@ -2,8 +2,9 @@
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#####################################---------------------------------- 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#Last Updated - March 2018 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#@author: z5025317 Valentin Heimhuber 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#code for creating climate prioritization plots for NARCLIM variables.  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#Inputs: Uses CSV files that contain all 12 NARCLIM model runs time series for 1 grid cell created with: P1_NARCliM_NC_to_CSV_CCRC_SS.py 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#code for creating future climate variability deviation plots for NARCLIM variables.  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#Inputs: Uses CSV files that containthe deltas of all 12 NARCLIM models for 1 grid cell at the site of interest, generated with P1_NARCLIM_plots_Windows.py 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#This code is used only for the NARCLIM variables - a separate code is used for ocean variables etc that are not part of the NARCLIM ensemble 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#####################################---------------------------------- 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#Load packages 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#####################################---------------------------------- 
 
			
		 
		
	
	
		
			
				
					
						
						
						
							
								 
							 
						
					 
				
			
			 
			 
			
				@ -27,10 +28,10 @@ os.chdir('C:/Users/z5025317/WRL_Postdoc/Projects/Paper#1/')
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#set input parameters 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Base_period_start  =  ' 1986-01-01 ' 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Base_period_end  =  ' 2005-01-01 '  #use last day that's not included in period as < is used for subsetting 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Estuary  =  ' T weed '  # 'Belongil' 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Estuary  =  ' T errigal '  # 'Belongil' 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Clim_var_type   =  " * "    #  '*' will create pdf for all variables in folder   
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Clim_var_type   =  " tasmax *"    #  '*' will create pdf for all variables in folder   
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Present_Day_Clim_Var  =  ' Rainfall'      
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Clim_var_type   =  " wssmean *"    #  '*' will create pdf for all variables in folder   
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Present_Day_Clim_Var  =  ' Wind'     #MaxT, MinT, Rainfall, ET  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#####################################---------------------------------- 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#set directory path for output files 
 
			
		 
		
	
	
		
			
				
					
						
						
						
							
								 
							 
						
					 
				
			
			 
			 
			
