#added a few additions to the NARCLIM NC code and added an R code for

generating BASH code for automating the download
for a number of sites and clim_vars
Development1
Valentin Heimhuber 7 years ago
parent 2c102d4594
commit 1154e4eb1c

@ -0,0 +1,59 @@
#code for preparing a text file with BASH code for batch download of NARCLIM data for the HUNTER WQ modeling of
#future climate scenarios
#NARCLIM Variables
#evspsblmean water_evaporation flux (actual ET) long_name: Surface evaporation standard_name: water_evaporation_flux units: kg m-2 s-1
#tasmean mean near surface temperature
#pracc precipitation daily precipitation sum (sum of convective prcacc and stratiform prncacc precip)
Clim_Var <- 'evspsblmean'
Datatype <- 'T_GCMS' #T_GCMS for GCM forcing, T_NNRP for reanalysis (only 1950-2009)
Biasboolean <- 'False' #use bias corrected data?
Directory <- 'C:/Users/z5025317/OneDrive - UNSW/WRL_Postdoc_Manual_Backup/WRL_Postdoc/Projects/Paper#1/Data/NARCLIM_Site_CSVs'
Filename <- 'NARCLIM_Point_Sites.csv'
#Load CSV with location names and lat lon coordinates
Location.df <- data.frame(read.csv(paste(Directory, Filename, sep=""), header=T))
#create empty vector for storing the command line text and open file
Vector.for.command.line.txt <- c()
Vector.for.command.line.txt <- c(Vector.for.command.line.txt, "module load python")
text1 <- c(paste("Datatype='",Datatype,"'", sep=""),
paste("Bias_corrected='",Biasboolean,"'", sep=""), paste("ClimVarName='",Clim_Var,"'", sep=""))
Vector.for.command.line.txt <- c(Vector.for.command.line.txt, text1)
for (i in 1:(length(Location.df$Name))){
#name<-as.character(Location.df$Name[i])
#name<-gsub('([[:punct:]])|\\s+','_',name)
if(i<10){
name<-paste('Catchment_0', as.character(i), sep="")
}else{
name<-paste('Catchment_', as.character(i), sep="")
}
latitude=round(as.numeric(Location.df$Lat[i]),3)
longitude=round(as.numeric(Location.df$Long[i]),3)
text <- c(paste("latitude=",latitude,"", sep=""), paste("longitude=",longitude,"", sep=""),
paste("name='",name,"'", sep=""),
"python /srv/ccrc/data02/z5025317/Code_execution/\\
P1_NARCliM_NC_to_CSV_CCRC_SS.py \\
--lat $latitude --lon $longitude --varName $ClimVarName --domain 'd02' --timestep \\
'DAY' --LocationName $name --Datatype $Datatype --BiasBool $Bias_corrected")
Vector.for.command.line.txt <- c(Vector.for.command.line.txt, text)
if(i==10|i==20|i==31){
Vector.for.command.line.txt <- c(Vector.for.command.line.txt, " ")
text.file.name <- paste('C:/Users/z5025317/OneDrive - UNSW/Hunter_CC_Modeling/07_Modelling/01_Input/BC_Generation/Code/NARCLIM_Download_and_Processing/',Clim_Var, "_", Datatype, "_", Biasboolean,substring(as.character(i), 1,1), ".txt", sep="")
#open and fill text file
fileConn <- file(text.file.name)
writeLines(Vector.for.command.line.txt, fileConn)
close(fileConn)
#
if(i==10|i==20){
Vector.for.command.line.txt <- c()
Vector.for.command.line.txt <- c(Vector.for.command.line.txt, "module load python")
text1 <- c(paste("Datatype='",Datatype,"'", sep=""),
paste("Bias_corrected='",Biasboolean,"'", sep=""), paste("ClimVarName='",Clim_Var,"'", sep=""))
Vector.for.command.line.txt <- c(Vector.for.command.line.txt, text1)
}
}
}

