| 
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -49,21 +49,24 @@ for Est in Estuaries:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Base_period_DELTA_start = '1990-01-01'   #Start of interval used for calculating mean and SD for base period (Delta base period)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Base_period_end = '2009-01-01'          #use last day that's not included in period as < is used for subsetting
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Clim_var_type  = 'pracc'            #Name of climate variable in NARCLIM models  '*' will create pdf for all variables in folder
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Stats = 'maxdaily'                  #'maxdaily' #maximum takes the annual max Precipitation instead of the sum
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Stats = 'days_h_30'                  #'maxdaily' #maximum takes the annual max Precipitation instead of the sum
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    PD_Datasource = 'SILO'                  #Source for present day climate data (historic time series) can be either: 'Station' or 'SILO'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    SILO_Clim_var = ['daily_rain']         #select the SILO clim variable to be used for base period. - see silo.py for detailed descriptions
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    PD_Datasource = 'Station'                  #Source for present day climate data (historic time series) can be either: 'Station' or 'SILO'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    SILO_Clim_var = ['max_temp']         #select the SILO clim variable to be used for base period. - see silo.py for detailed descriptions
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Location = 'Estuary'                 # pick locaiton for extracting the SILO data can be: Estuary, Catchment, or Ocean
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Main_Plot = 'yes'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    presentdaybar = False               #include a bar for present day variability in the plots?
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    present_day_plot = 'yes'             #save a time series of present day  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Allin1_delta_plot = 'no'      
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Version = "V4"
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    present_day_plot = 'no'             #save a time series of present day  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Allin1_delta_plot = 'yes'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Median_markers = 'no'              #plot the median horizontal lines on top of the delta range in the allin1 plot?      
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Figure_headings = 'no'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    Version = "V1"
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    ALPHA_figs = 0                     #Set alpha of figure background (0 makes everything around the plot panel transparent)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    font = {'family' : 'sans-serif',        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        'weight' : 'normal',
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        'size'   : 14}
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    matplotlib.rc('font', **font)       #size of axis labels
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        'size'   : 14}                  #size of axis labels
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    matplotlib.rc('font', **font)       
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #==========================================================#
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -144,6 +147,8 @@ for Est in Estuaries:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #for tasmean, observed min and max T need to be converted into mean T
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        elif Clim_var_type == 'tasmean':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            [minplotDelta, maxplotDelta]=[0.2,1]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        elif Clim_var_type == 'sstmean':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            [minplotDelta, maxplotDelta]=[40,40]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        elif Clim_var_type == 'tasmax':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            [minplotDelta, maxplotDelta]=[1,2]  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        elif Clim_var_type == 'wssmean' or  Clim_var_type == 'wss1Hmaxtstep':
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -203,22 +208,22 @@ for Est in Estuaries:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if temp == 'annual':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Ensemble_Delta_df = Ensemble_Delta_full_df.iloc[:,range(0,2)]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Present_Day_ref_df = Present_day_df_annual
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Column_names = ['near', 'far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Column_names = ['Annual_near', 'Annual_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        else:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Ensemble_Delta_df = Ensemble_Delta_full_df.filter(regex= temp)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Ensemble_Delta_df.columns = ['near', 'far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if temp == 'DJF':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Mean_df = Fdf_Seas_means[Fdf_Seas_means.index.quarter==1]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Column_names = ['DJF_near', 'DJF_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Column_names = ['Summer_near', 'Summer_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if temp == 'MAM':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Mean_df = Fdf_Seas_means[Fdf_Seas_means.index.quarter==2]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Column_names = ['MAM_near', 'MAM_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Column_names = ['Autumn_near', 'Autumn_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if temp == 'JJA':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Mean_df = Fdf_Seas_means[Fdf_Seas_means.index.quarter==3]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Column_names = ['JJA_near', 'JJA_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Column_names = ['Winter_near', 'Winter_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if temp == 'SON':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Mean_df = Fdf_Seas_means[Fdf_Seas_means.index.quarter==4]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Column_names = ['SON_near', 'SON_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Column_names = ['Spring_near', 'Spring_far']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Present_Day_ref_df = Mean_df
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #Subset to present day variability period
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Present_Day_ref_df = pd.DataFrame(Present_Day_ref_df.loc[(Present_Day_ref_df.index >= Base_period_start) & (Present_Day_ref_df.index <= Base_period_end)])
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
			