				@ -44,134 +45,164 @@ if not os.path.exists(output_directory):
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    print ( ' ------------------- ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Clim_Var_CSVs  =  glob . glob ( ' ./Output/ '  +  Estuary  +  ' / '  +  Estuary  +  ' _ '  +  Clim_var_type  +  ' * ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#read CSV file 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				for  clim_var_csv_path  in  Clim_Var_CSVs : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Filename  =  os . path . basename ( os . path . normpath ( clim_var_csv_path ) ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Clim_var_type  =  Filename . split ( ' _ ' ,  2 ) [ 1 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    print ( Clim_var_type ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Ensemble_Delta_full_df  =  pd . read_csv ( clim_var_csv_path ,  index_col = 0 ,  parse_dates  =  True ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #Ensemble_Delta_full_df = pd.to_numeric(Ensemble_Delta_full_df) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #load present day climate data for the same variable 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				clim_var_csv_path  =  Clim_Var_CSVs [ 0 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Filename  =  os . path . basename ( os . path . normpath ( clim_var_csv_path ) ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Clim_var_type  =  Filename . split ( ' _ ' ,  2 ) [ 1 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				print ( Clim_var_type ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				Ensemble_Delta_full_df  =  pd . read_csv ( clim_var_csv_path ,  index_col = 0 ,  parse_dates  =  True ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#Ensemble_Delta_full_df = pd.to_numeric(Ensemble_Delta_full_df) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				# 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#load present day climate data for the same variable 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				if  Clim_var_type  ==  ' evspsblmean ' :  #ET time series that we have is not in the same format as the other variables, hence the different treatment 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_Var_CSV  =  glob . glob ( ' ./Data/Wheather_Station_Data/**/ '  +  Estuary  +  ' _ '  +   Present_Day_Clim_Var  +  ' *csv ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  pd . read_csv ( Present_day_Var_CSV [ 0 ] ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    if  Clim_var_type  ==  ' evspsblmean ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Dates  =  pd . to_datetime ( Present_day_df . Date ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df . index  =  Dates 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df  =  Present_day_df . iloc [ : , 1 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df  =  Present_day_df . replace ( r ' \ s+ ' ,  np . nan ,  regex = True ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df  =  pd . to_numeric ( Present_day_df ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    else :    
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Dates  =  pd . to_datetime ( Present_day_df . Year * 10000 + Present_day_df . Month * 100 + Present_day_df . Day , format = ' % Y % m %d ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df . index  =  Dates 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df  =  Present_day_df . iloc [ : , 5 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #create seasonal sums etc.  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    if  ( Clim_var_type  ==  ' pracc '  or  Clim_var_type  ==  ' evspsblmean '  or  Clim_var_type  ==  ' potevpmean '  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    or  Clim_var_type  ==  ' pr1Hmaxtstep '  or  Clim_var_type  ==  ' wss1Hmaxtstep ' ) : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_annual  =  Present_day_df . resample ( ' A ' ) . sum ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_annual  =  Present_day_df_annual . replace ( 0 ,  np . nan ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_monthly  =  Present_day_df . resample ( ' M ' ) . sum ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_monthly  =  Present_day_df_monthly . replace ( 0 ,  np . nan ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_weekly  =  Present_day_df . resample ( ' W ' ) . sum ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_weekly  =  Present_day_df_weekly . replace ( 0 ,  np . nan ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Fdf_Seas_means  =  Present_day_df . resample ( ' Q-NOV ' ) . sum ( )  #seasonal means 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Fdf_Seas_means  =  Fdf_Seas_means . replace ( 0 ,  np . nan ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    else :     
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_annual  =  Present_day_df . resample ( ' A ' ) . mean ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_monthly  =  Present_day_df . resample ( ' M ' ) . mean ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_day_df_weekly  =  Present_day_df . resample ( ' W ' ) . mean ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Fdf_Seas_means  =  Present_day_df . resample ( ' Q-NOV ' ) . mean ( )  #seasonal means 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #Loop through annual and seasons and create a deviation plot for each.  