"# load modules from directory\n",
"import SDS_download, SDS_preprocess, SDS_tools, SDS_shoreline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download images"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Define the region of interest, the dates and the satellite missions from which you want to download images. The image will be cropped on the Google Earth Engine server and only the region of interest will be downloaded resulting in low memory allocation (~ 1 megabyte/image for 5 km of beach)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# define the area of interest (longitude, latitude)\n",
"polygon = [[[151.301454, -33.700754],\n",
" [151.311453, -33.702075], \n",
" [151.307237, -33.739761],\n",
" [151.294220, -33.736329],\n",
" [151.301454, -33.700754]]]\n",
" \n",
"# define dates of interest\n",
"dates = ['2017-12-01','2018-01-01']\n",
"\n",
"# define satellite missions ('L5' --> landsat 5 , 'S2' --> Sentinel-2)\n",
"sat_list = ['L5', 'L7', 'L8', 'S2']\n",
"\n",
"# give a name to the site\n",
"sitename = 'NARRA'\n",
"\n",
"# download satellite images. The cropped images are saved in a '/data' subfolder. The image information is stored\n",
"# into 'metadata.pkl'.\n",
"# SDS_download.get_images(sitename, polygon, dates, sat_list)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Shoreline extraction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Performs a sub-pixel resolution shoreline detection method integrating a supervised classification component that allows to map the boundary between water and sand."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# parameters and settings\n",
"%matplotlib qt\n",
"settings = { \n",
" 'sitename': sitename,\n",
" \n",
" # general parameters:\n",
" 'cloud_thresh': 0.5, # threshold on maximum cloud cover\n",
" 'output_epsg': 28356, # epsg code of the desired output spatial reference system\n",
" \n",
" # shoreline detection parameters:\n",
" 'min_beach_size': 20, # minimum number of connected pixels for a beach\n",
" 'buffer_size': 7, # radius (in pixels) of disk for buffer around sandy pixels\n",
" 'min_length_sl': 200, # minimum length of shoreline perimeter to be kept \n",
" 'max_dist_ref': 100 , # max distance (in meters) allowed from a reference shoreline\n",
" \n",
" # quality control:\n",
" 'check_detection': True # if True, shows each shoreline detection and lets the user \n",
" # decide which shorleines are correct and which ones are false due to\n",
" # the presence of clouds and other artefacts. \n",
" # If set to False, shorelines are extracted from all images.\n",
" }\n",
"\n",
"# load metadata structure (contains information on the downloaded satellite images and is created\n",
"# after all images have been successfully downloaded)\n",
"filepath = os.path.join(os.getcwd(), 'data', settings['sitename'])\n",
"with open(os.path.join(filepath, settings['sitename'] + '_metadata' + '.pkl'), 'rb') as f:\n",
" metadata = pickle.load(f)\n",
" \n",
"# [OPTIONAL] saves .jpg files of the preprocessed images (cloud mask and pansharpening/down-sampling) \n",
"#SDS_preprocess.preprocess_all_images(metadata, settings)\n",
"\n",
"# [OPTIONAL] to avoid false detections and identify obvious outliers there is the option to\n",
"# create a reference shoreline position (manually clicking on a satellite image)\n",
"settings['refsl'] = SDS_preprocess.get_reference_sl(metadata, settings)\n",
"\n",
"# extract shorelines from all images. Saves out.pkl which contains the shoreline coordinates for each date in the spatial\n",
"# reference system specified in settings['output_epsg']. Save the output in a file called 'out.pkl'.\n",
"out = SDS_shoreline.extract_shorelines(metadata, settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot the shorelines"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.axis('equal')\n",
"plt.xlabel('Eastings [m]')\n",
"plt.ylabel('Northings [m]')\n",
"plt.title('Shorelines')\n",
"for satname in out.keys():\n",
" if satname == 'meta':\n",
" continue\n",
" for i in range(len(out[satname]['shoreline'])):\n",
" sl = out[satname]['shoreline'][i]\n",
" date = out[satname]['timestamp'][i]\n",
" plt.plot(sl[:,0], sl[:,1], '-', label=date.strftime('%d-%m-%Y'))\n",
"plt.legend()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

@ -0,0 +1,33 @@
# coastsat
Python code to download publicly available satellite imagery with Google Earth Engine API and extract shorelines using a robust sub-pixel resolution shoreline detection algorithm described in *Vos K., Harley M.D., Splinter K.D., Simmons J.A., Turner I.L. (in review). Capturing intra-annual to multi-decadal shoreline variability from publicly available satellite imagery, Coastal Engineering*.
Written by *Kilian Vos*.
## Description
Satellite remote sensing can provide low-cost long-term shoreline data capable of resolving the temporal scales of interest to coastal scientists and engineers at sites where no in-situ measurements are available. Satellite imagery spannig the last 30 years with constant revisit periods is publicly available and suitable to extract repeated measurements of the shoreline positon.
*coastsat* is an open-source Python module that allows to extract shorelines from Landsat 5, Landsat 7, Landsat 8 and Sentinel-2 images.
The shoreline detection algorithm proposed here combines a sub-pixel border segmentation and an image classification component, which refines the segmentation into four distinct categories such that the shoreline detection is specific to the sand/water interface.
## Use
A demonstration of the use of *coastsat* is provided in the Jupyter Notebook *shoreline_extraction.ipynb*. The code can also be run in Spyder with *main_spyder.py*.
The Python packages required to run this notebook can be installed by running the following anaconda command: *conda env create -f environment.yml*. This will create a new enviroment with all the relevant packages installed. You will also need to sign up for Google Earth Engine (https://earthengine.google.com and go to signup) and authenticate on the computer so that python can access via your login.
The first step is to retrieve the satellite images of the region of interest from Google Earth Engine servers by calling *SDS_download.get_images(sitename, polygon, dates, sat_list)*:
- *sitename* is a string which will define the name of the folder where the files will be stored
- *polygon* contains the coordinates of the region of interest (longitude/latitude pairs)
- *dates* defines the dates over which the images will be retrieved (e.g., *dates = ['2017-12-01', '2018-01-01']*)
- *sat_list* indicates which satellite missions to consider (e.g., *sat_list = ['L5', 'L7', 'L8', 'S2']* will download images from Landsat 5, 7, 8 and Sentinel-2 collections).
The images are cropped on the Google Earth Engine servers and only the region of interest is downloaded resulting in low memory allocation (~ 1 megabyte/image for a 5km-long beach). The relevant image metadata (time of acquisition, geometric accuracy...etc) is stored in a file named *sitename_metadata.pkl*.
Once the images have been downloaded, the shorelines are extracted from the multispectral images using the sub-pixel resolution technique described in *Vos K., Harley M.D., Splinter K.D., Simmons J.A., Turner I.L. (in review). Capturing intra-annual to multi-decadal shoreline variability from publicly available satellite imagery, Coastal Engineering*.
The shoreline extraction is performed by the function SDS_shoreline.extract_shorelines(metadata, settings). The user must define the settings in a Python dictionary. To ensure maximum robustness of the algorithm the user can optionally digitize a reference shoreline (byc calling *SDS_preprocess.get_reference_sl(metadata, settings)*) that will then be used to identify obvious outliers and minimize false detections. Since the cloud mask is not perfect (especially in Sentinel-2 images) the user has the option to manually validate each detection by setting the *'check_detection'* parameter to *True*.
The shoreline coordinates (in the coordinate system defined by the user in *'output_epsg'* are stored in a file named *sitename_out.pkl*.
## Issues and Contributions
Looking to contribute to the code? Please see the [Issues page](https://github.com/kvos/coastsat/issues).

@ -0,0 +1,432 @@
"""This module contains all the functions needed to download the satellite images from GEE
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
"""
# Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
import pdb
import ee
from urllib.request import urlretrieve
from datetime import datetime
import pytz
import pickle
import zipfile
# initialise connection with GEE server
ee.Initialize()
# Functions
def download_tif(image, polygon, bandsId, filepath):
"""
Downloads a .TIF image from the ee server and stores it in a temp file
Arguments:
-----------
image: ee.Image
Image object to be downloaded
polygon: list
polygon containing the lon/lat coordinates to be extracted
longitudes in the first column and latitudes in the second column
bandsId: list of dict
list of bands to be downloaded
filepath: location where the temporary file should be saved
"""
url = ee.data.makeDownloadUrl(ee.data.getDownloadId({
'image': image.serialize(),
'region': polygon,
'bands': bandsId,
'filePerBand': 'false',
'name': 'data',
}))
local_zip, headers = urlretrieve(url)
with zipfile.ZipFile(local_zip) as local_zipfile:
return local_zipfile.extract('data.tif', filepath)
def get_images(sitename,polygon,dates,sat):
"""
Downloads all images from Landsat 5, Landsat 7, Landsat 8 and Sentinel-2 covering the given
polygon and acquired during the given dates. The images are organised in subfolders and divided
by satellite mission and pixel resolution.
