@ -20,16 +20,16 @@ from ggplot import *
matplotlib . style . use ( ' ggplot ' )
matplotlib . style . use ( ' ggplot ' )
#
#
# Set working direcotry (where postprocessed NARClIM data is located)
# Set working direcotry (where postprocessed NARClIM data is located)
os . chdir ( ' C:/Users/z5025317/ WRL_Postdoc/Projects/Paper#1/' )
os . chdir ( ' C:/Users/z5025317/ OneDrive - UNSW/WRL_Postdoc_Manual_Backup/ WRL_Postdoc/Projects/Paper#1/' )
#
#
#####################################----------------------------------
#####################################----------------------------------
#set input parameters
#set input parameters
Base_period_start = ' 1990-01-01 '
Base_period_start = ' 1990-01-01 '
Base_period_end = ' 2080-01-01 ' #use last day that's not included in period as < is used for subsetting
Base_period_end = ' 2080-01-01 ' #use last day that's not included in period as < is used for subsetting
Estuary = ' Terrigal ' # 'Belongil'
Estuary = ' Nadgee ' # 'Belongil'
Clim_var_type = " ws smean*" # '*' will create pdf for all variables in folder "pracc*|tasmax*"
Clim_var_type = " ta smean*" # '*' will create pdf for all variables in folder "pracc*|tasmax*"
subset_ensemble = ' yes ' # is yes, only the model with the lowest, median and max difference between present day and far future are selected
plot_pdf = ' yes '
plot_pdf = ' no '
delta_csv = ' no '
#####################################----------------------------------
#####################################----------------------------------
#
#
#set directory path for output files
#set directory path for output files
@ -63,7 +63,6 @@ for clim_var_csv_path in Clim_Var_CSVs:
if Clim_var_type == ' evspsblmean ' or Clim_var_type == ' potevpmean ' :
if Clim_var_type == ' evspsblmean ' or Clim_var_type == ' potevpmean ' :
Full_df = Full_df . iloc [ : , 0 : ( Ncols_df - 1 ) ] * 60 * 60 * 24
Full_df = Full_df . iloc [ : , 0 : ( Ncols_df - 1 ) ] * 60 * 60 * 24
Fdf_1900_2080 = Full_df
Fdf_1900_2080 = Full_df
#Subset the data to the minimum base period and above (used to set the lenght of the present day climate period)
#Subset the data to the minimum base period and above (used to set the lenght of the present day climate period)
#Fdf_1900_2080 = Full_df.loc[(Full_df.index >= Base_period_start) & (Full_df.index < Base_period_end)] # not necessary if not using reanalysis models for base period
#Fdf_1900_2080 = Full_df.loc[(Full_df.index >= Base_period_start) & (Full_df.index < Base_period_end)] # not necessary if not using reanalysis models for base period
@ -88,52 +87,52 @@ for clim_var_csv_path in Clim_Var_CSVs:
print ( ' ------------------------------------------- ' )
print ( ' ------------------------------------------- ' )
print ( ' mean of all models for climate variable: ' + Clim_var_type )
print ( ' mean of all models for climate variable: ' + Clim_var_type )
Fdf_1900_2080_means = Fdf_1900_2080 . mean ( )
Fdf_1900_2080_means = Fdf_1900_2080 . mean ( )
Fdf_1900_2080_means . plot ( kind = ' bar ' ) . figure
#Fdf_1900_2080_means.columns = ['Mean']
#Fdf_1900_2080_means.plot(kind='bar').figure
print ( ' ------------------------------------------- ' )
print ( ' ------------------------------------------- ' )
if subset_ensemble == ' yes ' :
#Select the 3 most representative models (min med and max difference betwen far future and present)
#Select the 3 most representative models (min med and max difference betwen far future and present)
Fdf_1900_2080_sorted = Fdf_1900_2080 . reindex_axis ( sorted ( Fdf_1900_2080 . columns ) , axis = 1 )
Fdf_1900_2080_sorted = Fdf_1900_2080 . reindex_axis ( sorted ( Fdf_1900_2080 . columns ) , axis = 1 )
