You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
geetools_VH/download_images.py

118 lines
3.7 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Tue Mar 27 17:12:35 2018
@author: Kilian
"""
# Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
import pdb
import ee
# other modules
from osgeo import gdal, ogr, osr
from urllib.request import urlretrieve
import zipfile
from datetime import datetime
import pytz
import pickle
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
# import own modules
7 years ago
import functions.utils as utils
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
ee.Initialize()
def download_tif(image, polygon, bandsId, filepath):
"""downloads tif image (region and bands) from the ee server and stores it in a temp file"""
url = ee.data.makeDownloadUrl(ee.data.getDownloadId({
'image': image.serialize(),
'region': polygon,
'bands': bandsId,
'filePerBand': 'false',
'name': 'data',
}))
local_zip, headers = urlretrieve(url)
with zipfile.ZipFile(local_zip) as local_zipfile:
return local_zipfile.extract('data.tif', filepath)
# select collection
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
# location (Narrabeen-Collaroy beach)
rect_narra = [[[151.301454, -33.700754],
[151.311453, -33.702075],
[151.307237, -33.739761],
[151.294220, -33.736329],
[151.301454, -33.700754]]];
# dates
7 years ago
#start_date = '2016-01-01'
#end_date = '2016-12-31'
# filter by location
7 years ago
flt_col = input_col.filterBounds(ee.Geometry.Polygon(rect_narra))#.filterDate(start_date, end_date)
n_img = flt_col.size().getInfo()
print('Number of images covering Narrabeen:', n_img)
im_all = flt_col.getInfo().get('features')
satname = 'L8'
sitename = 'NARRA'
suffix = '.tif'
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
filepath_pan = os.path.join(filepath, 'pan')
filepath_ms = os.path.join(filepath, 'ms')
all_names_pan = []
all_names_ms = []
timestamps = []
# loop through all images
for i in range(n_img):
# find each image in ee database
im = ee.Image(im_all[i].get('id'))
im_dic = im.getInfo()
im_bands = im_dic.get('bands')
im_date = im_dic['properties']['DATE_ACQUIRED']
t = im_dic['properties']['system:time_start']
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
timestamps.append(im_timestamp)
im_epsg = int(im_dic['bands'][0]['crs'][5:])
# delete dimensions key from dictionnary, otherwise the entire image is extracted
for j in range(len(im_bands)): del im_bands[j]['dimensions']
pan_band = [im_bands[7]]
ms_bands = [im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[5], im_bands[11]]
filename_pan = satname + '_' + sitename + '_' + im_date + '_pan' + suffix
filename_ms = satname + '_' + sitename + '_' + im_date + '_ms' + suffix
print(i)
if any(filename_pan in _ for _ in all_names_pan):
filename_pan = satname + '_' + sitename + '_' + im_date + '_pan' + '_r' + suffix
filename_ms = satname + '_' + sitename + '_' + im_date + '_ms' + '_r' + suffix
all_names_pan.append(filename_pan)
7 years ago
local_data_pan = download_tif(im, rect_narra, pan_band, filepath_pan)
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
local_data_ms = download_tif(im, rect_narra, ms_bands, filepath_ms)
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
with open(os.path.join(filepath, sitename + '_timestamps' + '.pkl'), 'wb') as f:
pickle.dump(timestamps, f)
with open(os.path.join(filepath, sitename + '_epsgcode' + '.pkl'), 'wb') as f:
pickle.dump(im_epsg, f)