KV WRL 2018
Arguments:
-----------
sitename: str
String containig the name of the site
polygon: list
polygon containing the lon/lat coordinates to be extracted
longitudes in the first column and latitudes in the second column
dates: list of str
list that contains 2 strings with the initial and final dates in format 'yyyy-mm-dd'
e.g. ['1987-01-01', '2018-01-01']
sat: list of str
list that contains the names of the satellite missions to include
e.g. ['L5', 'L7', 'L8', 'S2']
"""
# format in which the images are downloaded
suffix = '.tif'
# initialise metadata dictionnary (stores timestamps and georefencing accuracy of each image)
metadata = dict([])
# create directories
try:
os.makedirs(os.path.join(os.getcwd(), 'data',sitename))
except:
print('')
#=============================================================================================#
# download L5 images
#=============================================================================================#
if 'L5' in sat or 'Landsat5' in sat:
satname = 'L5'
# create a subfolder to store L5 images
filepath = os.path.join(os.getcwd(), 'data', sitename, satname, '30m')
try:
os.makedirs(filepath)
except:
print('')
# Landsat 5 collection
input_col = ee.ImageCollection('LANDSAT/LT05/C01/T1_TOA')
# filter by location and dates
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(dates[0],dates[1])
# get all images in the filtered collection
im_all = flt_col.getInfo().get('features')
# print how many images there are for the user
n_img = flt_col.size().getInfo()
print('Number of ' + satname + ' images covering ' + sitename + ':', n_img)
# loop trough images
timestamps = []
acc_georef = []
all_names = []
im_epsg = []
for i in range(n_img):
# find each image in ee database
im = ee.Image(im_all[i].get('id'))
# read metadata
im_dic = im.getInfo()
# get bands
im_bands = im_dic.get('bands')
# get time of acquisition (UNIX time)
t = im_dic['properties']['system:time_start']
# convert to datetime
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
timestamps.append(im_timestamp)
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
# get EPSG code of reference system
im_epsg.append(int(im_dic['bands'][0]['crs'][5:]))
# get geometric accuracy
try:
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
except:
# default value of accuracy (RMSE = 12m)
acc_georef.append(12)
print('No geometric rmse model property')
# delete dimensions key from dictionnary, otherwise the entire image is extracted
for j in range(len(im_bands)): del im_bands[j]['dimensions']
# bands for L5
ms_bands = [im_bands[0], im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[7]]
# filenames for the images
filename = im_date + '_' + satname + '_' + sitename + suffix
# if two images taken at the same date add 'dup' in the name
if any(filename in _ for _ in all_names):
filename = im_date + '_' + satname + '_' + sitename + '_dup' + suffix
all_names.append(filename)
# download .TIF image
local_data = download_tif(im, polygon, ms_bands, filepath)
# update filename
os.rename(local_data, os.path.join(filepath, filename))
print(i, end='..')
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
timestamps_sorted = sorted(timestamps)
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
im_epsg_sorted = [im_epsg[j] for j in idx_sorted]
# save into dict
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted,
'epsg':im_epsg_sorted}
print('Finished with ' + satname)
#=============================================================================================#
# download L7 images
#=============================================================================================#
if 'L7' in sat or 'Landsat7' in sat:
satname = 'L7'
# create subfolders (one for 30m multispectral bands and one for 15m pan bands)
filepath = os.path.join(os.getcwd(), 'data', sitename, 'L7')
filepath_pan = os.path.join(filepath, 'pan')
filepath_ms = os.path.join(filepath, 'ms')
try:
os.makedirs(filepath_pan)
os.makedirs(filepath_ms)
except:
print('')
# landsat 7 collection
input_col = ee.ImageCollection('LANDSAT/LE07/C01/T1_RT_TOA')
# filter by location and dates
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(dates[0],dates[1])
# get all images in the filtered collection
im_all = flt_col.getInfo().get('features')
# print how many images there are for the user
n_img = flt_col.size().getInfo()
print('Number of ' + satname + ' images covering ' + sitename + ':', n_img)
# loop trough images
timestamps = []
acc_georef = []
all_names = []
im_epsg = []
for i in range(n_img):
# find each image in ee database
im = ee.Image(im_all[i].get('id'))
# read metadata
im_dic = im.getInfo()
# get bands
im_bands = im_dic.get('bands')
# get time of acquisition (UNIX time)
t = im_dic['properties']['system:time_start']
# convert to datetime
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
timestamps.append(im_timestamp)
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
# get EPSG code of reference system
im_epsg.append(int(im_dic['bands'][0]['crs'][5:]))
# get geometric accuracy
try:
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
except:
# default value of accuracy (RMSE = 12m)
acc_georef.append(12)
print('No geometric rmse model property')
# delete dimensions key from dictionnary, otherwise the entire image is extracted
for j in range(len(im_bands)): del im_bands[j]['dimensions']
# bands for L7
pan_band = [im_bands[8]]
ms_bands = [im_bands[0], im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[9]]
# filenames for the images
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + suffix
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + suffix
# if two images taken at the same date add 'dup' in the name
if any(filename_pan in _ for _ in all_names):
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + '_dup' + suffix
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + '_dup' + suffix
all_names.append(filename_pan)
# download .TIF image
local_data_pan = download_tif(im, polygon, pan_band, filepath_pan)
local_data_ms = download_tif(im, polygon, ms_bands, filepath_ms)
# update filename
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
print(i, end='..')
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
timestamps_sorted = sorted(timestamps)
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
im_epsg_sorted = [im_epsg[j] for j in idx_sorted]
# save into dict
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted,
'epsg':im_epsg_sorted}
print('Finished with ' + satname)
#=============================================================================================#
# download L8 images
#=============================================================================================#
if 'L8' in sat or 'Landsat8' in sat:
satname = 'L8'
# create subfolders (one for 30m multispectral bands and one for 15m pan bands)
filepath = os.path.join(os.getcwd(), 'data', sitename, 'L8')
filepath_pan = os.path.join(filepath, 'pan')
filepath_ms = os.path.join(filepath, 'ms')
try:
os.makedirs(filepath_pan)
os.makedirs(filepath_ms)
except:
print('')
# landsat 8 collection
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
# filter by location and dates
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(dates[0],dates[1])
# get all images in the filtered collection
im_all = flt_col.getInfo().get('features')
# print how many images there are for the user
n_img = flt_col.size().getInfo()
print('Number of ' + satname + ' images covering ' + sitename + ':', n_img)
# loop trough images
timestamps = []
acc_georef = []
all_names = []
im_epsg = []
for i in range(n_img):
# find each image in ee database
im = ee.Image(im_all[i].get('id'))
# read metadata
im_dic = im.getInfo()
# get bands
im_bands = im_dic.get('bands')
# get time of acquisition (UNIX time)
t = im_dic['properties']['system:time_start']
# convert to datetime
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
timestamps.append(im_timestamp)
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
# get EPSG code of reference system
im_epsg.append(int(im_dic['bands'][0]['crs'][5:]))
# get geometric accuracy
try:
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
except:
# default value of accuracy (RMSE = 12m)
acc_georef.append(12)
print('No geometric rmse model property')
# delete dimensions key from dictionnary, otherwise the entire image is extracted
for j in range(len(im_bands)): del im_bands[j]['dimensions']
# bands for L8
pan_band = [im_bands[7]]
ms_bands = [im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[5], im_bands[11]]
# filenames for the images
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + suffix
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + suffix
# if two images taken at the same date add 'dup' in the name
if any(filename_pan in _ for _ in all_names):
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + '_dup' + suffix
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + '_dup' + suffix
all_names.append(filename_pan)
# download .TIF image
local_data_pan = download_tif(im, polygon, pan_band, filepath_pan)
local_data_ms = download_tif(im, polygon, ms_bands, filepath_ms)
# update filename
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
print(i, end='..')
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
timestamps_sorted = sorted(timestamps)
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
im_epsg_sorted = [im_epsg[j] for j in idx_sorted]
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted,
'epsg':im_epsg_sorted}
print('Finished with ' + satname)
#=============================================================================================#
# download S2 images
#=============================================================================================#
if 'S2' in sat or 'Sentinel2' in sat:
satname = 'S2'
# create subfolders for the 10m, 20m and 60m multipectral bands
filepath = os.path.join(os.getcwd(), 'data', sitename, 'S2')
try:
os.makedirs(os.path.join(filepath, '10m'))
os.makedirs(os.path.join(filepath, '20m'))
os.makedirs(os.path.join(filepath, '60m'))
except:
print('')
# Sentinel2 collection
input_col = ee.ImageCollection('COPERNICUS/S2')
# filter by location and dates
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon)).filterDate(dates[0],dates[1])
# get all images in the filtered collection
im_all = flt_col.getInfo().get('features')
# print how many images there are
n_img = flt_col.size().getInfo()
print('Number of ' + satname + ' images covering ' + sitename + ':', n_img)
# loop trough images
timestamps = []
acc_georef = []
all_names = []
im_epsg = []
for i in range(n_img):
# find each image in ee database
im = ee.Image(im_all[i].get('id'))
# read metadata
im_dic = im.getInfo()
# get bands
im_bands = im_dic.get('bands')
# get time of acquisition (UNIX time)
t = im_dic['properties']['system:time_start']
# convert to datetime
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
# delete dimensions key from dictionnary, otherwise the entire image is extracted
for j in range(len(im_bands)): del im_bands[j]['dimensions']
# bands for S2
bands10 = [im_bands[1], im_bands[2], im_bands[3], im_bands[7]]
bands20 = [im_bands[11]]
bands60 = [im_bands[15]]
# filenames for images
filename10 = im_date + '_' + satname + '_' + sitename + '_' + '10m' + suffix
filename20 = im_date + '_' + satname + '_' + sitename + '_' + '20m' + suffix
filename60 = im_date + '_' + satname + '_' + sitename + '_' + '60m' + suffix
# if two images taken at the same date skip the second image (they are the same)
if any(filename10 in _ for _ in all_names):
continue
all_names.append(filename10)
# download .TIF image and update filename
local_data = download_tif(im, polygon, bands10, os.path.join(filepath, '10m'))
os.rename(local_data, os.path.join(filepath, '10m', filename10))
local_data = download_tif(im, polygon, bands20, os.path.join(filepath, '20m'))
os.rename(local_data, os.path.join(filepath, '20m', filename20))
local_data = download_tif(im, polygon, bands60, os.path.join(filepath, '60m'))
os.rename(local_data, os.path.join(filepath, '60m', filename60))
# save timestamp, epsg code and georeferencing accuracy (1 if passed 0 if not passed)
timestamps.append(im_timestamp)
im_epsg.append(int(im_dic['bands'][0]['crs'][5:]))
try:
if im_dic['properties']['GEOMETRIC_QUALITY_FLAG'] == 'PASSED':
acc_georef.append(1)
else:
acc_georef.append(0)
except:
acc_georef.append(0)
print(i, end='..')