Fdf_1900_2080_sorted_means = pd . DataFrame ( Fdf_1900_2080_sorted . mean ( ) )
Fdf_1900_2080_sorted_means = pd . DataFrame ( Fdf_1900_2080_sorted . mean ( ) )
df = Fdf_1900_2080_sorted_means
df = Fdf_1900_2080_sorted_means
#add a simple increasing integer index
#add a simple increasing integer index
df = df . reset_index ( )
df = df . reset_index ( )
df = df [ df . index % 3 != 1 ]
df = df [ df . index % 3 != 1 ]
df [ ' C ' ] = df [ 0 ] . diff ( )
df [ ' C ' ] = df [ 0 ] . diff ( )
df = df . reset_index ( )
df = df . reset_index ( )
df = df [ df . index % 2 != 0 ]
df = df [ df . index % 2 != 0 ]
#get max difference model (difference between far future and prsent day)
#get max difference model (difference between far future and prsent day)
a = df [ df . index == df [ ' C ' ] . argmax ( skipna = True ) ]
a = df [ df . index == df [ ' C ' ] . argmax ( skipna = True ) ]
Max_dif_mod_name = a . iloc [ 0 ] [ ' index ' ]
Max_dif_mod_name = a . iloc [ 0 ] [ ' index ' ]
#get min difference model
#get min difference model
a = df [ df . index == df [ ' C ' ] . argmin ( skipna = True ) ]
a = df [ df . index == df [ ' C ' ] . argmin ( skipna = True ) ]
Min_dif_mod_name = a . iloc [ 0 ] [ ' index ' ]
Min_dif_mod_name = a . iloc [ 0 ] [ ' index ' ]
#get the model which difference is closest to the median difference
#get the model which difference is closest to the median difference
df [ ' D ' ] = abs ( df [ ' C ' ] - df [ ' C ' ] . median ( ) )
df [ ' D ' ] = abs ( df [ ' C ' ] - df [ ' C ' ] . median ( ) )
a = df [ df . index == df [ ' D ' ] . argmin ( skipna = True ) ]
a = df [ df . index == df [ ' D ' ] . argmin ( skipna = True ) ]
Med_dif_mod_name = a . iloc [ 0 ] [ ' index ' ]
Med_dif_mod_name = a . iloc [ 0 ] [ ' index ' ]
#data frame with min med and max difference model
#data frame with min med and max difference model
df2 = Fdf_1900_2080 . filter ( regex = Min_dif_mod_name [ : - 5 ] + ' | ' + Med_dif_mod_name [ : - 5 ] + ' | ' + Max_dif_mod_name [ : - 5 ] )
df2 = Fdf_1900_2080 . filter ( regex = Min_dif_mod_name [ : - 5 ] + ' | ' + Med_dif_mod_name [ : - 5 ] + ' | ' + Max_dif_mod_name [ : - 5 ] )
dfall = df2 . reindex_axis ( sorted ( df2 . columns ) , axis = 1 )
dfall = df2 . reindex_axis ( sorted ( df2 . columns ) , axis = 1 )
#data frame with individual models
#data frame with individual models
dfmin = Fdf_1900_2080 . filter ( regex = Min_dif_mod_name [ : - 5 ] )
dfmin = Fdf_1900_2080 . filter ( regex = Min_dif_mod_name [ : - 5 ] )
dfmax = Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] )
dfmax = Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] )
dfmed = Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] )
dfmed = Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] )
# use only the 3 representative models for the analysis
# use only the 3 representative models for the analysis
Fdf_1900_2080_all_mods = Fdf_1900_2080
Fdf_1900_2080_all_mods = Fdf_1900_2080
#create a dataframe that has 1 column for each of the three representative models
#create a dataframe that has 1 column for each of the three representative models
# Full_df.loc[(Full_df.index > '1990-01-01') & (Full_df.index < '2009-01-01'), 'period']= '1990-2009'
# Full_df.loc[(Full_df.index > '1990-01-01') & (Full_df.index < '2009-01-01'), 'period']= '1990-2009'
# Full_df.loc[(Full_df.index > '2020-01-01') & (Full_df.index < '2039-01-01'), 'period']= '2020-2039'
# Full_df.loc[(Full_df.index > '2020-01-01') & (Full_df.index < '2039-01-01'), 'period']= '2020-2039'
# Full_df.loc[(Full_df.index > '2060-01-01') & (Full_df.index < '2079-01-01'), 'period']= '2060-2079'
# Full_df.loc[(Full_df.index > '2060-01-01') & (Full_df.index < '2079-01-01'), 'period']= '2060-2079'
dfa = Fdf_1900_2080_annual . iloc [ : , [ 0 ] ]
