new implementation

development
Kilian Vos 7 years ago
parent ec290ab323
commit eecdb485fc

@ -0,0 +1,118 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 27 17:12:35 2018
@author: Kilian
"""
# Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
import pdb
import ee
# other modules
from osgeo import gdal, ogr, osr
from urllib.request import urlretrieve
import zipfile
from datetime import datetime
import pytz
import pickle
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
# import own modules
from functions.utils import *
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
ee.Initialize()
def download_tif(image, polygon, bandsId, filepath):
"""downloads tif image (region and bands) from the ee server and stores it in a temp file"""
url = ee.data.makeDownloadUrl(ee.data.getDownloadId({
'image': image.serialize(),
'region': polygon,
'bands': bandsId,
'filePerBand': 'false',
'name': 'data',
}))
local_zip, headers = urlretrieve(url)
with zipfile.ZipFile(local_zip) as local_zipfile:
return local_zipfile.extract('data.tif', filepath)
# select collection
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
# location (Narrabeen-Collaroy beach)
rect_narra = [[[151.301454, -33.700754],
[151.311453, -33.702075],
[151.307237, -33.739761],
[151.294220, -33.736329],
[151.301454, -33.700754]]];
# dates
start_date = '2016-01-01'
end_date = '2016-12-31'
# filter by location
flt_col = input_col.filterBounds(ee.Geometry.Polygon(rect_narra)).filterDate(start_date, end_date)
n_img = flt_col.size().getInfo()
print('Number of images covering Narrabeen:', n_img)
im_all = flt_col.getInfo().get('features')
satname = 'L8'
sitename = 'NARRA'
suffix = '.tif'
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
filepath_pan = os.path.join(filepath, 'pan')
filepath_ms = os.path.join(filepath, 'ms')
all_names_pan = []
all_names_ms = []
timestamps = []
# loop through all images
for i in range(n_img):
# find each image in ee database
im = ee.Image(im_all[i].get('id'))
im_dic = im.getInfo()
im_bands = im_dic.get('bands')
im_date = im_dic['properties']['DATE_ACQUIRED']
t = im_dic['properties']['system:time_start']
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
timestamps.append(im_timestamp)
im_epsg = int(im_dic['bands'][0]['crs'][5:])
# delete dimensions key from dictionnary, otherwise the entire image is extracted
for j in range(len(im_bands)): del im_bands[j]['dimensions']
pan_band = [im_bands[7]]
ms_bands = [im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[5], im_bands[11]]
filename_pan = satname + '_' + sitename + '_' + im_date + '_pan' + suffix
filename_ms = satname + '_' + sitename + '_' + im_date + '_ms' + suffix
print(i)
if any(filename_pan in _ for _ in all_names_pan):
filename_pan = satname + '_' + sitename + '_' + im_date + '_pan' + '_r' + suffix
filename_ms = satname + '_' + sitename + '_' + im_date + '_ms' + '_r' + suffix
all_names_pan.append(filename_pan)
# local_data_pan = download_tif(im, rect_narra, pan_band, filepath_pan)
# os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
# local_data_ms = download_tif(im, rect_narra, ms_bands, filepath_ms)
# os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
with open(os.path.join(filepath, sitename + '_timestamps' + '.pkl'), 'wb') as f:
pickle.dump(timestamps, f)
with open(os.path.join(filepath, sitename + '_epsgcode' + '.pkl'), 'wb') as f:
pickle.dump(im_epsg, f)