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
timestamps_sorted = sorted(timestamps)
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
im_epsg_sorted = [im_epsg[j] for j in idx_sorted]
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted,
'epsg':im_epsg_sorted}
print('Finished with ' + satname)
# save metadata dict
filepath = os.path.join(os.getcwd(), 'data', sitename)
with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'wb') as f:
pickle.dump(metadata, f)

@ -0,0 +1,667 @@
"""This module contains all the functions needed to preprocess the satellite images: creating a
cloud mask and pansharpening/downsampling the images.
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
"""
# Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
from osgeo import gdal, ogr, osr
import skimage.transform as transform
import skimage.morphology as morphology
import sklearn.decomposition as decomposition
import skimage.exposure as exposure
from pylab import ginput
import pickle
import pdb
import SDS_tools
# Functions
def create_cloud_mask(im_qa, satname):
"""
Creates a cloud mask from the image containing the QA band information.
KV WRL 2018
Arguments:
-----------
im_qa: np.array
Image containing the QA band
satname: string
short name for the satellite (L8, L7, S2)
Returns:
-----------
cloud_mask : np.ndarray of booleans
A boolean array with True where the cloud are present
"""
# convert QA bits depending on the satellite mission
if satname == 'L8':
cloud_values = [2800, 2804, 2808, 2812, 6896, 6900, 6904, 6908]
elif satname == 'L7' or satname == 'L5' or satname == 'L4':
cloud_values = [752, 756, 760, 764]
elif satname == 'S2':
cloud_values = [1024, 2048] # 1024 = dense cloud, 2048 = cirrus clouds
# find which pixels have bits corresponding to cloud values
cloud_mask = np.isin(im_qa, cloud_values)
# remove isolated cloud pixels (there are some in the swash zone and they can cause problems)
if sum(sum(cloud_mask)) > 0 and sum(sum(~cloud_mask)) > 0:
morphology.remove_small_objects(cloud_mask, min_size=10, connectivity=1, in_place=True)
return cloud_mask
def hist_match(source, template):
"""
Adjust the pixel values of a grayscale image such that its histogram matches that of a
target image.
Arguments:
-----------
source: np.array
Image to transform; the histogram is computed over the flattened
array
template: np.array
Template image; can have different dimensions to source
Returns:
-----------
matched: np.array
The transformed output image
"""
oldshape = source.shape
source = source.ravel()
template = template.ravel()
# get the set of unique pixel values and their corresponding indices and
# counts
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
return_counts=True)
t_values, t_counts = np.unique(template, return_counts=True)
# take the cumsum of the counts and normalize by the number of pixels to
# get the empirical cumulative distribution functions for the source and
# template images (maps pixel value --> quantile)
s_quantiles = np.cumsum(s_counts).astype(np.float64)
s_quantiles /= s_quantiles[-1]
t_quantiles = np.cumsum(t_counts).astype(np.float64)
t_quantiles /= t_quantiles[-1]
# interpolate linearly to find the pixel values in the template image
# that correspond most closely to the quantiles in the source image
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
return interp_t_values[bin_idx].reshape(oldshape)
def pansharpen(im_ms, im_pan, cloud_mask):
"""
Pansharpens a multispectral image (3D), using the panchromatic band (2D) and a cloud mask.
A PCA is applied to the image, then the 1st PC is replaced with the panchromatic band.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
Multispectral image to pansharpen (3D)
im_pan: np.array
Panchromatic band (2D)
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
Returns:
-----------
im_ms_ps: np.ndarray
Pansharpened multisoectral image (3D)
"""
# reshape image into vector and apply cloud mask
vec = im_ms.reshape(im_ms.shape[0] * im_ms.shape[1], im_ms.shape[2])
vec_mask = cloud_mask.reshape(im_ms.shape[0] * im_ms.shape[1])
vec = vec[~vec_mask, :]
# apply PCA to RGB bands
pca = decomposition.PCA()
vec_pcs = pca.fit_transform(vec)
# replace 1st PC with pan band (after matching histograms)
vec_pan = im_pan.reshape(im_pan.shape[0] * im_pan.shape[1])
vec_pan = vec_pan[~vec_mask]
vec_pcs[:,0] = hist_match(vec_pan, vec_pcs[:,0])
vec_ms_ps = pca.inverse_transform(vec_pcs)
# reshape vector into image
vec_ms_ps_full = np.ones((len(vec_mask), im_ms.shape[2])) * np.nan
vec_ms_ps_full[~vec_mask,:] = vec_ms_ps
im_ms_ps = vec_ms_ps_full.reshape(im_ms.shape[0], im_ms.shape[1], im_ms.shape[2])
return im_ms_ps
def rescale_image_intensity(im, cloud_mask, prob_high):
"""
Rescales the intensity of an image (multispectral or single band) by applying
a cloud mask and clipping the prob_high upper percentile. This functions allows
to stretch the contrast of an image for visualisation purposes.
KV WRL 2018
Arguments:
-----------
im: np.array
Image to rescale, can be 3D (multispectral) or 2D (single band)
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
prob_high: float
probability of exceedence used to calculate the upper percentile
Returns:
-----------
im_adj: np.array
The rescaled image
"""
# lower percentile is set to 0
prc_low = 0
# reshape the 2D cloud mask into a 1D vector
vec_mask = cloud_mask.reshape(im.shape[0] * im.shape[1])
# if image contains several bands, stretch the contrast for each band
if len(im.shape) > 2:
# reshape into a vector
vec = im.reshape(im.shape[0] * im.shape[1], im.shape[2])
# initiliase with NaN values
vec_adj = np.ones((len(vec_mask), im.shape[2])) * np.nan
# loop through the bands
for i in range(im.shape[2]):
# find the higher percentile (based on prob)
prc_high = np.percentile(vec[~vec_mask, i], prob_high)
# clip the image around the 2 percentiles and rescale the contrast
vec_rescaled = exposure.rescale_intensity(vec[~vec_mask, i],
in_range=(prc_low, prc_high))
vec_adj[~vec_mask,i] = vec_rescaled
# reshape into image
im_adj = vec_adj.reshape(im.shape[0], im.shape[1], im.shape[2])
# if image only has 1 bands (grayscale image)
else:
vec = im.reshape(im.shape[0] * im.shape[1])
vec_adj = np.ones(len(vec_mask)) * np.nan
prc_high = np.percentile(vec[~vec_mask], prob_high)
vec_rescaled = exposure.rescale_intensity(vec[~vec_mask], in_range=(prc_low, prc_high))
vec_adj[~vec_mask] = vec_rescaled
im_adj = vec_adj.reshape(im.shape[0], im.shape[1])
return im_adj
def preprocess_single(fn, satname):
"""
Creates a cloud mask using the QA band and performs pansharpening/down-sampling of the image.