dfa = Fdf_1900_2080_annual . iloc [ : , [ 0 ] ]
dfa1 = Fdf_1900_2080_annual . iloc [ : , [ 0 , 3 , 6 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 1990 ' ) & ( Fdf_1900_2080_annual . index < = ' 2009 ' ) ]
dfa1 = Fdf_1900_2080_annual . iloc [ : , [ 0 , 3 , 6 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 1990 ' ) & ( Fdf_1900_2080_annual . index < = ' 2009 ' ) ]
dfa1 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfa1 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfa2 = Fdf_1900_2080_annual . iloc [ : , [ 1 , 4 , 7 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 2020 ' ) & ( Fdf_1900_2080_annual . index < = ' 2039 ' ) ]
dfa2 = Fdf_1900_2080_annual . iloc [ : , [ 1 , 4 , 7 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 2020 ' ) & ( Fdf_1900_2080_annual . index < = ' 2039 ' ) ]
dfa2 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfa2 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfa3 = Fdf_1900_2080_annual . iloc [ : , [ 2 , 5 , 8 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 2060 ' ) & ( Fdf_1900_2080_annual . index < = ' 2079 ' ) ]
dfa3 = Fdf_1900_2080_annual . iloc [ : , [ 2 , 5 , 8 ] ] . loc [ ( Fdf_1900_2080_annual . index > = ' 2060 ' ) & ( Fdf_1900_2080_annual . index < = ' 2079 ' ) ]
dfa3 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfa3 . columns = [ Min_dif_mod_name [ : - 5 ] , Med_dif_mod_name [ : - 5 ] , Max_dif_mod_name [ : - 5 ] ]
dfall_annual = dfa1 . append ( dfa2 ) . append ( dfa3 )
dfall_annual = dfa1 . append ( dfa2 ) . append ( dfa3 )
#Create Deltas of average change for annual and seasonal basis
#Create Deltas of average change for annual and seasonal basis
times = [ ' annual ' , ' DJF ' , ' MAM ' , ' JJA ' , ' SON ' ]
times = [ ' annual ' , ' DJF ' , ' MAM ' , ' JJA ' , ' SON ' ]
delta_all_df = pd . DataFrame ( )
delta_all_df = pd . DataFrame ( )
@ -183,9 +182,10 @@ for clim_var_csv_path in Clim_Var_CSVs:
#append df to overall df
#append df to overall df
delta_all_df = pd . concat ( [ delta_all_df , delta_df ] , axis = 1 )
delta_all_df = pd . concat ( [ delta_all_df , delta_df ] , axis = 1 )
out_file_name = Estuary + ' _ ' + Clim_var_type + ' _NARCliM_ensemble_changes.csv '
if delta_csv == ' yes ' :
out_path = output_directory + ' / ' + out_file_name
out_file_name = Estuary + ' _ ' + Clim_var_type + ' _NARCliM_ensemble_changes.csv '
delta_all_df . to_csv ( out_path )
out_path = output_directory + ' / ' + out_file_name
delta_all_df . to_csv ( out_path )
#create a dataframe that has a single column for present day, near and far future for the (3 selected models)
#create a dataframe that has a single column for present day, near and far future for the (3 selected models)
len ( Fdf_1900_2080 . columns )
len ( Fdf_1900_2080 . columns )
@ -203,23 +203,57 @@ for clim_var_csv_path in Clim_Var_CSVs:
#output some summary plot into pdf
#output some summary plot into pdf
if plot_pdf == ' yes ' :
if plot_pdf == ' yes ' :
plotcolours36 = [ ' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' ,
' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' ,
' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' ]
plotcolours36b = [ ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' ,
' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' ,
' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' , ' tomato ' , ' royalblue ' , ' mediumpurple ' ]
plotcolours12 = [ ' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' ]