@ -13,10 +13,7 @@ import argparse
import time import time
# #
# Set working direcotry (where postprocessed NARClIM data is located) # Set working direcotry (where postprocessed NARClIM data is located)
os.chdir('/srv/ccrc/data30/z3393020/NARCliM/postprocess/') os.chdir('/srv/ccrc/data30/z3393020/NARCliM/postprocess/')
#
#Choose Type of NARCLIM data ('T_NNRP', 'T_GCMS')
Data_Type = 'T_NNRP'
# #
#User input for location and variable type - from command line #User input for location and variable type - from command line
if __name__ == "__main__": if __name__ == "__main__":
@ -43,15 +40,20 @@ if __name__ == "__main__":
Bias_Correction_BOOL = args.BiasBool Bias_Correction_BOOL = args.BiasBool
print("Extracting all NARCLIM time series for variable: ", Clim_var_type, " for lat lon: ", mylat, mylon, Location, "domain", NC_Domain, " timestep ", Timestep, " Datatype ", Data_Type, " biascorrected? ", Bias_Correction_BOOL) print("Extracting all NARCLIM time series for variable: ", Clim_var_type, " for lat lon: ", mylat, mylon, Location, "domain", NC_Domain, " timestep ", Timestep, " Datatype ", Data_Type, " biascorrected? ", Bias_Correction_BOOL)
lat_equal_len_string="%.3f" % abs(mylat)
lon_equal_len_string= "%.3f" % mylon
if Bias_Correction_BOOL == 'False': if Bias_Correction_BOOL == 'False':
#set directory path for output files #set directory path for output files
output_directory = '/srv/ccrc/data02/z5025317/NARCliM_out/'+ Location + '_' + str(abs(round(mylat,3))) + '_' + str(round(mylon, 3)) + '/' output_directory = '/srv/ccrc/data02/z5025317/NARCliM_out/'+ Location + '_' + lat_equal_len_string + '_' + lon_equal_len_string + '/'
#output_directory = 'J:\Project wrl2016032\NARCLIM_Raw_Data\Extracted' #output_directory = 'J:\Project wrl2016032\NARCLIM_Raw_Data\Extracted'
print '---------------------------------------------------------'
if not os.path.exists(output_directory): if not os.path.exists(output_directory):
os.makedirs(output_directory) os.makedirs(output_directory)
print("output directory folder didn't exist and was generated here:") print("output directory folder didn't exist and was generated here:")
print(output_directory) print(output_directory)
print '---------------------------------------------------------'
#
#time.sleep(10) #time.sleep(10)
#set up the loop variables for interrogating the entire NARCLIM raw data #set up the loop variables for interrogating the entire NARCLIM raw data
NC_Periods = ('1990-2009','2020-2039','2060-2079') NC_Periods = ('1990-2009','2020-2039','2060-2079')
@ -137,14 +139,11 @@ if Bias_Correction_BOOL == 'False':
Full_df.loc[(Full_df.index > '1990-01-01') & (Full_df.index < '2010-01-01'), 'period']= '1990-2009' Full_df.loc[(Full_df.index > '1990-01-01') & (Full_df.index < '2010-01-01'), 'period']= '1990-2009'
Full_df.loc[(Full_df.index > '2020-01-01') & (Full_df.index < '2040-01-01'), 'period']= '2020-2039' Full_df.loc[(Full_df.index > '2020-01-01') & (Full_df.index < '2040-01-01'), 'period']= '2020-2039'
Full_df.loc[(Full_df.index > '2060-01-01') & (Full_df.index < '2080-01-01'), 'period']= '2060-2079' Full_df.loc[(Full_df.index > '2060-01-01') & (Full_df.index < '2080-01-01'), 'period']= '2060-2079'
#export the pandas data frame as a CSV file within the output directory