KV WRL 2018
Arguments:
-----------
fn: str or list of str
filename of the .TIF file containing the image
for L7, L8 and S2 there is a filename for the bands at different resolutions
satname: str
name of the satellite mission (e.g., 'L5')
Returns:
-----------
im_ms: np.array
3D array containing the pansharpened/down-sampled bands (B,G,R,NIR,SWIR1)
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] defining the
coordinates of the top-left pixel of the image
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
"""
#=============================================================================================#
# L5 images
#=============================================================================================#
if satname == 'L5':
# read all bands
data = gdal.Open(fn, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im_ms = np.stack(bands, 2)
# down-sample to 15 m (half of the original pixel size)
nrows = im_ms.shape[0]*2
ncols = im_ms.shape[1]*2
# create cloud mask
im_qa = im_ms[:,:,5]
im_ms = im_ms[:,:,:-1]
cloud_mask = create_cloud_mask(im_qa, satname)
# resize the image using bilinear interpolation (order 1)
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True,
mode='constant')
# resize the image using nearest neighbour interpolation (order 0)
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True,
mode='constant').astype('bool_')
# adjust georeferencing vector to the new image size
# scale becomes 15m and the origin is adjusted to the center of new top left pixel
georef[1] = 15
georef[5] = -15
georef[0] = georef[0] + 7.5
georef[3] = georef[3] - 7.5
# check if -inf or nan values on any band and add to cloud mask
for k in range(im_ms.shape[2]):
im_inf = np.isin(im_ms[:,:,k], -np.inf)
im_nan = np.isnan(im_ms[:,:,k])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# calculate cloud cover
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
#=============================================================================================#
# L7 images
#=============================================================================================#
elif satname == 'L7':
# read pan image
fn_pan = fn[0]
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im_pan = np.stack(bands, 2)[:,:,0]
# size of pan image
nrows = im_pan.shape[0]
ncols = im_pan.shape[1]
# read ms image
fn_ms = fn[1]
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im_ms = np.stack(bands, 2)
# create cloud mask
im_qa = im_ms[:,:,5]
cloud_mask = create_cloud_mask(im_qa, satname)
# resize the image using bilinear interpolation (order 1)
im_ms = im_ms[:,:,:5]
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True,
mode='constant')
# resize the image using nearest neighbour interpolation (order 0)
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True,
mode='constant').astype('bool_')
# check if -inf or nan values on any band and eventually add those pixels to cloud mask
for k in range(im_ms.shape[2]+1):
if k == 5:
im_inf = np.isin(im_pan, -np.inf)
im_nan = np.isnan(im_pan)
else:
im_inf = np.isin(im_ms[:,:,k], -np.inf)
im_nan = np.isnan(im_ms[:,:,k])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# calculate cloud cover
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
# pansharpen Green, Red, NIR (where there is overlapping with pan band in L7)
try:
im_ms_ps = pansharpen(im_ms[:,:,[1,2,3]], im_pan, cloud_mask)
except: # if pansharpening fails, keep downsampled bands (for long runs)
im_ms_ps = im_ms[:,:,[1,2,3]]
# add downsampled Blue and SWIR1 bands
im_ms_ps = np.append(im_ms[:,:,[0]], im_ms_ps, axis=2)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[4]], axis=2)
im_ms = im_ms_ps.copy()
#=============================================================================================#
# L8 images
#=============================================================================================#
elif satname == 'L8':
# read pan image
fn_pan = fn[0]
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im_pan = np.stack(bands, 2)[:,:,0]
# size of pan image
nrows = im_pan.shape[0]
ncols = im_pan.shape[1]
# read ms image
fn_ms = fn[1]
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im_ms = np.stack(bands, 2)
# create cloud mask
im_qa = im_ms[:,:,5]
cloud_mask = create_cloud_mask(im_qa, satname)
# resize the image using bilinear interpolation (order 1)
im_ms = im_ms[:,:,:5]
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True,
mode='constant')
# resize the image using nearest neighbour interpolation (order 0)
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True,
mode='constant').astype('bool_')
# check if -inf or nan values on any band and eventually add those pixels to cloud mask
for k in range(im_ms.shape[2]+1):
if k == 5:
im_inf = np.isin(im_pan, -np.inf)
im_nan = np.isnan(im_pan)
else:
im_inf = np.isin(im_ms[:,:,k], -np.inf)
im_nan = np.isnan(im_ms[:,:,k])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# calculate cloud cover
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
# pansharpen Blue, Green, Red (where there is overlapping with pan band in L8)
try:
im_ms_ps = pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask)
except: # if pansharpening fails, keep downsampled bands (for long runs)
im_ms_ps = im_ms[:,:,[0,1,2]]
# add downsampled NIR and SWIR1 bands
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
im_ms = im_ms_ps.copy()
#=============================================================================================#
# S2 images
#=============================================================================================#
if satname == 'S2':
# read 10m bands (R,G,B,NIR)
fn10 = fn[0]
data = gdal.Open(fn10, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im10 = np.stack(bands, 2)
im10 = im10/10000 # TOA scaled to 10000
# if image contains only zeros (can happen with S2), skip the image
if sum(sum(sum(im10))) < 1:
im_ms = []
georef = []
# skip the image by giving it a full cloud_mask
cloud_mask = np.ones((im10.shape[0],im10.shape[1])).astype('bool')
return im_ms, georef, cloud_mask
# size of 10m bands
nrows = im10.shape[0]
ncols = im10.shape[1]
# read 20m band (SWIR1)
fn20 = fn[1]
data = gdal.Open(fn20, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im20 = np.stack(bands, 2)
im20 = im20[:,:,0]
im20 = im20/10000 # TOA scaled to 10000
# resize the image using bilinear interpolation (order 1)
im_swir = transform.resize(im20, (nrows, ncols), order=1, preserve_range=True,
mode='constant')
im_swir = np.expand_dims(im_swir, axis=2)
# append down-sampled SWIR1 band to the other 10m bands
im_ms = np.append(im10, im_swir, axis=2)
# create cloud mask using 60m QA band (not as good as Landsat cloud cover)
fn60 = fn[2]
data = gdal.Open(fn60, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
im60 = np.stack(bands, 2)
im_qa = im60[:,:,0]
cloud_mask = create_cloud_mask(im_qa, satname)
# resize the cloud mask using nearest neighbour interpolation (order 0)
cloud_mask = transform.resize(cloud_mask,(nrows, ncols), order=0, preserve_range=True,
mode='constant')
# check if -inf or nan values on any band and add to cloud mask
for k in range(im_ms.shape[2]):
im_inf = np.isin(im_ms[:,:,k], -np.inf)
im_nan = np.isnan(im_ms[:,:,k])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
# calculate cloud cover
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
return im_ms, georef, cloud_mask
def create_jpg(im_ms, cloud_mask, date, satname, filepath):
"""
Saves a .jpg file with the RGB image as well as the NIR and SWIR1 grayscale images.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
3D array containing the pansharpened/down-sampled bands (B,G,R,NIR,SWIR1)
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
date: str
String containing the date at which the image was acquired
satname: str
name of the satellite mission (e.g., 'L5')
Returns:
-----------
Saves a .jpg image corresponding to the preprocessed satellite image
"""
# rescale image intensity for display purposes
im_RGB = rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
im_NIR = rescale_image_intensity(im_ms[:,:,3], cloud_mask, 99.9)
im_SWIR = rescale_image_intensity(im_ms[:,:,4], cloud_mask, 99.9)
# make figure
fig = plt.figure()
fig.set_size_inches([18,9])
fig.set_tight_layout(True)
# RGB
plt.subplot(131)
plt.axis('off')
plt.imshow(im_RGB)
plt.title(date + ' ' + satname, fontsize=16)
# NIR
plt.subplot(132)
plt.axis('off')
plt.imshow(im_NIR, cmap='seismic')
plt.title('Near Infrared', fontsize=16)
# SWIR
plt.subplot(133)
plt.axis('off')
plt.imshow(im_SWIR, cmap='seismic')
plt.title('Short-wave Infrared', fontsize=16)
# save figure
plt.rcParams['savefig.jpeg_quality'] = 100
fig.savefig(os.path.join(filepath,
date + '_' + satname + '.jpg'), dpi=150)
plt.close()
def preprocess_all_images(metadata, settings):
"""
Saves a .jpg image for all the file contained in metadata.