			 | 
			 | 
			
				@ -279,7 +284,7 @@ for Est in Estuaries:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df3['near future'] = df.iloc[1,0]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df3['far future'] = df.iloc[0,0]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df3 = Plot_in_df3.transpose()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.plot(Plot_in_df3['Med'], linestyle="", markersize=52, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.plot(Plot_in_df3['Med'], linestyle="", markersize=45, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				             marker="_", color='darkblue', label="Median")
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        z = plt.axhline(float(Present_Day_Mean-2*Present_Day_SD), linestyle='-', color='black', alpha=.5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        z.set_zorder(-1)
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -291,7 +296,9 @@ for Est in Estuaries:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        z.set_zorder(-1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        z = plt.axhline(float(Present_Day_Mean), linestyle='--', color='red', alpha=.5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        z.set_zorder(-1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.ylim(xmin, xmax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #plt.ylim(xmin, xmax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.ylim(10, 140)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if Figure_headings == 'yes':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            plt.title(Clim_var_type + ' ' + temp )
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ax.grid(False)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for tick in ax.get_xticklabels():
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -314,10 +321,12 @@ for Est in Estuaries:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            z = plt.axhline(float(Present_Day_Mean), linestyle='--', color='red', alpha=.5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            z.set_zorder(-1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            #fig.patch.set_facecolor('deepskyblue')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            plt.ylim(0, 40)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            fig.tight_layout()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            fig.patch.set_alpha(ALPHA_figs)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if Figure_headings == 'yes':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                plt.title(Clim_var_type + ' ' + Stats + ' ' + temp +' present day')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            plt.ylim(xmin, xmax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            #plt.ylim(xmin, xmax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            ax.grid(False)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            #if temp == 'MAM':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            i=i+4
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -327,54 +336,107 @@ for Est in Estuaries:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df_tp.index = Column_names
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df_tp['-2std'] = Plot_in_df_tp['-2std'] - Present_Day_Mean
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Combined_Delta_df = pd.concat([Combined_Delta_df, Plot_in_df_tp], axis=0)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if Allin1_delta_plot == 'yes':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            ax=plt.subplot(2,4,4) 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            temp = Combined_Delta_df[0:2]
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Plot_in_df_tp = temp
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            uni_colors = ['none', 'cornflowerblue', 'cornflowerblue','cornflowerblue','cornflowerblue']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Plot_in_df_tp['Median'] = pd.DataFrame(Plot_in_df_tp['-2std'] + Plot_in_df_tp['Med'])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if int(Plot_in_df_tp.stack().min(axis=None,skipna=True)) < 0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Bottom = int(Plot_in_df_tp.stack().min(axis=None,skipna=True)) -1
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Plot_in_df_tp['-2std'] = Plot_in_df_tp['-2std'] - Bottom
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Plot_in_df_tp.plot.bar(stacked=True, color=uni_colors, edgecolor='none', legend=False, width=0.5,ax=ax, bottom = Bottom)  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            else:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Plot_in_df_tp.plot.bar(stacked=True, color=uni_colors, edgecolor='none', legend=False, width=0.5,ax=ax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if Median_markers == 'yes':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                plt.plot(Plot_in_df_tp.index, Plot_in_df_tp['Median'], linestyle="", markersize=13, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                     marker="_", color='darkblue', label="Median") 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            z = plt.axhline(float(0), linestyle='--', color='red', alpha=.5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            z.set_zorder(-1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            plt.ylim(-1, 20)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            if Figure_headings == 'yes':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                plt.title(Clim_var_type + ' All Deltas ' + Stats)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            #ax.grid(False)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            ax.xaxis.grid(False)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            for tick in ax.get_xticklabels():
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                tick.set_rotation(10)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            fig.tight_layout()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            fig.patch.set_alpha(ALPHA_figs)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    #plt.show()  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    if Main_Plot == 'yes': 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if presentdaybar == False:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            out_file_name = Estuary  + '_' + Clim_var_type + '_' + Stats + '_'  + PD_Datasource +  '_'  + SILO_Clim_var[0] +  '_' +  Version +  '_'  + '_NPDB.png'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        else:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            out_file_name = Estuary  + '_' + Clim_var_type + '_' + Stats + '_'  + PD_Datasource +  '_'  + SILO_Clim_var[0] +  '_' +  Version +  '_'  + '2.png'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        out_path = output_directory + '/' + out_file_name
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fig.savefig(out_path)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    plt.close(fig) 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    if Allin1_delta_plot == 'yes': 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fig = plt.figure(figsize=(14,8))
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ax = fig.add_subplot(2, 2, 1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df_tp = pd.DataFrame(Combined_Delta_df)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Bottom = int(Plot_in_df_tp.stack().min(axis=None,skipna=True)) - 1
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df_tp = Plot_in_df_tp - Bottom
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df = Plot_in_df_tp.transpose()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ax = fig.add_subplot(2, 3, 1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        temp = Combined_Delta_df
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df_tp = temp
