sds interpolation on 3d quadbike surface

development
Kilian Vos 7 years ago
parent 1093ecfeba
commit 39c5bb05e1

@ -9,7 +9,6 @@ Contains all the utilities, convenience functions and small functions that do si
import matplotlib.pyplot as plt
import numpy as np
import datetime
import pdb

@ -17,15 +17,9 @@ from datetime import datetime, timedelta
import pickle
import pytz
import scipy.io as sio
import scipy.interpolate as interpolate
import statsmodels.api as sm
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import skimage.morphology as morphology
import skimage.measure as measure
import sklearn.decomposition as decomposition
from scipy import spatial
# my functions
import functions.utils as utils
import functions.sds as sds
@ -65,6 +59,8 @@ dates_wave = [datetime(wave_data['dates'][i,0], wave_data['dates'][i,1],
wave_data['dates'][i,4], wave_data['dates'][i,5],
tzinfo=au_tz) for i in idx]
#%% make a plot of all the dates
orange = [255/255,140/255,0]
blue = [0,191/255,255/255]
f = plt.figure()
months = mdates.MonthLocator()
month_fmt = mdates.DateFormatter('%b %Y')
@ -80,18 +76,18 @@ for k in range(len(years)):
for j in range(len(dates_quad)):
if dates_quad[j].year == sel_year:
if cbool:
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=[255/255,140/255,0], label='survey')
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange, label='survey')
cbool = False
else:
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=[255/255,140/255,0])
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange)
cbool = True
for j in range(len(dates_l8)):
if dates_l8[j].year == sel_year:
if cbool:
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=[0,191/255,255/255], label='landsat8')
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue, label='landsat8')
cbool = False
else:
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=[0,191/255,255/255])
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue)
if k == 3:
plt.legend()
plt.xlim((datetime(sel_year,1,1), datetime(sel_year,12,31, tzinfo=au_tz)))
@ -101,9 +97,7 @@ for k in range(len(years)):
ax.xaxis.set_major_formatter(month_fmt)
f.subplots_adjust(hspace=0.2)
plt.draw()
#%%
# calculate days difference
#%% calculate days difference
diff_days = [ [(x - _).days for _ in dates_quad] for x in dates_l8]
max_diff = 5
idx_closest = [utils.find_indices(_, lambda e: abs(e) <= max_diff) for _ in diff_days]
@ -126,7 +120,11 @@ for i in range(len(idx_closest)):
np.mean([ np.abs(_['days diff']) for _ in dates_diff])
#%%
#%% compare shorelines
dist_thresh = 200 # maximum distance between an sds point and a narrabeen point
frac_smooth = 1./12 # fraction of the data used for smoothing (the bigger the smoother)
dist_buffer = 50 # buffer of points selected for interpolation
# load quadbike .mat files
foldername = 'data\quadbike\surveys3D'
@ -136,43 +134,88 @@ filenames = os.listdir(folderpath)
# load the satellite shorelines
sl = output['shorelines']
# load narrabeen beach points (manually digitized)
with open(os.path.join(os.getcwd(), 'olddata', 'narra_beach' + '.pkl'), 'rb') as f:
narrabeach = pickle.load(f)
dates_quad = [datetime(int(_[6:10]), int(_[11:13]), int(_[14:16]), tzinfo= au_tz) for _ in filenames]
# for each satellite shoreline, load the corresponding 3D survey
zav = []