KV WRL 2018
Arguments:
-----------
sitename: str
name of the site (and corresponding folder)
metadata: dict
contains all the information about the satellite images that were downloaded
cloud_thresh: float
maximum fraction of cloud cover allowed in the images
Returns:
-----------
Generates .jpg files for all the satellite images avaialble
"""
sitename = settings['sitename']
cloud_thresh = settings['cloud_thresh']
# create subfolder to store the jpg files
filepath_jpg = os.path.join(os.getcwd(), 'data', sitename, 'jpg_files', 'preprocessed')
try:
os.makedirs(filepath_jpg)
except:
print('')
# loop through satellite list
for satname in metadata.keys():
# access the images
if satname == 'L5':
# access downloaded Landsat 5 images
filepath = os.path.join(os.getcwd(), 'data', sitename, satname, '30m')
filenames = os.listdir(filepath)
elif satname == 'L7':
# access downloaded Landsat 7 images
filepath_pan = os.path.join(os.getcwd(), 'data', sitename, 'L7', 'pan')
filepath_ms = os.path.join(os.getcwd(), 'data', sitename, 'L7', 'ms')
filenames_pan = os.listdir(filepath_pan)
filenames_ms = os.listdir(filepath_ms)
if (not len(filenames_pan) == len(filenames_ms)):
raise 'error: not the same amount of files for pan and ms'
filepath = [filepath_pan, filepath_ms]
filenames = filenames_pan
elif satname == 'L8':
# access downloaded Landsat 7 images
filepath_pan = os.path.join(os.getcwd(), 'data', sitename, 'L8', 'pan')
filepath_ms = os.path.join(os.getcwd(), 'data', sitename, 'L8', 'ms')
filenames_pan = os.listdir(filepath_pan)
filenames_ms = os.listdir(filepath_ms)
if (not len(filenames_pan) == len(filenames_ms)):
raise 'error: not the same amount of files for pan and ms'
filepath = [filepath_pan, filepath_ms]
filenames = filenames_pan
elif satname == 'S2':
# access downloaded Sentinel 2 images
filepath10 = os.path.join(os.getcwd(), 'data', sitename, satname, '10m')
filenames10 = os.listdir(filepath10)
filepath20 = os.path.join(os.getcwd(), 'data', sitename, satname, '20m')
filenames20 = os.listdir(filepath20)
filepath60 = os.path.join(os.getcwd(), 'data', sitename, satname, '60m')
filenames60 = os.listdir(filepath60)
if (not len(filenames10) == len(filenames20)) or (not len(filenames20) == len(filenames60)):
raise 'error: not the same amount of files for 10, 20 and 60 m'
filepath = [filepath10, filepath20, filepath60]
filenames = filenames10
# loop through images
for i in range(len(filenames)):
# image filename
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
# preprocess image (cloud mask + pansharpening/downsampling)
im_ms, georef, cloud_mask = preprocess_single(fn, satname)
# calculate cloud cover
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
(cloud_mask.shape[0]*cloud_mask.shape[1]))
# skip image if cloud cover is above threshold
if cloud_cover > cloud_thresh:
continue
# save .jpg with date and satellite in the title
date = filenames[i][:10]
create_jpg(im_ms, cloud_mask, date, satname, filepath_jpg)
def get_reference_sl(metadata, settings):
sitename = settings['sitename']
# check if reference shoreline already exists
filepath = os.path.join(os.getcwd(), 'data', sitename)
filename = sitename + '_ref_sl.pkl'
if filename in os.listdir(filepath):
print('Reference shoreline already exists and was loaded')
with open(os.path.join(filepath, sitename + '_ref_sl.pkl'), 'rb') as f:
refsl = pickle.load(f)
return refsl
else:
satname = 'S2'
# access downloaded Sentinel 2 images
filepath10 = os.path.join(os.getcwd(), 'data', sitename, satname, '10m')
filenames10 = os.listdir(filepath10)
filepath20 = os.path.join(os.getcwd(), 'data', sitename, satname, '20m')
filenames20 = os.listdir(filepath20)
filepath60 = os.path.join(os.getcwd(), 'data', sitename, satname, '60m')
filenames60 = os.listdir(filepath60)
if (not len(filenames10) == len(filenames20)) or (not len(filenames20) == len(filenames60)):
raise 'error: not the same amount of files for 10, 20 and 60 m'
for i in range(len(filenames10)):
# image filename
fn = [os.path.join(filepath10, filenames10[i]),
os.path.join(filepath20, filenames20[i]),
os.path.join(filepath60, filenames60[i])]
# preprocess image (cloud mask + pansharpening/downsampling)
im_ms, georef, cloud_mask = preprocess_single(fn, satname)
# calculate cloud cover
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
(cloud_mask.shape[0]*cloud_mask.shape[1]))
# skip image if cloud cover is above threshold
if cloud_cover > settings['cloud_thresh']:
continue
# rescale image intensity for display purposes
im_RGB = rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
# make figure
fig = plt.figure()
fig.set_size_inches([18,9])
fig.set_tight_layout(True)
# RGB
plt.axis('off')
plt.imshow(im_RGB)
plt.title('click <skip> if image is not clear enough to digitize the shoreline.\n' +
'Otherwise click on <keep> and start digitizing the shoreline.\n' +
'When finished digitizing the shoreline click on the scroll wheel ' +
'(middle click).', fontsize=14)
plt.text(0, 0.9, 'keep', size=16, ha="left", va="top",
transform=plt.gca().transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
plt.text(1, 0.9, 'skip', size=16, ha="right", va="top",
transform=plt.gca().transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
# let user click on the image once
pt_keep = ginput(n=1, timeout=100, show_clicks=True)
pt_keep = np.array(pt_keep)
# if clicks next to <skip>, show another image
if pt_keep[0][0] > im_ms.shape[1]/2:
plt.close()
continue
else:
# let user click on the shoreline
pts = ginput(n=5000, timeout=100000, show_clicks=True)
pts_pix = np.array(pts)
plt.close()
# convert image coordinates to world coordinates
pts_world = SDS_tools.convert_pix2world(pts_pix[:,[1,0]], georef)
image_epsg = metadata[satname]['epsg'][i]
pts_coords = SDS_tools.convert_epsg(pts_world, image_epsg, settings['output_epsg'])
with open(os.path.join(filepath, sitename + '_ref_sl.pkl'), 'wb') as f:
pickle.dump(pts_coords, f)
print('Reference shoreline has been saved')
break
return pts_coords

@ -0,0 +1,604 @@
"""This module contains all the functions needed for extracting satellite-derived shorelines (SDS)
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
"""
# Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
import pdb
# other modules
from osgeo import gdal, ogr, osr
import scipy.interpolate as interpolate
from datetime import datetime, timedelta
import matplotlib.patches as mpatches
import matplotlib.lines as mlines
import matplotlib.cm as cm
from matplotlib import gridspec
from pylab import ginput
import pickle
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
import skimage.morphology as morphology
# machine learning modules
from sklearn.externals import joblib
from shapely.geometry import LineString
import SDS_tools, SDS_preprocess
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
def nd_index(im1, im2, cloud_mask):
"""
Computes normalised difference index on 2 images (2D), given a cloud mask (2D).
KV WRL 2018
Arguments:
-----------
im1, im2: np.array
Images (2D) with which to calculate the ND index
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
Returns: -----------
im_nd: np.array
Image (2D) containing the ND index
"""
# reshape the cloud mask
vec_mask = cloud_mask.reshape(im1.shape[0] * im1.shape[1])
# initialise with NaNs
vec_nd = np.ones(len(vec_mask)) * np.nan
# reshape the two images
vec1 = im1.reshape(im1.shape[0] * im1.shape[1])
vec2 = im2.reshape(im2.shape[0] * im2.shape[1])
# compute the normalised difference index
temp = np.divide(vec1[~vec_mask] - vec2[~vec_mask],
vec1[~vec_mask] + vec2[~vec_mask])
vec_nd[~vec_mask] = temp
# reshape into image
im_nd = vec_nd.reshape(im1.shape[0], im1.shape[1])
return im_nd
def classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size):
"""
Classifies every pixel in the image in one of 4 classes:
- sand --> label = 1
- whitewater (breaking waves and swash) --> label = 2
- water --> label = 3
- other (vegetation, buildings, rocks...) --> label = 0
The classifier is a Neural Network, trained with 7000 pixels for the class SAND and 1500
pixels for each of the other classes. This is because the class of interest for my application
is SAND and I wanted to minimize the classification error for that class.
KV WRL 2018
Arguments:
-----------
im_ms_ps: np.array
Pansharpened RGB + downsampled NIR and SWIR
im_pan:
Panchromatic band
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
plot_bool: boolean
True if plot is wanted
Returns: -----------
im_classif: np.array
2D image containing labels
im_labels: np.array of booleans
3D image containing a boolean image for each class (im_classif == label)
"""
# load classifier
clf = joblib.load('.\\classifiers\\NN_4classes_withpan.pkl')
# calculate features
n_features = 10
im_features = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1], n_features))
im_features[:,:,[0,1,2,3,4]] = im_ms_ps
im_features[:,:,5] = im_pan
im_features[:,:,6] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, False) # (NIR-G)
im_features[:,:,7] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,2], cloud_mask, False) # ND(NIR-R)
im_features[:,:,8] = nd_index(im_ms_ps[:,:,0], im_ms_ps[:,:,2], cloud_mask, False) # ND(B-R)
im_features[:,:,9] = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, False) # ND(SWIR-G)
# remove NaNs and clouds
vec_features = im_features.reshape((im_ms_ps.shape[0] * im_ms_ps.shape[1], n_features))
vec_cloud = cloud_mask.reshape(cloud_mask.shape[0]*cloud_mask.shape[1])
vec_nan = np.any(np.isnan(vec_features), axis=1)
vec_mask = np.logical_or(vec_cloud, vec_nan)
vec_features = vec_features[~vec_mask, :]
# predict with NN classifier
labels = clf.predict(vec_features)
# recompose image
vec_classif = np.zeros((cloud_mask.shape[0]*cloud_mask.shape[1]))
vec_classif[~vec_mask] = labels
im_classif = vec_classif.reshape((im_ms_ps.shape[0], im_ms_ps.shape[1]))
# labels
im_sand = im_classif == 1
# remove small patches of sand
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
im_swash = im_classif == 2
im_water = im_classif == 3
im_labels = np.stack((im_sand,im_swash,im_water), axis=-1)
return im_classif, im_labels
def classify_image_NN_nopan(im_ms_ps, cloud_mask, min_beach_size):
"""
To be used for multispectral images that do not have a panchromatic band (L5 and S2).
Classifies every pixel in the image in one of 4 classes:
- sand --> label = 1
- whitewater (breaking waves and swash) --> label = 2
- water --> label = 3
- other (vegetation, buildings, rocks...) --> label = 0
The classifier is a Neural Network, trained with 7000 pixels for the class SAND and 1500
pixels for each of the other classes. This is because the class of interest for my application
is SAND and I wanted to minimize the classification error for that class.
