|
|
@ -11,11 +11,6 @@ import pyrma.pyrma
|
|
|
|
|
|
|
|
|
|
|
|
path = "C:/Users/z5025317/OneDrive - UNSW/Hunter_CC_Modeling/07_Modelling/01_Input/BCGeneration/"
|
|
|
|
path = "C:/Users/z5025317/OneDrive - UNSW/Hunter_CC_Modeling/07_Modelling/01_Input/BCGeneration/"
|
|
|
|
|
|
|
|
|
|
|
|
###Input parameters for Climate change runs
|
|
|
|
|
|
|
|
pres_start_date = datetime(int(1995), int('1'), int('1'))
|
|
|
|
|
|
|
|
pres_end_date = datetime(int(2005), int('12'), int('31'))
|
|
|
|
|
|
|
|
River_temp_increase = 0.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Load project settings
|
|
|
|
# Load project settings
|
|
|
|
# Establish the settings and run parameters (see the description of
|
|
|
|
# Establish the settings and run parameters (see the description of
|
|
|
|
# settings that are in header of this code)
|
|
|
|
# settings that are in header of this code)
|
|
|
@ -92,6 +87,11 @@ start_date = datetime(int(S['start_year']), int(S['start_month']), int(S['start_
|
|
|
|
end_date = datetime(int(S['end_year']), int(S['end_month']), int(S['end_day']))
|
|
|
|
end_date = datetime(int(S['end_year']), int(S['end_month']), int(S['end_day']))
|
|
|
|
inflow_timeseries = pd.DataFrame(index=pd.date_range(start_date, end_date))
|
|
|
|
inflow_timeseries = pd.DataFrame(index=pd.date_range(start_date, end_date))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#presend day period start and end day
|
|
|
|
|
|
|
|
pres_start_date = datetime(int(S['PD_start_year']), int(S['PD_start_month']), int(S['PD_start_day']))
|
|
|
|
|
|
|
|
pres_end_date = datetime(int(S['PD_end_year']), int(S['PD_end_month']), int(S['PD_end_day']))
|
|
|
|
|
|
|
|
|
|
|
|
# Generate empty dictionary (to be filled with dataframes) for water quality
|
|
|
|
# Generate empty dictionary (to be filled with dataframes) for water quality
|
|
|
|
wq_timeseries = {}
|
|
|
|
wq_timeseries = {}
|
|
|
|
|
|
|
|
|
|
|
@ -144,7 +144,38 @@ if S['include_boundary_flows'].lower() == 'yes':
|
|
|
|
inflow_timeseries = pd.concat([inflow_timeseries, df[[key]]], axis=1)
|
|
|
|
inflow_timeseries = pd.concat([inflow_timeseries, df[[key]]], axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
# Add to water quality timeseries
|
|
|
|
# Add to water quality timeseries
|
|
|
|
wq_timeseries[key] = df.drop(['Q[ML/d]', key], axis = 1)
|
|
|
|
df = df.drop(['Q[ML/d]', key], axis = 1)
|
|
|
|
|
|
|
|
#increase river temperature by Delta
|
|
|
|
|
|
|
|
if S['Increase_riv_temp'] == 'yes':
|
|
|
|
|
|
|
|
df['Temperature'] = df['Temperature'] + S['Riv_temp_increase']
|
|
|
|
|
|
|
|
wq_timeseries[key] = df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CC_data = {}
|
|
|
|
|
|
|
|
for key, val in S.items():
|
|
|
|
|
|
|
|
if re.match('CC_\d', key):
|
|
|
|
|
|
|
|
CC_data[val[0]] = dict(cc=int(val[1]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dir_name = S['CC_WQ_directory']
|
|
|
|
|
|
|
|
for key, val in CC_data.items():
|
|
|
|
|
|
|
|