for i in range(len(dates_diff)):
# select closest 3D survey
idx_closest = np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).days for _ in dates_quad])))
survey3d = sio.loadmat(os.path.join(folderpath, filenames[idx_closest]))
xs = survey3d['x'].reshape(survey3d['x'].shape[0] * survey3d['x'].shape[1])
ys = survey3d['y'].reshape(survey3d['y'].shape[0] * survey3d['y'].shape[1])
zs = survey3d['z'].reshape(survey3d['z'].shape[0] * survey3d['z'].shape[1])
idx_nan = np.isnan(zs)
xs = xs[~idx_nan]
ys = ys[~idx_nan]
zs = zs[~idx_nan]
# smooth (LOWESS) satellite shoreline
idx_beach = [np.min(np.linalg.norm(sl[i][k,:] - narrabeach, axis=1)) < dist_thresh for k in range(sl[i].shape[0])]
sl_smooth = sm.nonparametric.lowess(sl[i][idx_beach,0],sl[i][idx_beach,1], frac=frac_smooth, it = 6)
sl_smooth = sl_smooth[:,[1,0]]
# make plot
plt.figure()
plt.axis('equal')
plt.scatter(survey3d['x'], survey3d['y'], s=10, c=survey3d['z'], marker='o', cmap=cm.get_cmap('jet'),
plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
label='quad data')
plt.plot(sl[i][:,0], sl[i][:,1], 'ko')
plt.plot(sl[i][idx_beach,0], sl[i][idx_beach,1], 'ko-', markersize=3)
plt.plot(sl_smooth[:,0], sl_smooth[:,1], 'ro-', markersize=3)
plt.xlabel('Eastings [m]')
plt.ylabel('Northings [m]')
plt.title('Local weighted scatterplot smoothing (LOWESS)')
plt.draw()
import statsmodels.api as sm
lowess = sm.nonparametric.lowess
zq = np.zeros((sl_smooth.shape[0], 1))
for j in range(sl_smooth.shape[0]):
xq = sl_smooth[j,0]
yq = sl_smooth[j,1]
dist_q = np.linalg.norm(np.transpose(np.array([[xq - _ for _ in xs],[yq - _ for _ in ys]])), axis=1)
idx_buffer = dist_q <= dist_buffer
# plt.figure()
# plt.axis('equal')
# plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
# label='quad data')
# plt.plot(xs[idx_buffer], ys[idx_buffer], 'ko')
# plt.plot(xq,yq,'ro')
# plt.draw()
tck = interpolate.bisplrep(xs[idx_buffer], ys[idx_buffer], zs[idx_buffer])
zq[j] = interpolate.bisplev(xq, yq, tck)
zav.append(np.median(zq))
plt.figure()
plt.plot(sl_smooth[:,1], zq, 'ko-', markersize=5)
plt.plot([sl_smooth[0,1], sl_smooth[-1,1]], [zav[i], zav[i]], 'r--')
plt.xlabel('Northings [m]')
plt.ylabel('Elevation [mAHD]')
plt.title('Interpolated SDS elevation')
plt.draw()
#%%
i = 0
lowess = sm.nonparametric.lowess
x = sl[i][idx_beach,0]
y = sl[i][idx_beach,1]
sl_smooth = lowess(x,y, frac=1./15, it = 6)
# For the 1D case:
x = sl[i][:,0]
y = sl[i][:,1]
x0 = x
f_hat = lo.lowess(x, y, x)
fig,ax = plt.subplots(1)
ax.scatter(x,y)
ax.plot(x0,f_hat,'ro')
plt.show()
# 2D case (and more...)
x = np.random.randn(2, 100)
f = -1 * np.sin(x[0]) + 0.5 * np.cos(x[1]) + 0.2*np.random.randn(100)
x0 = np.mgrid[-1:1:.1, -1:1:.1]
x0 = np.vstack([x0[0].ravel(), x0[1].ravel()])
f_hat = lo.lowess(x, f, x0, kernel=lo.tri_cube)
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x[0], x[1], f)
ax.scatter(x0[0], x0[1], f_hat, color='r')
plt.figure()
plt.axis('equal')
plt.scatter
plt.plot(x,y,'bo-', linewidth=2, marker='o',
color='b', label='original')
plt.plot(sl_smooth[:,1], sl_smooth[:,0], linewidth=2, marker='o',
color='r', label='smooth')
plt.legend()
plt.xlabel('Eastings [m]')
plt.ylabel('Northings [m]')
plt.title('Local weighted scatterplot smoothing (LOWESS)')
plt.draw()

Loading…
Cancel
Save