@ -0,0 +1,140 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 27 17:12:35 2018
@author: Kilian
"""
# Initial settings
import os
import numpy as np
import matplotlib.pyplot as plt
import ee
import pdb
# other modules
from osgeo import gdal, ogr, osr
import pickle
import matplotlib.cm as cm
from pylab import ginput
# image processing modules
import skimage.filters as filters
import skimage.exposure as exposure
import skimage.transform as transform
import sklearn.decomposition as decomposition
import skimage.measure as measure
# import own modules
import functions.utils as utils
import functions.sds as sds
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
ee.Initialize()
# initial settings
cloud_thresh = 0.5 # threshold for cloud cover
plot_bool = False # if you want the plots
prob_high = 99.9 # upper probability to clip and rescale pixel intensity
min_contour_points = 100# minimum number of points contained in each water line
output_epsg = 28356 # GDA94 / MGA Zone 56
satname = 'L8'
sitename = 'NARRA'
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
with open(os.path.join(filepath, sitename + '_timestamps' + '.pkl'), 'rb') as f:
timestamps = pickle.load(f)
timestamps_sorted = sorted(timestamps)
with open(os.path.join(filepath, sitename + '_epsgcode' + '.pkl'), 'rb') as f:
input_epsg = pickle.load(f)
file_path_pan = os.path.join(os.getcwd(), 'data', 'L8', 'NARRA', 'pan')
file_path_ms = os.path.join(os.getcwd(), 'data', 'L8', 'NARRA', 'ms')
file_names_pan = os.listdir(file_path_pan)
file_names_ms = os.listdir(file_path_ms)
N = len(file_names_pan)
idx_high_cloud = []
t = []
shorelines = []
for i in range(N):
# read pan image
fn_pan = os.path.join(file_path_pan, file_names_pan[i])
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
georef = np.array(data.GetGeoTransform())
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
im_pan = np.stack(bands, 2)[:,:,0]
# read ms image
fn_ms = os.path.join(file_path_ms, file_names_ms[i])
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
bands = [data.GetRasterBand(i + 1).ReadAsArray() for i in range(data.RasterCount)]
im_ms = np.stack(bands, 2)
# cloud mask
im_qa = im_ms[:,:,5]
cloud_mask = sds.create_cloud_mask(im_qa)
cloud_mask = transform.resize(cloud_mask, (im_pan.shape[0], im_pan.shape[1]),
order=0, preserve_range=True,
mode='constant').astype('bool_')
# resize the image using bilinear interpolation (order 1)
im_ms = transform.resize(im_ms,(im_pan.shape[0], im_pan.shape[1]),
order=1, preserve_range=True, mode='constant')
# check if -inf or nan values and add to cloud mask
im_inf = np.isin(im_ms[:,:,0], -np.inf)
im_nan = np.isnan(im_ms[:,:,0])
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
cloud_content = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
if cloud_content > cloud_thresh:
print('skipped ' + str(i))
idx_high_cloud.append(i)
continue
# rescale intensities
im_ms = sds.rescale_image_intensity(im_ms, cloud_mask, prob_high, plot_bool)
im_pan = sds.rescale_image_intensity(im_pan, cloud_mask, prob_high, plot_bool)
# pansharpen rgb image
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
# add down-sized bands for NIR and SWIR (since pansharpening is not possible)
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
# calculate NDWI
im_ndwi = sds.nd_index(im_ms_ps[:,:,3], im_ms_ps[:,:,1], cloud_mask, plot_bool)
# detect edges
wl_pix = sds.find_wl_contours(im_ndwi, cloud_mask, min_contour_points, plot_bool)
# convert from pixels to world coordinates
wl_coords = sds.convert_pix2world(wl_pix, georef)
# convert to output epsg spatial reference
wl = sds.convert_epsg(wl_coords, input_epsg, output_epsg)
# plt.figure()
# plt.imshow(im_ms_ps[:,:,[2,1,0]])
# for i,contour in enumerate(wl_pix): plt.plot(contour[:, 1], contour[:, 0], linewidth=2)
# plt.axis('image')
# plt.title(file_names_pan[i])
# plt.show()
plt.figure()
centroids = []
cmap = cm.get_cmap('jet')
for j,contour in enumerate(wl):
colours = cmap(np.linspace(0, 1, num=len(wl)))
centroids.append([np.mean(contour[:, 0]),np.mean(contour[:, 1])])
plt.plot(contour[:, 0], contour[:, 1], linewidth=2, color=colours[j,:])
plt.plot(np.mean(contour[:, 0]), np.mean(contour[:, 1]), 'o', color=colours[j,:])
plt.axis('equal')
plt.title(file_names_pan[i])
plt.draw()
pt_in = np.array(ginput(1))
dist_centroid = [np.linalg.norm(_ - pt_in) for _ in centroids]
shorelines.append(wl[np.argmin(dist_centroid)])
t.append(timestamps_sorted[i])
#plt.figure()
#plt.axis('equal')
#for j in range(len(shorelines)):
# plt.plot(shorelines[j][:,0], shorelines[j][:,1])
#plt.draw()
output = {'t':t, 'shorelines':shorelines}
with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'wb') as f:
pickle.dump(output, f)
Loading…
Cancel
Save