@ -147,7 +147,7 @@ if S['include_boundary_flows'].lower() == 'yes':
df = df . drop ( [ ' Q[ML/d] ' , key ] , axis = 1 )
df = df . drop ( [ ' Q[ML/d] ' , key ] , axis = 1 )
#increase river temperature by Delta
#increase river temperature by Delta
if S [ ' Increase_riv_temp ' ] == ' yes ' :
if S [ ' Increase_riv_temp ' ] == ' yes ' :
df [ ' Temperature ' ] = df [ ' Temperature ' ] + S [ ' Riv_temp_increase ' ]
df [ ' Temperature ' ] = df [ ' Temperature ' ] + float ( S [ ' Riv_temp_increase ' ] )
wq_timeseries [ key ] = df
wq_timeseries [ key ] = df
@ -174,7 +174,7 @@ if S['include_CC_wq'].lower() == 'yes':
df . index = df . index + ( start_date - pres_start_date )
df . index = df . index + ( start_date - pres_start_date )
#increase temperature by Delta
#increase temperature by Delta
if S [ ' Increase_SST_temp ' ] == ' yes ' :
if S [ ' Increase_SST_temp ' ] == ' yes ' :
df [ ' Temperature ' ] = df [ ' Temperature ' ] + S [ ' SST_increase ' ]
df [ ' Temperature ' ] = df [ ' Temperature ' ] + float ( S [ ' SST_increase ' ] )
CC_timeseries [ key ] = df . copy ( )
CC_timeseries [ key ] = df . copy ( )
# Read WWTP data from setup file
# Read WWTP data from setup file
@ -209,9 +209,13 @@ if S['include_wwtp_flows'].lower() == 'yes':
# Convert from ML/day to m3/s
# Convert from ML/day to m3/s
df [ key ] = df [ [ ' Q[ML/d] ' ] ] * 1000 / 24 / 3600
df [ key ] = df [ [ ' Q[ML/d] ' ] ] * 1000 / 24 / 3600
#Shift the water quality time series data frame by
df . index = df . index + ( start_date - pres_start_date )
# Add to inflow time series dataframes
# Add to inflow time series dataframes
inflow_timeseries = inflow_timeseries . join ( df [ [ key ] ] )
inflow_timeseries = inflow_timeseries . join ( df [ [ key ] ] )
# Add to water quality timeseries
# Add to water quality timeseries
wq_timeseries [ key ] = df . drop ( [ ' Q[ML/d] ' , key ] , axis = 1 )
wq_timeseries [ key ] = df . drop ( [ ' Q[ML/d] ' , key ] , axis = 1 )
@ -224,7 +228,10 @@ rain_master = pd.read_csv(
# Trim climate data to current date range
# Trim climate data to current date range
eto_master = eto_master [ start_date : end_date ]
eto_master = eto_master [ start_date : end_date ]
eto_master = eto_master . iloc [ : , 0 : 25 ]
rain_master = rain_master [ start_date : end_date ]
rain_master = rain_master [ start_date : end_date ]
rain_master = rain_master . iloc [ : , 0 : 25 ]
#inflow_timeseries.index.difference(rain_master.index)
#inflow_timeseries.index.difference(rain_master.index)
@ -593,7 +600,7 @@ if S['include_WQ'].lower() == 'yes':
wq . index = np . tile ( i , wq . shape [ 0 ] )
wq . index = np . tile ( i , wq . shape [ 0 ] )
wq_df = wq_df . append ( wq )
wq_df = wq_df . append ( wq )
#Shift the water quality time series data frame by
#Shift the water quality time series data frame by
wq_df . index = wq_df . index + ( start_date - pres_start_date )
#wq_df.index = wq_df.index + (start_date - pres_start_date)
# Write element inflows for RMA
# Write element inflows for RMA
# Consolidate inflow elements in RMA mesh (only include those with inflows)
# Consolidate inflow elements in RMA mesh (only include those with inflows)
@ -644,9 +651,8 @@ for current_year in range(start_date.year, end_date.year + 1):
if S [ ' include_WQ ' ] . lower ( ) == ' yes ' :
if S [ ' include_WQ ' ] . lower ( ) == ' yes ' :
# Get water quality values for current day
# Get water quality values for current day
#wq = wq_df.loc[index, :].set_index('constituent')
wq = wq_df . loc [ index , : ] . set_index ( ' constituent ' )
index + 100
#wq = wq_df[wq_df.index == index].set_index('constituent') #TH I changed this since the constituent part did not work here.
wq = wq_df [ wq_df . index == index ] . set_index ( ' constituent ' ) #TH I changed this since the constituent part did not work here.
# Get names of WWTP, catchment, and boundaries at current element
# Get names of WWTP, catchment, and boundaries at current element
try :
try :
w_names = [ x for x in q_names if x in wwtp_data . keys ( ) ]
w_names = [ x for x in q_names if x in wwtp_data . keys ( ) ]