file_name = [x for x in os.listdir(dir_name) if x.startswith(key)][0]
|
|
|
|
|
|
|
|
CC_data[key]['path'] = os.path.join(dir_name, file_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CC_timeseries = {}
|
|
|
|
|
|
|
|
if S['include_CC_wq'].lower() == 'yes':
|
|
|
|
|
|
|
|
print('Reading WQ at CC line')
|
|
|
|
|
|
|
|
for key in CC_data.keys():
|
|
|
|
|
|
|
|
df = pd.read_csv(
|
|
|
|
|
|
|
|
CC_data[key]['path'],
|
|
|
|
|
|
|
|
index_col=0,
|
|
|
|
|
|
|
|
parse_dates=[0],
|
|
|
|
|
|
|
|
dayfirst=True)
|
|
|
|
|
|
|
|
#Shift the water quality time series data frame by
|
|
|
|
|
|
|
|
df.index = df.index + (start_date - pres_start_date)
|
|
|
|
|
|
|
|
#increase temperature by Delta
|
|
|
|
|
|
|
|
if S['Increase_SST_temp'] == 'yes':
|
|
|
|
|
|
|
|
df['Temperature'] = df['Temperature'] + S['SST_increase']
|
|
|
|
|
|
|
|
CC_timeseries[key] = df.copy()
|
|
|
|
|
|
|
|
|
|
|
|
# Read WWTP data from setup file
|
|
|
|
# Read WWTP data from setup file
|
|
|
|
wwtp_data = {}
|
|
|
|
wwtp_data = {}
|
|
|
@ -561,11 +592,9 @@ if S['include_WQ'].lower() == 'yes':
|
|
|
|
wq = wq.reset_index()
|
|
|
|
wq = wq.reset_index()
|
|
|
|
wq.index = np.tile(i, wq.shape[0])
|
|
|
|
wq.index = np.tile(i, wq.shape[0])
|
|
|
|
wq_df = wq_df.append(wq)
|
|
|
|
wq_df = wq_df.append(wq)
|
|
|
|
|
|
|
|
|
|
|
|
#Shift the water quality time series data frame by
|
|
|
|
#Shift the water quality time series data frame by
|
|
|
|
wq_df.index = wq_df.index + (start_date - pres_start_date)
|
|
|
|
wq_df.index = wq_df.index + (start_date - pres_start_date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Write element inflows for RMA
|
|
|
|
# Write element inflows for RMA
|
|
|
|
# Consolidate inflow elements in RMA mesh (only include those with inflows)
|
|
|
|
# Consolidate inflow elements in RMA mesh (only include those with inflows)
|
|
|
|
inflow_elements = mesh.loc[[len(n) > 0
|
|
|
|
inflow_elements = mesh.loc[[len(n) > 0
|
|
|
@ -680,6 +709,18 @@ for current_year in range(start_date.year, end_date.year + 1):
|
|
|
|
fq.close()
|
|
|
|
fq.close()
|
|
|
|
|
|
|
|
|
|
|
|
if S['include_WQ'].lower() == 'yes':
|
|
|
|
if S['include_WQ'].lower() == 'yes':
|
|
|
|
|
|
|
|
if S['include_CC_wq'].lower() == 'yes':
|
|
|
|
|
|
|
|
for key, value in CC_timeseries.items():
|
|
|
|
|
|
|
|
fwq.write('TI {}\n'.format(key))
|
|
|
|
|
|
|
|
fwq.write('{:<8}{:>8}{:>8}{:>8}\n'.format('QT', CC_data['Entrance']['cc'], 1,
|
|
|
|
|
|
|
|
current_year))
|
|
|
|
|
|
|
|
for index, row in value[value.index.year ==
|
|
|
|
|
|
|
|
current_year].iterrows():
|
|
|
|
|
|
|
|
fwq.write('{:<5}{:>3}{:>8}'.format(
|
|
|
|
|
|
|
|
'QD', index.dayofyear, index.hour) + ''.join(
|
|
|
|
|
|
|
|
'{:>8.2E}'.format(x) for x in row))
|
|
|
|
|
|
|
|
fwq.write('\n')
|
|
|
|
|
|
|
|
print('a')
|
|
|
|
fwq.write('ENDDATA\n\n')
|
|
|
|
fwq.write('ENDDATA\n\n')
|
|
|
|
fwq.write(env_str)
|
|
|
|
fwq.write(env_str)
|
|
|
|
fwq.close()
|
|
|
|
fwq.close()
|
|
|
|