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    times  =  [ ' annual ' ,  ' DJF ' ,  ' MAM ' ,  ' JJA ' , ' SON ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    fig  =  plt . figure ( figsize = ( 14 , 8 ) ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    delta_all_df  =  pd . DataFrame ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    i = 1 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    for  temp  in  times : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #subset the ensemble dataframe for the period used: 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        if  temp  ==  ' annual ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Ensemble_Delta_df  =  Ensemble_Delta_full_df . iloc [ : , range ( 0 , 2 ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            # 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Present_Day_ref_df  =  Present_day_df_annual 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        else : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Ensemble_Delta_df  =  Ensemble_Delta_full_df . filter ( regex =  temp ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Ensemble_Delta_df . columns  =  [ ' near ' ,  ' far ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            if  temp  ==  ' DJF ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				                Mean_df  =  Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Column_names  =  [ ' DJF_near ' ,  ' DJF_far ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            if  temp  ==  ' MAM ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				                Mean_df  =  Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Column_names  =  [ ' MAM_near ' ,  ' MAM_far ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            if  temp  ==  ' JJA ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				                Mean_df  =  Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Column_names  =  [ ' JJA_near ' ,  ' JJA_far ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            if  temp  ==  ' SON ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				                Mean_df  =  Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Present_Day_ref_df  =  Mean_df 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        print ( Ensemble_Delta_df . columns . values ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #Subset to present day variability period 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_Day_ref_df  =  pd . DataFrame ( Present_Day_ref_df . loc [ ( Present_Day_ref_df . index  > =  Base_period_start )  &  ( Present_Day_ref_df . index  < =  Base_period_end ) ] ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_Day_Mean  =  np . percentile ( Present_Day_ref_df ,  50 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_Day_SD  =  np . std ( Present_Day_ref_df ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #create data frame for floating stacked barplots  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        index = [ ' -2std ' ,  ' -1std ' ,  ' Med ' ,  ' 1std ' ,  ' 2std ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        columns  =  [ ' present ' , ' near future ' ,  ' far future ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df  =  pd . DataFrame ( index = index ,  columns  = columns ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Dates  =  pd . to_datetime ( Present_day_df . Date ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df . index  =  Dates 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  Present_day_df . iloc [ : , 1 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  Present_day_df . replace ( r ' \ s+ ' ,  np . nan ,  regex = True ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  pd . to_numeric ( Present_day_df ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df . index  =  Dates 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    [ minplotDelta ,  maxplotDelta ] = [ 50 , 50 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#for tasmean, observed min and max T need to be converted into mean T 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				elif  Clim_var_type  ==  ' tasmean ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_Var_CSV  =  glob . glob ( ' ./Data/Wheather_Station_Data/**/ '  +  Estuary  +  ' _MaxT*csv ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  pd . read_csv ( Present_day_Var_CSV [ 0 ] ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Dates  =  pd . to_datetime ( Present_day_df . Year * 10000 + Present_day_df . Month * 100 + Present_day_df . Day , format = ' % Y % m %d ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df . index  =  Dates 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_MaxT_df  =  Present_day_df . iloc [ : , 5 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_Var_CSV  =  glob . glob ( ' ./Data/Wheather_Station_Data/**/ '  +  Estuary  +  ' _MinT*csv ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  pd . read_csv ( Present_day_Var_CSV [ 0 ] ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Dates  =  pd . to_datetime ( Present_day_df . Year * 10000 + Present_day_df . Month * 100 + Present_day_df . Day , format = ' % Y % m %d ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df . index  =  Dates 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_MinT_df  =  Present_day_df . iloc [ : , 5 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  ( Present_day_MaxT_df  +  Present_day_MinT_df ) / 2 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    [ minplotDelta ,  maxplotDelta ] = [ 1 , 2 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				elif  Clim_var_type  ==  ' tasmax ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    [ minplotDelta ,  maxplotDelta ] = [ 1 , 2 ]   
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				elif  Clim_var_type  ==  ' wssmean '  or   Clim_var_type  ==  ' wss1Hmaxtstep ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_Var_CSV  =  glob . glob ( ' ./Data/Wheather_Station_Data/**/ '  +  Estuary  +  ' _ '  +   Present_Day_Clim_Var  +  ' *csv ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  pd . read_csv ( Present_day_Var_CSV [ 0 ] ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df . index  =  Present_day_df [ [ ' Year ' ,  ' Month ' ,  ' Day ' ,  ' Hour ' ] ] . apply ( lambda  s  :  datetime ( * s ) , axis  =  1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  Present_day_df . filter ( regex =  ' m/s ' )  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  Present_day_df . replace ( r ' \ s+ ' ,  np . nan ,  regex = True ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df [ ' Wind speed measured in m/s ' ]  =  Present_day_df [ ' Wind speed measured in m/s ' ] . convert_objects ( convert_numeric = True ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    [ minplotDelta ,  maxplotDelta ] = [ 1 ,  1.5 ]   
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				else :    