KV WRL 2018
Arguments:
-----------
im_ms_ps: np.array
Pansharpened RGB + downsampled NIR and SWIR
im_pan:
Panchromatic band
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
Returns: -----------
im_classif: np.ndarray
2D image containing labels
im_labels: np.ndarray of booleans
3D image containing a boolean image for each class (im_classif == label)
"""
# load classifier
clf = joblib.load('.\\classifiers\\NN_4classes_nopan.pkl')
# calculate features
n_features = 9
im_features = np.zeros((im_ms_ps.shape[0], im_ms_ps.shape[1], n_features))
im_features[:,:,[0,1,2,3,4]] = im_ms_ps
im_features[:,:,5] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask) # (NIR-G)
im_features[:,:,6] = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,2], cloud_mask) # ND(NIR-R)
im_features[:,:,7] = nd_index(im_ms_ps[:,:,0], im_ms_ps[:,:,2], cloud_mask) # ND(B-R)
im_features[:,:,8] = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask) # ND(SWIR-G)
# remove NaNs and clouds
vec_features = im_features.reshape((im_ms_ps.shape[0] * im_ms_ps.shape[1], n_features))
vec_cloud = cloud_mask.reshape(cloud_mask.shape[0]*cloud_mask.shape[1])
vec_nan = np.any(np.isnan(vec_features), axis=1)
vec_mask = np.logical_or(vec_cloud, vec_nan)
vec_features = vec_features[~vec_mask, :]
# predict with NN classifier
labels = clf.predict(vec_features)
# recompose image
vec_classif = np.zeros((cloud_mask.shape[0]*cloud_mask.shape[1]))
vec_classif[~vec_mask] = labels
im_classif = vec_classif.reshape((im_ms_ps.shape[0], im_ms_ps.shape[1]))
# labels
im_sand = im_classif == 1
# remove small patches of sand
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_size, connectivity=2)
im_swash = im_classif == 2
im_water = im_classif == 3
im_labels = np.stack((im_sand,im_swash,im_water), axis=-1)
return im_classif, im_labels
def find_wl_contours1(im_ndwi, cloud_mask):
"""
Traditional method for shorelien detection.
Finds the water line by thresholding the Normalized Difference Water Index and applying
the Marching Squares Algorithm to contour the iso-value corresponding to the threshold.
KV WRL 2018
Arguments:
-----------
im_ndwi: np.ndarray
Image (2D) with the NDWI (water index)
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
Returns: -----------
contours_wl: list of np.arrays
contains the (row,column) coordinates of the contour lines
"""
# reshape image to vector
vec_ndwi = im_ndwi.reshape(im_ndwi.shape[0] * im_ndwi.shape[1])
vec_mask = cloud_mask.reshape(cloud_mask.shape[0] * cloud_mask.shape[1])
vec = vec_ndwi[~vec_mask]
# apply otsu's threshold
vec = vec[~np.isnan(vec)]
t_otsu = filters.threshold_otsu(vec)
# use Marching Squares algorithm to detect contours on ndwi image
contours = measure.find_contours(im_ndwi, t_otsu)
# remove contours that have nans (due to cloud pixels in the contour)
contours_nonans = []
for k in range(len(contours)):
if np.any(np.isnan(contours[k])):
index_nan = np.where(np.isnan(contours[k]))[0]
contours_temp = np.delete(contours[k], index_nan, axis=0)
if len(contours_temp) > 1:
contours_nonans.append(contours_temp)
else:
contours_nonans.append(contours[k])
contours = contours_nonans
return contours
def find_wl_contours2(im_ms_ps, im_labels, cloud_mask, buffer_size):
"""
New robust method for extracting shorelines. Incorporates the classification component to
refube the treshold and make it specific to the sand/water interface.
KV WRL 2018
Arguments:
-----------
im_ms_ps: np.array
Pansharpened RGB + downsampled NIR and SWIR
im_labels: np.array
3D image containing a boolean image for each class in the order (sand, swash, water)
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
buffer_size: int
size of the buffer around the sandy beach
Returns: -----------
contours_wi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted with the
NDWI (Normalized Difference Water Index)
contours_mwi: list of np.arrays
contains the (row,column) coordinates of the contour lines extracted with the
MNDWI (Modified Normalized Difference Water Index)
"""
nrows = cloud_mask.shape[0]
ncols = cloud_mask.shape[1]
# calculate Normalized Difference Modified Water Index (SWIR - G)
im_mwi = nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask)
# calculate Normalized Difference Modified Water Index (NIR - G)
im_wi = nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask)
# stack indices together
im_ind = np.stack((im_wi, im_mwi), axis=-1)
vec_ind = im_ind.reshape(nrows*ncols,2)
# reshape labels into vectors
vec_sand = im_labels[:,:,0].reshape(ncols*nrows)
vec_water = im_labels[:,:,2].reshape(ncols*nrows)
# create a buffer around the sandy beach
se = morphology.disk(buffer_size)
im_buffer = morphology.binary_dilation(im_labels[:,:,0], se)
vec_buffer = im_buffer.reshape(nrows*ncols)
# select water/sand/swash pixels that are within the buffer
int_water = vec_ind[np.logical_and(vec_buffer,vec_water),:]
int_sand = vec_ind[np.logical_and(vec_buffer,vec_sand),:]
# make sure both classes have the same number of pixels before thresholding
if len(int_water) > 0 and len(int_sand) > 0:
if np.argmin([int_sand.shape[0],int_water.shape[0]]) == 1:
if (int_sand.shape[0] - int_water.shape[0])/int_water.shape[0] > 0.5:
int_sand = int_sand[np.random.randint(0,int_sand.shape[0],int_water.shape[0]),:]
else:
if (int_water.shape[0] - int_sand.shape[0])/int_sand.shape[0] > 0.5:
int_water = int_water[np.random.randint(0,int_water.shape[0],int_sand.shape[0]),:]
# threshold the sand/water intensities
int_all = np.append(int_water,int_sand, axis=0)
t_mwi = filters.threshold_otsu(int_all[:,0])
t_wi = filters.threshold_otsu(int_all[:,1])
# find contour with MS algorithm
im_wi_buffer = np.copy(im_wi)
im_wi_buffer[~im_buffer] = np.nan
im_mwi_buffer = np.copy(im_mwi)
im_mwi_buffer[~im_buffer] = np.nan
contours_wi = measure.find_contours(im_wi_buffer, t_wi)
contours_mwi = measure.find_contours(im_mwi, t_mwi)
# remove contour points that are nans (around clouds)
contours = contours_wi
contours_nonans = []
for k in range(len(contours)):
if np.any(np.isnan(contours[k])):
index_nan = np.where(np.isnan(contours[k]))[0]
contours_temp = np.delete(contours[k], index_nan, axis=0)
if len(contours_temp) > 1:
contours_nonans.append(contours_temp)
else:
contours_nonans.append(contours[k])
contours_wi = contours_nonans
contours = contours_mwi
contours_nonans = []
for k in range(len(contours)):
if np.any(np.isnan(contours[k])):
index_nan = np.where(np.isnan(contours[k]))[0]
contours_temp = np.delete(contours[k], index_nan, axis=0)
if len(contours_temp) > 1:
contours_nonans.append(contours_temp)
else:
contours_nonans.append(contours[k])
contours_mwi = contours_nonans
return contours_wi, contours_mwi
def process_shoreline(contours, georef, image_epsg, settings):
# convert pixel coordinates to world coordinates
contours_world = SDS_tools.convert_pix2world(contours, georef)
# convert world coordinates to desired spatial reference system
contours_epsg = SDS_tools.convert_epsg(contours_world, image_epsg, settings['output_epsg'])
# remove contours that have a perimeter < min_length_wl (provided in settings dict)
# this enable to remove the very small contours that do not correspond to the shoreline
contours_long = []
for l, wl in enumerate(contours_epsg):
coords = [(wl[k,0], wl[k,1]) for k in range(len(wl))]
a = LineString(coords) # shapely LineString structure
if a.length >= settings['min_length_sl']:
contours_long.append(wl)
# format points into np.array
x_points = np.array([])
y_points = np.array([])
for k in range(len(contours_long)):
x_points = np.append(x_points,contours_long[k][:,0])
y_points = np.append(y_points,contours_long[k][:,1])
contours_array = np.transpose(np.array([x_points,y_points]))
# if reference shoreline has been manually digitised
if 'refsl' in settings.keys():
# only keep the points that are at a certain distance (define in settings) from the
# reference shoreline, enables to avoid false detections and remove obvious outliers
temp = np.zeros((len(contours_array))).astype(bool)
for k in range(len(settings['refsl'])):
temp = np.logical_or(np.linalg.norm(contours_array - settings['refsl'][k,[0,1]],
axis=1) < settings['max_dist_ref'], temp)
shoreline = contours_array[temp]
else:
shoreline = contours_array
return shoreline
def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef,
settings, date, satname):
# subfolder to store the .jpg files
filepath = os.path.join(os.getcwd(), 'data', settings['sitename'], 'jpg_files', 'detection')
# display RGB image
im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
# display classified image
im_class = np.copy(im_RGB)
cmap = cm.get_cmap('tab20c')
colorpalette = cmap(np.arange(0,13,1))
colours = np.zeros((3,4))
colours[0,:] = colorpalette[5]
colours[1,:] = np.array([204/255,1,1,1])
colours[2,:] = np.array([0,91/255,1,1])
for k in range(0,im_labels.shape[2]):
im_class[im_labels[:,:,k],0] = colours[k,0]
im_class[im_labels[:,:,k],1] = colours[k,1]
im_class[im_labels[:,:,k],2] = colours[k,2]
# display MNDWI grayscale image
im_mwi = nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# transform world coordinates of shoreline into pixel coordinates
sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline, settings['output_epsg'],