plotcolours15 = [ ' darkolivegreen ' , ' turquoise ' , ' lightgreen ' , ' darkgreen ' , ' lightpink ' , ' slateblue ' , ' slategray ' , ' orange ' , ' tomato ' , ' peru ' , ' navy ' , ' teal ' , ' lightgreen ' , ' lightpink ' , ' slateblue ' ]
#plt.cm.Paired(np.arange(len(Fdf_1900_2080_means)))
#write the key plots to a single pdf document
#write the key plots to a single pdf document
pdf_out_file_name = Clim_var_type + ' _start_ ' + Base_period_start + ' _NARCliM_summary_3.pdf '
pdf_out_file_name = Clim_var_type + ' _start_ ' + Base_period_start + ' _NARCliM_summary_ 9 .pdf'
pdf_out_path = output_directory + ' / ' + pdf_out_file_name
pdf_out_path = output_directory + ' / ' + pdf_out_file_name
#open pdf and add the plots
#open pdf and add the plots
with PdfPages ( pdf_out_path ) as pdf :
with PdfPages ( pdf_out_path ) as pdf :
#barplot of model means
#barplot of model means
plt . title ( Clim_var_type + ' - model means - full period ' )
plt . title ( Clim_var_type + ' - model means - full period ' )
ymin = min ( Fdf_1900_2080_means )
ymin = min ( Fdf_1900_2080_means )
ymax = max ( Fdf_1900_2080_means )
ymax = max ( Fdf_1900_2080_means ) + 0.008 * min ( Fdf_1900_2080_means )
Fdf_1900_2080_means . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
Fdf_1900_2080_means . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) , color = plotcolours36 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . close ( )
#
plt . title ( Clim_var_type + ' - model deltas - far-present ' )
neardeltadf = delta_all_df [ ' far ' ]
ymin = 0 #min(neardeltadf) - 0.008 *min(neardeltadf)
ymax = max ( neardeltadf ) + 0.008 * max ( neardeltadf )
neardeltadf . plot ( kind = ' bar ' , color = plotcolours15 , ylim = ( ymin , ymax ) )
#fig.patch.set_alpha(0)
pdf . savefig ( bbox_inches = ' tight ' , ylim = ( ymin , ymax ) , pad_inches = 0.4 )
plt . close ( )
#
plt . title ( Clim_var_type + ' - model deltas - near-present ' )
neardeltadf = delta_all_df [ ' near ' ]
#ymin = 0 #min(neardeltadf) - 0.008 *min(neardeltadf)
#ymax = max(neardeltadf) + 0.008 *max(neardeltadf)
neardeltadf . plot ( kind = ' bar ' , color = plotcolours15 , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , ylim = ( ymin , ymax ) , pad_inches = 0.4 )
plt . close ( )
#full period density comparison
#full period density comparison
plt . title ( Clim_var_type + ' - density comparison - full period - all models ' )
plt . title ( Clim_var_type + ' - density comparison - full period - all models ' )
Summarized_df . plot . kde ( )
Summarized_df . plot . kde ( )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . close ( )
#full period density comparison
plt . title ( Clim_var_type + ' - density comparison - full period - max delta model ' )
xmin = float ( max ( np . nanpercentile ( Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) , 50 ) - 4 * np . std ( Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) ) ) )
xmax = float ( max ( np . nanpercentile ( Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) , 50 ) + 4 * np . std ( Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) ) ) )
Fdf_1900_2080 . filter ( regex = Max_dif_mod_name [ : - 5 ] ) . plot . kde ( xlim = ( xmin , xmax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
#annual box
#annual box
plt . title ( Clim_var_type + ' - Annual means/sums for max diff model ' )
plt . title ( Clim_var_type + ' - Annual means/sums for max diff model ' )
Fdf_1900_2080_annual . boxplot ( rot = 90 )
Fdf_1900_2080_annual . boxplot ( rot = 90 )
@ -256,16 +290,30 @@ for clim_var_csv_path in Clim_Var_CSVs:
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . close ( )