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_Var_CSV  =  glob . glob ( ' ./Data/Wheather_Station_Data/**/ '  +  Estuary  +  ' _ '  +   Present_Day_Clim_Var  +  ' *csv ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  pd . read_csv ( Present_day_Var_CSV [ 0 ] ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Dates  =  pd . to_datetime ( Present_day_df . Year * 10000 + Present_day_df . Month * 100 + Present_day_df . Day , format = ' % Y % m %d ' ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df . index  =  Dates 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df  =  Present_day_df . iloc [ : , 5 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    [ minplotDelta ,  maxplotDelta ] = [ 50 , 50 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#create seasonal sums etc.  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				if  ( Clim_var_type  ==  ' pracc '  or  Clim_var_type  ==  ' evspsblmean '  or  Clim_var_type  ==  ' potevpmean '  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				or  Clim_var_type  ==  ' pr1Hmaxtstep '  or  Clim_var_type  ==  ' wss1Hmaxtstep ' ) : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_annual  =  Present_day_df . resample ( ' A ' ) . sum ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_annual  =  Present_day_df_annual . replace ( 0 ,  np . nan ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_monthly  =  Present_day_df . resample ( ' M ' ) . sum ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_monthly  =  Present_day_df_monthly . replace ( 0 ,  np . nan ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_weekly  =  Present_day_df . resample ( ' W ' ) . sum ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_weekly  =  Present_day_df_weekly . replace ( 0 ,  np . nan ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Fdf_Seas_means  =  Present_day_df . resample ( ' Q-NOV ' ) . sum ( )  #seasonal means 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Fdf_Seas_means  =  Fdf_Seas_means . replace ( 0 ,  np . nan ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				else :     
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_annual  =  Present_day_df . resample ( ' A ' ) . mean ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_monthly  =  Present_day_df . resample ( ' M ' ) . mean ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_day_df_weekly  =  Present_day_df . resample ( ' W ' ) . mean ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Fdf_Seas_means  =  Present_day_df . resample ( ' Q-NOV ' ) . mean ( )  #seasonal means 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				#Loop through annual and seasons and create a deviation plot for each.  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				times  =  [ ' annual ' ,  ' DJF ' ,  ' MAM ' ,  ' JJA ' , ' SON ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				fig  =  plt . figure ( figsize = ( 14 , 8 ) ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				delta_all_df  =  pd . DataFrame ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				i = 1 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				for  temp  in  times : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #subset the ensemble dataframe for the period used: 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    if  temp  ==  ' annual ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Ensemble_Delta_df  =  Ensemble_Delta_full_df . iloc [ : , range ( 0 , 2 ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        # 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df [ ' present ' ]  =  [ float ( Present_Day_Mean - 2 * Present_Day_SD ) , float ( Present_Day_Mean - Present_Day_SD ) ,  float ( Present_Day_Mean ) , 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				                float ( Present_Day_Mean + Present_Day_SD ) ,  float ( Present_Day_Mean + 2 * Present_Day_SD ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df [ ' near future ' ]  =  [ float ( Present_Day_Mean  +  Ensemble_Delta_df . near [ - 3 : ] [ 0 ] ) , np . NaN ,  float ( Present_Day_Mean  +  Ensemble_Delta_df . near [ - 3 : ] [ 1 ] ) ,  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				               np . NaN ,  float ( Present_Day_Mean  +  Ensemble_Delta_df . near [ - 3 : ] [ 2 ] ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df [ ' far future ' ]  =  [ float ( Present_Day_Mean  +  Ensemble_Delta_df . far [ - 3 : ] [ 0 ] ) , np . NaN ,  float ( Present_Day_Mean  +  Ensemble_Delta_df . far [ - 3 : ] [ 1 ] ) ,  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				               np . NaN ,  float ( Present_Day_Mean  +  Ensemble_Delta_df . far [ - 3 : ] [ 2 ] ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #Create a second data frame that has the values in a way that they can be stacked up in bars with the correct absolute values 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df2  =  pd . DataFrame ( index = index ,  columns  = columns  ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df2 [ ' present ' ]  =  [ float ( Present_Day_Mean - 2 * Present_Day_SD ) , float ( Present_Day_SD ) ,  float ( Present_Day_SD ) , 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				                float ( Present_Day_SD ) ,  float ( Present_Day_SD ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df2 [ ' near future ' ]  =  [ float ( Present_Day_Mean  +  Ensemble_Delta_df . near [ - 3 : ] [ 0 ] ) , np . NaN ,  float ( Ensemble_Delta_df . near [ - 3 : ] [ 1 ] - Ensemble_Delta_df . near [ - 3 : ] [ 0 ] ) ,  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				              np . NaN ,  float ( Ensemble_Delta_df . near [ - 3 : ] [ 2 ] - Ensemble_Delta_df . near [ - 3 : ] [ 1 ] ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df2 [ ' far future ' ]  =  [ float ( Present_Day_Mean  +  Ensemble_Delta_df . far [ - 3 : ] [ 0 ] ) , np . NaN ,  float ( Ensemble_Delta_df . far [ - 3 : ] [ 1 ] - Ensemble_Delta_df . far [ - 3 : ] [ 0 ] ) ,  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				               np . NaN ,  float ( Ensemble_Delta_df . far [ - 3 : ] [ 2 ] - Ensemble_Delta_df . far [ - 3 : ] [ 1 ] ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #transpose the data frame 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df_tp  =  Plot_in_df2 . transpose ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #do the individual plots 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        if  temp  ==  ' annual ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            xmin  =  int ( min ( Plot_in_df . min ( axis = 1 ) ) - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            xmax  =  int ( max ( Plot_in_df . max ( axis = 1 ) ) + 2 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        else : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            xmin  =  int ( min ( Plot_in_df . min ( axis = 1 ) ) - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            xmax  =  int ( max ( Plot_in_df . max ( axis = 1 ) ) + 2 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #define colour scheme 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #likert_colors = ['none', 'firebrick','firebrick','lightcoral','lightcoral'] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        likert_colors  =  [ ' none ' ,  ' darkblue ' ,  ' darkblue ' , ' cornflowerblue ' , ' cornflowerblue ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #plot the stacked barplot 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        ax = plt . subplot ( 2 , 3 , i )  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Plot_in_df_tp . plot . bar ( stacked = True ,  color = likert_colors ,  edgecolor = ' none ' ,  legend = False ,  ax = ax ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        z  =  plt . axhline ( float ( Present_Day_Mean - 2 * Present_Day_SD ) ,  linestyle = ' - ' ,  color = ' black ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        z  =  plt . axhline ( float ( Present_Day_Mean + 2 * Present_Day_SD ) ,  linestyle = ' - ' ,  color = ' black ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        z  =  plt . axhline ( float ( Present_Day_Mean - Present_Day_SD ) ,  linestyle = ' -- ' ,  color = ' black ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        z  =  plt . axhline ( float ( Present_Day_Mean + Present_Day_SD ) ,  linestyle = ' -- ' ,  color = ' black ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        plt . ylim ( xmin ,  xmax ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        plt . title ( Clim_var_type  +  '   '  +  temp  ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        ax . grid ( False ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        for  tick  in  ax . get_xticklabels ( ) : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            tick . set_rotation ( 0 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        fig . tight_layout ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        #reset i to i+1 for next step 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_Day_ref_df  =  Present_day_df_annual 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    else : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Ensemble_Delta_df  =  Ensemble_Delta_full_df . filter ( regex =  temp ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Ensemble_Delta_df . columns  =  [ ' near ' ,  ' far ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        if  temp  ==  ' DJF ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Mean_df  =  Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 1 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Column_names  =  [ ' DJF_near ' ,  ' DJF_far ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        if  temp  ==  ' MAM ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            i = i + 2 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        else : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            i = i + 1 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        print ( i ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    plt . show ( )     
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    out_file_name  =  Estuary   +  ' _ '  +  Clim_var_type  +  ' _CC_prio_plot.png ' 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    out_path  =  output_directory  +  ' / '  +  out_file_name 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    fig . savefig ( out_path ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Mean_df  =  Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 2 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Column_names  =  [ ' MAM_near ' ,  ' MAM_far ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        if  temp  ==  ' JJA ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Mean_df  =  Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 3 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Column_names  =  [ ' JJA_near ' ,  ' JJA_far ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        if  temp  ==  ' SON ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            Mean_df  =  Fdf_Seas_means [ Fdf_Seas_means . index . quarter == 4 ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        Present_Day_ref_df  =  Mean_df 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    print ( Ensemble_Delta_df . columns . values ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #Subset to present day variability period 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_Day_ref_df  =  pd . DataFrame ( Present_Day_ref_df . loc [ ( Present_Day_ref_df . index  > =  Base_period_start )  &  ( Present_Day_ref_df . index  < =  Base_period_end ) ] ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_Day_Mean  =  np . percentile ( Present_Day_ref_df ,  50 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Present_Day_SD  =  np . std ( Present_Day_ref_df ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #create data frame for floating stacked barplots  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    index = [ ' -2std ' ,  ' -1std ' ,  ' Med ' ,  ' 1std ' ,  ' 2std ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    columns  =  [ ' present ' , ' near future ' ,  ' far future ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df  =  pd . DataFrame ( index = index ,  columns  = columns ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    # 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df [ ' present ' ]  =  [ float ( Present_Day_Mean - 2 * Present_Day_SD ) , float ( Present_Day_Mean - Present_Day_SD ) ,  float ( Present_Day_Mean ) , 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            float ( Present_Day_Mean + Present_Day_SD ) ,  float ( Present_Day_Mean + 2 * Present_Day_SD ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df [ ' near future ' ]  =  [ float ( Present_Day_Mean  +  Ensemble_Delta_df . near [ - 3 : ] [ 0 ] ) , np . NaN ,  float ( Present_Day_Mean  +  Ensemble_Delta_df . near [ - 3 : ] [ 1 ] ) ,  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				           np . NaN ,  float ( Present_Day_Mean  +  Ensemble_Delta_df . near [ - 3 : ] [ 2 ] ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df [ ' far future ' ]  =  [ float ( Present_Day_Mean  +  Ensemble_Delta_df . far [ - 3 : ] [ 0 ] ) , np . NaN ,  float ( Present_Day_Mean  +  Ensemble_Delta_df . far [ - 3 : ] [ 1 ] ) ,  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				           np . NaN ,  float ( Present_Day_Mean  +  Ensemble_Delta_df . far [ - 3 : ] [ 2 ] ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #Create a second data frame that has the values in a way that they can be stacked up in bars with the correct absolute values 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df2  =  pd . DataFrame ( index = index ,  columns  = columns  ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df2 [ ' present ' ]  =  [ float ( Present_Day_Mean - 2 * Present_Day_SD ) , float ( Present_Day_SD ) ,  float ( Present_Day_SD ) , 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				            float ( Present_Day_SD ) ,  float ( Present_Day_SD ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df2 [ ' near future ' ]  =  [ float ( Present_Day_Mean  +  Ensemble_Delta_df . near [ - 3 : ] [ 0 ] ) , np . NaN ,  float ( Ensemble_Delta_df . near [ - 3 : ] [ 1 ] - Ensemble_Delta_df . near [ - 3 : ] [ 0 ] ) ,  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				          np . NaN ,  float ( Ensemble_Delta_df . near [ - 3 : ] [ 2 ] - Ensemble_Delta_df . near [ - 3 : ] [ 1 ] ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df2 [ ' far future ' ]  =  [ float ( Present_Day_Mean  +  Ensemble_Delta_df . far [ - 3 : ] [ 0 ] ) , np . NaN ,  float ( Ensemble_Delta_df . far [ - 3 : ] [ 1 ] - Ensemble_Delta_df . far [ - 3 : ] [ 0 ] ) ,  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				           np . NaN ,  float ( Ensemble_Delta_df . far [ - 3 : ] [ 2 ] - Ensemble_Delta_df . far [ - 3 : ] [ 1 ] ) ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #transpose the data frame 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df_tp  =  Plot_in_df2 . transpose ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #do the individual plots 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    if  temp  ==  ' annual ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        xmin  =  int ( min ( Plot_in_df . min ( axis = 1 ) ) - minplotDelta ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        xmax  =  int ( max ( Plot_in_df . max ( axis = 1 ) ) + maxplotDelta ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    else : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        xmin  =  int ( min ( Plot_in_df . min ( axis = 1 ) ) - minplotDelta ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        xmax  =  int ( max ( Plot_in_df . max ( axis = 1 ) ) + maxplotDelta ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #define colour scheme 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #likert_colors = ['none', 'firebrick','firebrick','lightcoral','lightcoral'] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    likert_colors  =  [ ' none ' ,  ' darkblue ' ,  ' darkblue ' , ' cornflowerblue ' , ' cornflowerblue ' ] 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #plot the stacked barplot 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    ax = plt . subplot ( 2 , 3 , i )  
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    Plot_in_df_tp . plot . bar ( stacked = True ,  color = likert_colors ,  edgecolor = ' none ' ,  legend = False ,  ax = ax ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z  =  plt . axhline ( float ( Present_Day_Mean - 2 * Present_Day_SD ) ,  linestyle = ' - ' ,  color = ' black ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z  =  plt . axhline ( float ( Present_Day_Mean + 2 * Present_Day_SD ) ,  linestyle = ' - ' ,  color = ' black ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z  =  plt . axhline ( float ( Present_Day_Mean - Present_Day_SD ) ,  linestyle = ' -- ' ,  color = ' black ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z  =  plt . axhline ( float ( Present_Day_Mean + Present_Day_SD ) ,  linestyle = ' -- ' ,  color = ' black ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z  =  plt . axhline ( float ( Present_Day_Mean ) ,  linestyle = ' -- ' ,  color = ' red ' ,  alpha = .5 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    z . set_zorder ( - 1 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    plt . ylim ( xmin ,  xmax ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    plt . title ( Clim_var_type  +  '   '  +  temp  ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    ax . grid ( False ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    for  tick  in  ax . get_xticklabels ( ) : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        tick . set_rotation ( 0 ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    fig . tight_layout ( ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    #reset i to i+1 for next step 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    if  temp  ==  ' MAM ' : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        i = i + 2 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    else : 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				        i = i + 1 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				    print ( i ) 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				plt . show ( )     
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				out_file_name  =  Estuary   +  ' _ '  +  Clim_var_type  +  ' _CC_prio_plot.png ' 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				out_path  =  output_directory  +  ' / '  +  out_file_name 
 
			
		 
		
	
		
			
				 
				 
			
			 
			 
			
				fig . savefig ( out_path )