@ -147,7 +147,7 @@ if S['include_boundary_flows'].lower() == 'yes':
 
		
	
		
			
				        df  =  df . drop ( [ ' Q[ML/d] ' ,  key ] ,  axis  =  1 ) 
 
		
	
		
			
				        #increase river temperature by Delta 
 
		
	
		
			
				        if  S [ ' Increase_riv_temp ' ]  ==  ' yes ' : 
 
		
	
		
			
				            df [ ' Temperature ' ]  =  df [ ' Temperature ' ]  +  S [ ' Riv_temp_increase ' ] 
 
		
	
		
			
				            df [ ' Temperature ' ]  =  df [ ' Temperature ' ]  +  float ( S [ ' Riv_temp_increase ' ] ) 
 
		
	
		
			
				        wq_timeseries [ key ]  =   df 
 
		
	
		
			
				        
 
		
	
		
			
				        
 
		
	
	
		
			
				
					
						
							
								 
						
						
							
								 
						
						
					 
				
			
			@ -174,7 +174,7 @@ if S['include_CC_wq'].lower() == 'yes':
 
		
	
		
			
				        df . index  =   df . index  +  ( start_date  -  pres_start_date ) 
 
		
	
		
			
				        #increase temperature by Delta 
 
		
	
		
			
				        if  S [ ' Increase_SST_temp ' ]  ==  ' yes ' : 
 
		
	
		
			
				            df [ ' Temperature ' ]  =  df [ ' Temperature ' ]  +  S [ ' SST_increase ' ] 
 
		
	
		
			
				            df [ ' Temperature ' ]  =  df [ ' Temperature ' ]  +  float ( S [ ' SST_increase ' ] ) 
 
		
	
		
			
				        CC_timeseries [ key ]  =  df . copy ( ) 
 
		
	
		
			
				
 
		
	
		
			
				# Read WWTP data from setup file  
		
	
	
		
			
				
					
						
							
								 
						
						
							
								 
						
						
					 
				
			
			@ -210,9 +210,13 @@ if S['include_wwtp_flows'].lower() == 'yes':
 
		
	
		
			
				        # Convert from ML/day to m3/s 
 
		
	
		
			
				        df [ key ]  =  df [ [ ' Q[ML/d] ' ] ]  *  1000  /  24  /  3600 
 
		
	
		
			
				        
 
		
	
		
			
				        #Shift the water quality time series data frame by  
 
		
	
		
			
				        df . index  =   df . index  +  ( start_date  -  pres_start_date ) 
 
		
	
		
			
				
 
		
	
		
			
				        # Add to inflow time series dataframes 
 
		
	
		
			
				        inflow_timeseries  =  inflow_timeseries . join ( df [ [ key ] ] ) 
 
		
	
		
			
				        
 
		
	
		
			
				
 
		
	
		
			
				        # Add to water quality timeseries 
 
		
	
		
			
				        wq_timeseries [ key ]  =  df . drop ( [ ' Q[ML/d] ' ,  key ] ,  axis  =  1 ) 
 
		
	
		
			
				
 
		
	
	
		
			
				
					
						
						
						
							
								 
						
					 
				
			
			@ -224,7 +228,10 @@ rain_master = pd.read_csv(
 
		
	
		
			
				
 
		
	
		
			
				# Trim climate data to current date range  
		
	
		
			
				eto_master  =  eto_master [ start_date : end_date ]  
		
	
		
			
				eto_master  =  eto_master . iloc [ : , 0 : 25 ]  
		
	
		
			
				rain_master  =  rain_master [ start_date : end_date ]  
		
	
		
			
				rain_master  =  rain_master . iloc [ : , 0 : 25 ]  
		
	
		
			
				
 
		
	
		
			
				#inflow_timeseries.index.difference(rain_master.index)  
		
	
		
			
				
 
		
	
		
			
				
 
		
	
	
		
			
				
					
						
							
								 
						
						
							
								 
						
						
					 
				
			
			@ -593,7 +600,7 @@ if S['include_WQ'].lower() == 'yes':
 
		
	
		
			
				        wq . index  =  np . tile ( i ,  wq . shape [ 0 ] ) 
 
		
	
		
			
				        wq_df  =  wq_df . append ( wq ) 
 
		
	
		
			
				    #Shift the water quality time series data frame by  
 
		
	
		
			
				    wq_df . index  =   wq_df . index  +  ( start_date  -  pres_start_date )  
 
		
	
		
			
				    #wq_df.index =  wq_df.index + (start_date - pres_start_date)  
 
		
	
		
			
				
 
		
	
		
			
				# Write element inflows for RMA  
		
	
		
			
				# Consolidate inflow elements in RMA mesh (only include those with inflows)  
		
	
	
		
			
				
					
						
							
								 
						
						
							
								 
						
						
					 
				
			
			@ -644,9 +651,8 @@ for current_year in range(start_date.year, end_date.year + 1):
 
		
	
		
			
				
 
		
	
		
			
				            if  S [ ' include_WQ ' ] . lower ( )  ==  ' yes ' : 
 
		
	
		
			
				                # Get water quality values for current day 
 
		
	
		
			
				                #wq = wq_df.loc[index, :].set_index('constituent') 
 
		
	
		
			
				                index  +  100 
 
		
	
		
			
				                wq  =  wq_df [ wq_df . index  ==  index ] . set_index ( ' constituent ' )   #TH I changed this since the constituent part did not work here.  
 
		
	
		
			
				                wq  =  wq_df . loc [ index ,  : ] . set_index ( ' constituent ' ) 
 
		
	
		
			
				                #wq = wq_df[wq_df.index == index].set_index('constituent')  #TH I changed this since the constituent part did not work here.  
 
		
	
		
			
				                # Get names of WWTP, catchment, and boundaries at current element 
 
		
	
		
			
				                try : 
 
		
	
		
			
				                    w_names  =  [ x  for  x  in  q_names  if  x  in  wwtp_data . keys ( ) ]