out_file_name = Clim_var_type + '_'+ Data_Type[2:] + '_' + Location + '_' + str(abs(round(mylat,3))) + '_' + str(round(mylon, 3)) + '_NARCliM_summary.csv'
out_path = output_directory +'/' + out_file_name
Full_df.to_csv(out_path)
# #
if Bias_Correction_BOOL == 'True': if Bias_Correction_BOOL == 'True':
os.chdir('/srv/ccrc/data30/z3393020/NARCliM/Bias_corrected/')
#set directory path for output files #set directory path for output files
output_directory = '/srv/ccrc/data02/z5025317/NARCliM_out/'+ Location + '_' + str(abs(round(mylat,3))) + '_' + str(round(mylon, 3)) + '/Bias_corrected/' output_directory = '/srv/ccrc/data02/z5025317/NARCliM_out/'+ Location + '_' + lat_equal_len_string + '_' + lon_equal_len_string + '/Bias_corrected/'
#output_directory = 'J:\Project wrl2016032\NARCLIM_Raw_Data\Extracted' #output_directory = 'J:\Project wrl2016032\NARCLIM_Raw_Data\Extracted'
if not os.path.exists(output_directory): if not os.path.exists(output_directory):
os.makedirs(output_directory) os.makedirs(output_directory)
@ -228,11 +227,7 @@ if Bias_Correction_BOOL == 'True':
Full_df = pd.concat([Full_df, GCM_df], axis=1) Full_df = pd.concat([Full_df, GCM_df], axis=1)
GCM_df = pd.DataFrame() GCM_df = pd.DataFrame()
Full_df = Full_df.sort_index(axis=0, ascending=True) Full_df = Full_df.sort_index(axis=0, ascending=True)
#adding a column with the NARCLIM decade #export the pandas data frame as a CSV file within the output directory
#Full_df.loc[(Full_df.index > '1990-01-01') & (Full_df.index < '2009-01-01'), 'period']= '1990-2009' out_file_name = Clim_var_type + '_'+ Data_Type[2:] + '_' + Location + '_' + lat_equal_len_string + '_' + lon_equal_len_string + '_NARCliM_summary.csv'
#Full_df.loc[(Full_df.index > '2020-01-01') & (Full_df.index < '2039-01-01'), 'period']= '2020-2039' out_path = output_directory +'/' + out_file_name
#Full_df.loc[(Full_df.index > '2060-01-01') & (Full_df.index < '2079-01-01'), 'period']= '2060-2079' Full_df.to_csv(out_path)
#export the pandas data frame as a CSV file within the output directory
out_file_name = Clim_var_type + '_'+ Data_Type[2:] + '_' + Location + '_' + str(abs(round(mylat,3))) + '_' + str(round(mylon, 3)) + '_NARCliM_summary.csv'
out_path = output_directory +'/' + out_file_name
Full_df.to_csv(out_path)

@ -74,7 +74,7 @@ Present_Day_Clim_Var = 'MaxT' #MaxT, MinT, Rainfall, (the name for present da
##PROBLEM: Without changing anything, the P1_NARCliM_NC_to_CSV_CCRC_SS.py stopped working properly on the CCRC storm servers. It's not giving an error but loading the nc files with Dataset(nc) just takes unlimited time. ##PROBLEM: Without changing anything, the P1_NARCliM_NC_to_CSV_CCRC_SS.py stopped working properly on the CCRC storm servers. It's not giving an error but loading the nc files with Dataset(nc) just takes unlimited time.
It used to take only a few seconds. NOT solved yet as of 7th of May 2018. It used to take only a few seconds. NOT solved yet as of 7th of May 2018.### This was solved for the /postprocessed folder at the end of May 2018 but the problem persits with the /bias_corrected/ data folder.
running a simple netcdf info script running a simple netcdf info script
python /srv/ccrc/data02/z5025317/Code_execution/P1_Basic_NETCDF_Interrogation.py python /srv/ccrc/data02/z5025317/Code_execution/P1_Basic_NETCDF_Interrogation.py

Loading…
Cancel
Save