image_epsg)[:,[0,1]], georef)
# make figure
fig = plt.figure()
gs = gridspec.GridSpec(1, 3)
gs.update(bottom=0.05, top=0.95)
ax1 = fig.add_subplot(gs[0,0])
plt.imshow(im_RGB)
plt.plot(sl_pix[:,0], sl_pix[:,1], 'k--')
plt.axis('off')
ax1.set_anchor('W')
btn_keep = plt.text(0, 0.9, 'keep', size=16, ha="left", va="top",
transform=ax1.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
btn_skip = plt.text(1, 0.9, 'skip', size=16, ha="right", va="top",
transform=ax1.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
plt.title('Click on <keep> if shoreline detection is correct. Click on <skip> if false detection')
ax2 = fig.add_subplot(gs[0,1])
plt.imshow(im_class)
plt.plot(sl_pix[:,0], sl_pix[:,1], 'k--')
plt.axis('off')
ax2.set_anchor('W')
orange_patch = mpatches.Patch(color=colours[0,:], label='sand')
white_patch = mpatches.Patch(color=colours[1,:], label='whitewater')
blue_patch = mpatches.Patch(color=colours[2,:], label='water')
black_line = mlines.Line2D([],[],color='k',linestyle='--', label='shoreline')
plt.legend(handles=[orange_patch,white_patch,blue_patch, black_line], bbox_to_anchor=(1, 0.5), fontsize=9)
ax3 = fig.add_subplot(gs[0,2])
plt.imshow(im_mwi, cmap='bwr')
plt.plot(sl_pix[:,0], sl_pix[:,1], 'k--')
plt.axis('off')
cb = plt.colorbar()
cb.ax.tick_params(labelsize=10)
cb.set_label('MNDWI values')
ax3.set_anchor('W')
fig.set_size_inches([12.53, 9.3])
fig.set_tight_layout(True)
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
# wait for user's selection (<keep> or <skip>)
pt = ginput(n=1, timeout=100, show_clicks=True)
pt = np.array(pt)
# if clicks next to <skip>, return skip_image = True
if pt[0][0] > im_ms.shape[1]/2:
skip_image = True
plt.close()
else:
skip_image = False
ax1.set_title(date + ' ' + satname)
btn_skip.set_visible(False)
btn_keep.set_visible(False)
fig.savefig(os.path.join(filepath, date + '_' + satname + '.jpg'), dpi=150)
plt.close()
return skip_image
def extract_shorelines(metadata, settings):
sitename = settings['sitename']
# initialise output structure
out = dict([])
# create a subfolder to store the .jpg images showing the detection
filepath_jpg = os.path.join(os.getcwd(), 'data', sitename, 'jpg_files', 'detection')
try:
os.makedirs(filepath_jpg)
except:
print('')
# loop through satellite list
for satname in metadata.keys():
# access the images
if satname == 'L5':
# access downloaded Landsat 5 images
filepath = os.path.join(os.getcwd(), 'data', sitename, satname, '30m')
filenames = os.listdir(filepath)
elif satname == 'L7':
# access downloaded Landsat 7 images
filepath_pan = os.path.join(os.getcwd(), 'data', sitename, 'L7', 'pan')
filepath_ms = os.path.join(os.getcwd(), 'data', sitename, 'L7', 'ms')
filenames_pan = os.listdir(filepath_pan)
filenames_ms = os.listdir(filepath_ms)
if (not len(filenames_pan) == len(filenames_ms)):
raise 'error: not the same amount of files for pan and ms'
filepath = [filepath_pan, filepath_ms]
filenames = filenames_pan
elif satname == 'L8':
# access downloaded Landsat 7 images
filepath_pan = os.path.join(os.getcwd(), 'data', sitename, 'L8', 'pan')
filepath_ms = os.path.join(os.getcwd(), 'data', sitename, 'L8', 'ms')
filenames_pan = os.listdir(filepath_pan)
filenames_ms = os.listdir(filepath_ms)
if (not len(filenames_pan) == len(filenames_ms)):
raise 'error: not the same amount of files for pan and ms'
filepath = [filepath_pan, filepath_ms]
filenames = filenames_pan
elif satname == 'S2':
# access downloaded Sentinel 2 images
filepath10 = os.path.join(os.getcwd(), 'data', sitename, satname, '10m')
filenames10 = os.listdir(filepath10)
filepath20 = os.path.join(os.getcwd(), 'data', sitename, satname, '20m')
filenames20 = os.listdir(filepath20)
filepath60 = os.path.join(os.getcwd(), 'data', sitename, satname, '60m')
filenames60 = os.listdir(filepath60)
if (not len(filenames10) == len(filenames20)) or (not len(filenames20) == len(filenames60)):
raise 'error: not the same amount of files for 10, 20 and 60 m'
filepath = [filepath10, filepath20, filepath60]
filenames = filenames10
# initialise some variables
out_timestamp = [] # datetime at which the image was acquired (UTC time)
out_shoreline = [] # vector of shoreline points
out_filename = [] # filename of the images from which the shorelines where derived
out_cloudcover = [] # cloud cover of the images
out_geoaccuracy = []# georeferencing accuracy of the images
out_idxkeep = [] # index that were kept during the analysis (cloudy images are skipped)
# loop through the images
for i in range(len(filenames)):
# get image filename
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
# preprocess image (cloud mask + pansharpening/downsampling)
im_ms, georef, cloud_mask = SDS_preprocess.preprocess_single(fn, satname)
# get image spatial reference system (epsg code) from metadata dict
image_epsg = metadata[satname]['epsg'][i]
# calculate cloud cover
cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))),
(cloud_mask.shape[0]*cloud_mask.shape[1]))
# skip image if cloud cover is above threshold
if cloud_cover > settings['cloud_thresh']:
continue
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = classify_image_NN_nopan(im_ms, cloud_mask,
settings['min_beach_size'])
# extract water line contours
# if there aren't any sandy pixels, use find_wl_contours1 (traditional method),
# otherwise use find_wl_contours2 (enhanced method with classification)
if sum(sum(im_labels[:,:,0])) == 0 :
# compute MNDWI (SWIR-Green normalized index) grayscale image
im_mndwi = nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# find water contourson MNDWI grayscale image
contours_mwi = find_wl_contours1(im_mndwi, cloud_mask)
else:
# use classification to refine threshold and extract sand/water interface
contours_wi, contours_mwi = find_wl_contours2(im_ms, im_labels,
cloud_mask, settings['buffer_size'])
# extract clean shoreline from water contours
shoreline = process_shoreline(contours_mwi, georef, image_epsg, settings)
if settings['check_detection']:
date = filenames[i][:10]
skip_image = show_detection(im_ms, cloud_mask, im_labels, shoreline,
image_epsg, georef, settings, date, satname)
if skip_image:
continue
# fill and save output structure
out_timestamp.append(metadata[satname]['dates'][i])
out_shoreline.append(shoreline)
out_filename.append(filenames[i])
out_cloudcover.append(cloud_cover)
out_geoaccuracy.append(metadata[satname]['acc_georef'][i])
out_idxkeep.append(i)
out[satname] = {
'timestamp': out_timestamp,
'shoreline': out_shoreline,
'filename': out_filename,
'cloudcover': out_cloudcover,
'geoaccuracy': out_geoaccuracy,
'idxkeep': out_idxkeep
}
# add some metadata
out['meta'] = {
'timestamp': 'UTC time',
'shoreline': 'coordinate system epsg : ' + str(settings['output_epsg']),
'cloudcover': 'calculated on the cropped image',
'geoaccuracy': 'RMSE error based on GCPs',
'idxkeep': 'indices of the images that were kept to extract a shoreline'
}
# save output structure as out.pkl
filepath = os.path.join(os.getcwd(), 'data', sitename)
with open(os.path.join(filepath, sitename + '_out.pkl'), 'wb') as f:
pickle.dump(out, f)
return out

@ -0,0 +1,187 @@
"""This module contains utilities to work with satellite images'
Author: Kilian Vos, Water Research Laboratory, University of New South Wales
"""
# Initial settings
import os
import numpy as np
from osgeo import gdal, ogr, osr
import skimage.transform as transform
import simplekml
import pdb
# Functions
def convert_pix2world(points, georef):
"""
Converts pixel coordinates (row,columns) to world projected coordinates
performing an affine transformation.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.array
array with 2 columns (rows first and columns second)
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates, first columns with X and second column with Y
"""
# make affine transformation matrix
aff_mat = np.array([[georef[1], georef[2], georef[0]],
[georef[4], georef[5], georef[3]],
[0, 0, 1]])
# create affine transformation
tform = transform.AffineTransform(aff_mat)
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
tmp = arr[:,[1,0]]
points_converted.append(tform(tmp))
elif type(points) is np.ndarray:
tmp = points[:,[1,0]]
points_converted = tform(tmp)
else:
print('invalid input type')
raise
return points_converted
def convert_world2pix(points, georef):
"""
Converts world projected coordinates (X,Y) to image coordinates (row,column)
performing an affine transformation.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.array
array with 2 columns (rows first and columns second)
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates, first columns with row and second column with column
"""
# make affine transformation matrix
aff_mat = np.array([[georef[1], georef[2], georef[0]],
[georef[4], georef[5], georef[3]],
[0, 0, 1]])
# create affine transformation
tform = transform.AffineTransform(aff_mat)
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
points_converted.append(tform.inverse(points))
elif type(points) is np.ndarray:
points_converted = tform.inverse(points)
else:
print('invalid input type')
raise
return points_converted
def convert_epsg(points, epsg_in, epsg_out):
"""
Converts from one spatial reference to another using the epsg codes.