# time series plot annual ALL models
# time series plot annual ALL models
plt . title ( Clim_var_type + ' - Time series - all models ' )
Mod_order = [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 19 , 20 , 21 , 16 , 17 , 18 , 22 , 23 , 24 , 31 , 32 , 33 , 25 , 26 , 27 , 28 , 29 , 30 , 34 , 35 , 36 ]
test = Fdf_1900_2080_annual
Mod_Names = test . columns
New_Mod_Name = [ ]
for i in range ( 0 , len ( Mod_Names ) ) :
New_Mod_Name . append ( str ( Mod_order [ i ] + 10 ) + ' _ ' + Mod_Names [ i ] )
test . columns = New_Mod_Name
test_sorted = test . reindex_axis ( sorted ( test . columns ) , axis = 1 )
colnamest = test . columns
test_sorted . columns = [ w [ 3 : - 5 ] for w in colnamest ]
test_sorted . plot ( legend = False , color = plotcolours36 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
# time series plot annual ALL models
plt . title ( Clim_var_type + ' - Time series - representative models ' )
plt . title ( Clim_var_type + ' - Time series - representative models ' )
dfall_annual . plot ( legend = False )
dfall_annual . plot ( legend = False )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . close ( )
# seasonal mean boxplots
# seasonal mean boxplots
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) )
plt . title ( Clim_var_type + ' - DJF Summer means/sums ' )
plt . title ( Clim_var_type + ' - DJF Summer means/sums ' )
Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pd. DataFrame ( Fdf_Seas_means[ Fdf_Seas_means . index . quarter == 1 ] . mean ( ) ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . close ( )
plt . title ( Clim_var_type + ' - DJF Summer means/sums ' )
plt . title ( Clim_var_type + ' - DJF Summer means/sums ' )
@ -275,7 +323,7 @@ for clim_var_csv_path in Clim_Var_CSVs:
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) )
plt . title ( Clim_var_type + ' - MAM Autumn means/sums ' )
plt . title ( Clim_var_type + ' - MAM Autumn means/sums ' )
Fdf_Seas_means[ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pd. DataFrame ( Fdf_Seas_means[ Fdf_Seas_means . index . quarter == 2 ] . mean ( ) ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . close ( )
plt . title ( Clim_var_type + ' - MAM Autumn means/sums ' )
plt . title ( Clim_var_type + ' - MAM Autumn means/sums ' )
@ -285,7 +333,7 @@ for clim_var_csv_path in Clim_Var_CSVs:
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) )
plt . title ( Clim_var_type + ' - JJA Winter means/sums ' )
plt . title ( Clim_var_type + ' - JJA Winter means/sums ' )
Fdf_Seas_means[ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pd. DataFrame ( Fdf_Seas_means[ Fdf_Seas_means . index . quarter == 3 ] . mean ( ) ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . close ( )
plt . title ( Clim_var_type + ' - JJA Winter means/sums ' )
plt . title ( Clim_var_type + ' - JJA Winter means/sums ' )
@ -295,7 +343,7 @@ for clim_var_csv_path in Clim_Var_CSVs:
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) )
ymin = min ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) )
ymax = max ( Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) )
plt . title ( Clim_var_type + ' - SON Spring means/sums ' )
plt . title ( Clim_var_type + ' - SON Spring means/sums ' )
Fdf_Seas_means[ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pd. DataFrame ( Fdf_Seas_means[ Fdf_Seas_means . index . quarter == 4 ] . mean ( ) ) . plot ( kind = ' bar ' , ylim = ( ymin , ymax ) )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
pdf . savefig ( bbox_inches = ' tight ' , pad_inches = 0.4 )
plt . close ( )
plt . close ( )
plt . title ( Clim_var_type + ' - SON Spring means/sums ' )
plt . title ( Clim_var_type + ' - SON Spring means/sums ' )