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        uni_colors = ['none', 'cornflowerblue', 'cornflowerblue','cornflowerblue','cornflowerblue']
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        Plot_in_df_tp['Median'] = pd.DataFrame(Plot_in_df_tp['-2std'] + Plot_in_df_tp['Med'])
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if int(Plot_in_df_tp.stack().min(axis=None,skipna=True)) < 0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Bottom = int(Plot_in_df_tp.stack().min(axis=None,skipna=True)) -1
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Plot_in_df_tp['-2std'] = Plot_in_df_tp['-2std'] - Bottom
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Plot_in_df_tp.plot.bar(stacked=True, color=uni_colors, edgecolor='none', legend=False, width=0.5,ax=ax, bottom = Bottom)  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.plot(Plot_in_df_tp['Med'], linestyle="", markersize=23, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        else:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            Plot_in_df_tp.plot.bar(stacked=True, color=uni_colors, edgecolor='none', legend=False, width=0.5,ax=ax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if Median_markers == 'yes':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            plt.plot(Plot_in_df_tp.index, Plot_in_df_tp['Median'], linestyle="", markersize=13, 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                     marker="_", color='darkblue', label="Median") 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        z = plt.axhline(float(0), linestyle='--', color='red', alpha=.5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        z.set_zorder(-1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #plt.ylim(xmin, xmax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.ylim(-5, 10)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if Figure_headings == 'yes':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            plt.title(Clim_var_type + ' All Delstas ' + Stats)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ax.grid(False)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #ax.grid(False)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ax.xaxis.grid(False)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        for tick in ax.get_xticklabels():
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            tick.set_rotation(90)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fig.tight_layout()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fig.patch.set_alpha(ALPHA_figs)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #plt.show()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.show()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #export plot to png
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        out_file_name = Estuary  + '_' + Clim_var_type + '_' + Stats + '_'  + Base_period_start +  '_'  + Base_period_end +  '_'  +  Version + '_All_Deltas_In1.png'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        out_path = output_directory + '/' + out_file_name
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fig.savefig(out_path)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.close(fig) 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				##make  barplot with alternating colours       
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#men_means, men_std = (20, 35, 30, 35, 27), (2, 3, 4, 1, 2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#women_means, women_std = (25, 32, 34, 20, 25), (3, 5, 2, 3, 3)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#ind = np.arange(len(men_means))  # the x locations for the groups
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#width = 0.35                     # the width of the bars
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#fig, ax = plt.subplots()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#rects1 = ax.bar(ind - width/2, men_means, width, yerr=men_std,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#                color='SkyBlue', label='Men')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#rects2 = ax.bar(ind + width/2, women_means, width, yerr=women_std,
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#                color='IndianRed', label='Women')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				## Add some text for labels, title and custom x-axis tick labels, etc.
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#ax.set_ylabel('Scores')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#ax.set_title('Scores by group and gender')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#ax.set_xticks(ind)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#ax.set_xticklabels(('G1', 'G2', 'G3', 'G4', 'G5'))
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				#ax.legend()
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				    if present_day_plot == 'yes':  
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        #print present day climate data
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        fig = plt.figure(figsize=(5,4))
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        ax = fig.add_subplot(1, 1, 1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        if temp == 'annual':
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            xmin = int(min(Plot_in_df.min(axis=1))-minplotDelta)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            xmax = int(max(Plot_in_df.max(axis=1))+maxplotDelta)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            fig = plt.figure(figsize=(14,8))
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            for i1 in range(2):
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                if i1 ==0:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                    ax = fig.add_subplot(2, 3, 1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                else:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                    ax = fig.add_subplot(2, 1, 2)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                xmin = int(min(Plot_in_df.min(axis=1))-minplotDelta)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                xmax = int(max(Plot_in_df.max(axis=1))+maxplotDelta)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                Present_Day_ref_df.plot(legend=False, ax=ax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                z = plt.axhline(float(Present_Day_Mean-2*Present_Day_SD), linestyle='-', color='black', alpha=.5)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                z.set_zorder(-1)
 | 
			
		
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
			
			 | 
			 | 
			
				@ -388,11 +450,12 @@ for Est in Estuaries:
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                z.set_zorder(-1)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                #fig.patch.set_facecolor('deepskyblue')
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                fig.patch.set_alpha(0)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        plt.ylim(13, xmax)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                plt.ylim(0, 400)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				                #export plot to png
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            out_file_name = Estuary  + '_' + Clim_var_type + '_' + Stats + '_'  + Base_period_start +  '_'  + Base_period_end +  '_'  +  Version + 'Present_Day_Period.png'
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            out_path = output_directory + '/' + out_file_name
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            fig.savefig(out_path)
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            plt.close(fig) 
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				            # use transparent=True if you want the whole figure with a transparent background
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        
 | 
			
		
		
	
		
			
				 | 
				 | 
			
			 | 
			 | 
			
				        
 | 
			
		
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
			
			 | 
			 | 
			
				
 
 |