KV WRL 2018
Arguments:
-----------
points: np.array or list of np.ndarray
array with 2 columns (rows first and columns second)
epsg_in: int
epsg code of the spatial reference in which the input is
epsg_out: int
epsg code of the spatial reference in which the output will be
Returns: -----------
points_converted: np.array or list of np.array
converted coordinates
"""
# define input and output spatial references
inSpatialRef = osr.SpatialReference()
inSpatialRef.ImportFromEPSG(epsg_in)
outSpatialRef = osr.SpatialReference()
outSpatialRef.ImportFromEPSG(epsg_out)
# create a coordinates transform
coordTransform = osr.CoordinateTransformation(inSpatialRef, outSpatialRef)
# transform points
if type(points) is list:
points_converted = []
# iterate over the list
for i, arr in enumerate(points):
points_converted.append(np.array(coordTransform.TransformPoints(arr)))
elif type(points) is np.ndarray:
points_converted = np.array(coordTransform.TransformPoints(points))
else:
print('invalid input type')
raise
return points_converted
def coords_from_kml(fn):
# read .kml file
with open(fn) as kmlFile:
doc = kmlFile.read()
# parse to find coordinates field
str1 = '<coordinates>'
str2 = '</coordinates>'
subdoc = doc[doc.find(str1)+len(str1):doc.find(str2)]
coordlist = subdoc.split('\n')
polygon = []
for i in range(1,len(coordlist)-1):
polygon.append([float(coordlist[i].split(',')[0]), float(coordlist[i].split(',')[1])])
return [polygon]
def save_kml(coords, epsg):
kml = simplekml.Kml()
coords_wgs84 = convert_epsg(coords, epsg, 4326)
kml.newlinestring(name='coords', coords=coords_wgs84)
kml.save('coords.kml')
def get_filenames(filename, filepath, satname):
if satname == 'L5':
fn = os.path.join(filepath, filename)
if satname == 'L7' or satname == 'L8':
idx = filename.find('.tif')
filename_ms = filename[:idx-3] + 'ms.tif'
fn = [os.path.join(filepath[0], filename),
os.path.join(filepath[1], filename_ms)]
if satname == 'S2':
idx = filename.find('.tif')
filename20 = filename[:idx-3] + '20m.tif'
filename60 = filename[:idx-3] + '60m.tif'
fn = [os.path.join(filepath[0], filename),
os.path.join(filepath[1], filename20),
os.path.join(filepath[2], filename60)]
return fn

@ -0,0 +1,80 @@
#==========================================================#
# Shoreline extraction from satellite images
#==========================================================#
# load modules
import os
import pickle
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
import SDS_download, SDS_preprocess, SDS_shoreline
# define the area of interest (longitude, latitude)
polygon = [[[151.301454, -33.700754],
[151.311453, -33.702075],
[151.307237, -33.739761],
[151.294220, -33.736329],
[151.301454, -33.700754]]]
# define dates of interest
dates = ['2017-12-01', '2018-01-01']
# define satellite missions
sat_list = ['L5', 'L7', 'L8', 'S2']
# give a name to the site
sitename = 'NARRA'
# download satellite images (also saves metadata.pkl)
#SDS_download.get_images(sitename, polygon, dates, sat_list)
# load metadata structure (contains information on the downloaded satellite images and is created
# after all images have been successfully downloaded)
filepath = os.path.join(os.getcwd(), 'data', sitename)
with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'rb') as f:
metadata = pickle.load(f)
# parameters and settings
settings = {
'sitename': sitename,
# general parameters:
'cloud_thresh': 0.5, # threshold on maximum cloud cover
'output_epsg': 28356, # epsg code of the desired output spatial reference system
# shoreline detection parameters:
'min_beach_size': 20, # minimum number of connected pixels for a beach
'buffer_size': 7, # radius (in pixels) of disk for buffer around sandy pixels
'min_length_sl': 200, # minimum length of shoreline perimeter to be kept
'max_dist_ref': 100, # max distance (in meters) allowed from a reference shoreline
# quality control:
'check_detection': True # if True, shows each shoreline detection and lets the user
# decide which ones are correct and which ones are false due to
# the presence of clouds
}
# preprocess images (cloud masking, pansharpening/down-sampling)
SDS_preprocess.preprocess_all_images(metadata, settings)
# create a reference shoreline (used to identify outliers and false detections)
settings['refsl'] = SDS_preprocess.get_reference_sl(metadata, settings)
# extract shorelines from all images (also saves output.pkl)
out = SDS_shoreline.extract_shorelines(metadata, settings)
# plot shorelines
plt.figure()
plt.axis('equal')
plt.xlabel('Eastings [m]')
plt.ylabel('Northings [m]')
for satname in out.keys():
if satname == 'meta':
continue
for i in range(len(out[satname]['shoreline'])):
sl = out[satname]['shoreline'][i]
date = out[satname]['timestamp'][i]
plt.plot(sl[:, 0], sl[:, 1], '-', label=date.strftime('%d-%m-%Y'))
plt.legend()

@ -0,0 +1,199 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Shoreline extraction from satellite images"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook shows how to download satellite images (Landsat 5,7,8 and Sentinel-2) from Google Earth Engine and apply the shoreline detection algorithm described in *Vos K., Harley M.D., Splinter K.D., Simmons J.A., Turner I.L. (in review). Capturing intra-annual to multi-decadal shoreline variability from publicly available satellite imagery, Coastal Engineering*. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Initial settings"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Python packages required to run this notebook can be installed by running the following anaconda command:\n",
"*\"conda env create -f environment.yml\"*. This will create a new enviroment with all the relevant packages installed. You will also need to sign up for Google Earth Engine (https://earthengine.google.com and go to signup) and authenticate on the computer so that python can access via your login."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pickle\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"# load modules from directory\n",
"import SDS_download, SDS_preprocess, SDS_tools, SDS_shoreline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Download images"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Define the region of interest, the dates and the satellite missions from which you want to download images. The image will be cropped on the Google Earth Engine server and only the region of interest will be downloaded resulting in low memory allocation (~ 1 megabyte/image for 5 km of beach)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# define the area of interest (longitude, latitude)\n",
"polygon = [[[151.301454, -33.700754],\n",
" [151.311453, -33.702075], \n",
" [151.307237, -33.739761],\n",
" [151.294220, -33.736329],\n",
" [151.301454, -33.700754]]]\n",
" \n",
"# define dates of interest\n",
"dates = ['2017-12-01','2018-01-01']\n",
"\n",
"# define satellite missions ('L5' --> landsat 5 , 'S2' --> Sentinel-2)\n",
"sat_list = ['L5', 'L7', 'L8', 'S2']\n",
"\n",
"# give a name to the site\n",
"sitename = 'NARRA'\n",
"\n",
"# download satellite images. The cropped images are saved in a '/data' subfolder. The image information is stored\n",
"# into 'metadata.pkl'.\n",
"# SDS_download.get_images(sitename, polygon, dates, sat_list)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Shoreline extraction"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Performs a sub-pixel resolution shoreline detection method integrating a supervised classification component that allows to map the boundary between water and sand."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# parameters and settings\n",
"%matplotlib qt\n",
"settings = { \n",
" 'sitename': sitename,\n",
" \n",
" # general parameters:\n",
" 'cloud_thresh': 0.5, # threshold on maximum cloud cover\n",
" 'output_epsg': 28356, # epsg code of the desired output spatial reference system\n",
" \n",
" # shoreline detection parameters:\n",
" 'min_beach_size': 20, # minimum number of connected pixels for a beach\n",
" 'buffer_size': 7, # radius (in pixels) of disk for buffer around sandy pixels\n",
" 'min_length_sl': 200, # minimum length of shoreline perimeter to be kept \n",
" 'max_dist_ref': 100 , # max distance (in meters) allowed from a reference shoreline\n",
" \n",
" # quality control:\n",
" 'check_detection': True # if True, shows each shoreline detection and lets the user \n",
" # decide which shorleines are correct and which ones are false due to\n",
" # the presence of clouds and other artefacts. \n",
" # If set to False, shorelines are extracted from all images.\n",
" }\n",
"\n",
"# load metadata structure (contains information on the downloaded satellite images and is created\n",
"# after all images have been successfully downloaded)\n",
"filepath = os.path.join(os.getcwd(), 'data', settings['sitename'])\n",
"with open(os.path.join(filepath, settings['sitename'] + '_metadata' + '.pkl'), 'rb') as f:\n",
" metadata = pickle.load(f)\n",
" \n",
"# [OPTIONAL] saves .jpg files of the preprocessed images (cloud mask and pansharpening/down-sampling) \n",
"#SDS_preprocess.preprocess_all_images(metadata, settings)\n",
"\n",
"# [OPTIONAL] to avoid false detections and identify obvious outliers there is the option to\n",
"# create a reference shoreline position (manually clicking on a satellite image)\n",
"settings['refsl'] = SDS_preprocess.get_reference_sl(metadata, settings)\n",
"\n",
"# extract shorelines from all images. Saves out.pkl which contains the shoreline coordinates for each date in the spatial\n",
"# reference system specified in settings['output_epsg']. Save the output in a file called 'out.pkl'.\n",
"out = SDS_shoreline.extract_shorelines(metadata, settings)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Plot the shorelines"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.axis('equal')\n",
"plt.xlabel('Eastings [m]')\n",
"plt.ylabel('Northings [m]')\n",
"plt.title('Shorelines')\n",
"for satname in out.keys():\n",
" if satname == 'meta':\n",
" continue\n",
" for i in range(len(out[satname]['shoreline'])):\n",
" sl = out[satname]['shoreline'][i]\n",
" date = out[satname]['timestamp'][i]\n",
" plt.plot(sl[:,0], sl[:,1], '-', label=date.strftime('%d-%m-%Y'))\n",
"plt.legend()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading…
Cancel
Save