Create script for RMA11 using RMA10 result file
parent
86da313646
commit
a2f193a834
@ -0,0 +1,337 @@
|
||||
|
||||
# coding: utf-8
|
||||
|
||||
# In[64]:
|
||||
|
||||
import struct
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
from py_rmatools import rma
|
||||
import re
|
||||
from datetime import datetime, timedelta
|
||||
plt.rcParams.update({'figure.max_open_warning': 0})
|
||||
|
||||
|
||||
# In[65]:
|
||||
|
||||
meshFilename = 'bub005c.rm1'
|
||||
channelWidth = 100
|
||||
RMAfilename = 'BUB023_WQ'
|
||||
|
||||
#If RMA11
|
||||
constNum = [1]
|
||||
|
||||
#If RMA11 3D
|
||||
|
||||
Options = ['Max',1,4,8] #Option available 'Max' , an integer correspond to the layer number to extract the results, if 2D use options = [1]
|
||||
NodeLayersFile = 'NodeLayers.txt' #the node layer file was created by getting the nodes number from the RMA Outfile (just run RMA11 for a few steps)
|
||||
Nnodes = 5769 #Number of nodes (including mid side node) - thisn umber also correspond to the last node number in the nodelayers file
|
||||
# In[66]:
|
||||
|
||||
def isElementOneD(nodelist):
|
||||
if len(nodelist) == 2:
|
||||
return True
|
||||
return False
|
||||
|
||||
def isElementSquare(nodelist):
|
||||
if len(nodelist) == 4:
|
||||
return True
|
||||
return False
|
||||
|
||||
def square2Triangle(ElementNum):
|
||||
nodelist = ElementDict[ElementNum]
|
||||
if isElementSquare(nodelist):
|
||||
ElementDict[ElementNum] = [nodelist[0], nodelist[1], nodelist[2]]
|
||||
ElementList.append(max(ElementList) + 1)
|
||||
ElementDict[ElementList[-1]]= [nodelist[0], nodelist[2], nodelist[3]]
|
||||
|
||||
def oneD2triangle(ElementNum):
|
||||
if isElementOneD(ElementDict[ElementNum]):
|
||||
nAe = ElementDict[ElementNum][0] #nAe Node A existing
|
||||
nBe = ElementDict[ElementNum][1]
|
||||
|
||||
if not nAe in node1Dduplicate: node1Dduplicate[nAe] = []
|
||||
if not nBe in node1Dduplicate: node1Dduplicate[nBe] = []
|
||||
|
||||
xA = nodeDict[nAe][0]
|
||||
xB = nodeDict[nBe][0]
|
||||
yA = nodeDict[nAe][1]
|
||||
yB = nodeDict[nBe][1]
|
||||
|
||||
normalVec = [-(yB - yA),(xB - xA)]
|
||||
dist = math.sqrt(normalVec[0]**2 + normalVec[1]**2)
|
||||
normalVec[0] = normalVec[0] / dist
|
||||
normalVec[1] = normalVec[1] / dist
|
||||
xA2 = xA + channelWidth * normalVec[0]
|
||||
xB2 = xB + channelWidth * normalVec[0]
|
||||
yA2 = yA + channelWidth * normalVec[1]
|
||||
yB2 = yB + channelWidth * normalVec[1]
|
||||
|
||||
|
||||
nA = max(NodeList) + 1
|
||||
nB = max(NodeList) + 2
|
||||
|
||||
node1Dduplicate[nAe].append(nA)
|
||||
node1Dduplicate[nBe].append(nB)
|
||||
|
||||
node2nodevalue[nA] = nAe
|
||||
node2nodevalue[nB] = nBe
|
||||
|
||||
|
||||
NodeList.append(nA)
|
||||
NodeList.append(nB)
|
||||
nodeDict[nA] = [xA2, yA2, -1.01]
|
||||
nodeDict[nB] = [xB2, yB2, -1.01]
|
||||
|
||||
newEle = max(ElementList) + 1
|
||||
ElementList .append(newEle)
|
||||
ElementDict[ElementNum] = [nAe, nA, nBe]
|
||||
ElementDict[newEle] = [nA, nB, nBe]
|
||||
|
||||
def RMA11toSerafin(option=1):
|
||||
f = open('{}_{}.slf'.format(RMAfilename,option), 'wb')
|
||||
|
||||
f.write(struct.pack(">l",80))
|
||||
strtemp='{0: >80}'.format('SERAFIN ')
|
||||
f.write(strtemp.encode('ascii'))
|
||||
f.write(struct.pack(">l",80))
|
||||
|
||||
f.write(struct.pack(">l",8))
|
||||
f.write(struct.pack(">l",len(constName)))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",8))
|
||||
|
||||
for idx,c in enumerate(constName):
|
||||
f.write(struct.pack(">l",32))
|
||||
strtemp='{0: <32}'.format(str(idx)+c)
|
||||
f.write(strtemp.encode('ascii'))
|
||||
f.write(struct.pack(">l",32))
|
||||
|
||||
|
||||
f.write(struct.pack(">l",40))
|
||||
f.write(struct.pack(">l",1))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",1))
|
||||
f.write(struct.pack(">l",40))
|
||||
|
||||
f.write(struct.pack(">l",24))
|
||||
f.write(struct.pack(">l",startDate.year))
|
||||
f.write(struct.pack(">l",startDate.month))
|
||||
f.write(struct.pack(">l",startDate.day))
|
||||
f.write(struct.pack(">l",startDate.hour))
|
||||
f.write(struct.pack(">l",startDate.minute))
|
||||
f.write(struct.pack(">l",startDate.second))
|
||||
f.write(struct.pack(">l",24))
|
||||
|
||||
f.write(struct.pack(">l",16))
|
||||
f.write(struct.pack(">l",len(ElementList)))
|
||||
f.write(struct.pack(">l",len(NodeList)))
|
||||
f.write(struct.pack(">l",3))
|
||||
f.write(struct.pack(">l",1))
|
||||
f.write(struct.pack(">l",16))
|
||||
|
||||
|
||||
f.write(struct.pack(">l",len(ElementList)*3*4))
|
||||
for el in ElementList:
|
||||
for nd in ElementDict[el]:
|
||||
|
||||
f.write(struct.pack(">l",nodeOrdered[nd]))
|
||||
f.write(struct.pack(">l",len(ElementList)*3*4))
|
||||
|
||||
f.write(struct.pack(">l",len(NodeList)))
|
||||
for i in range(0,len(NodeList)):
|
||||
f.write(struct.pack(">l",0))
|
||||
f.write(struct.pack(">l",len(NodeList)))
|
||||
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
for key, value in nodeDict.items():
|
||||
f.write(struct.pack(">f",value[0]))
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
for key, value in nodeDict.items():
|
||||
f.write(struct.pack(">f",value[1]))
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
|
||||
|
||||
|
||||
while R.next():
|
||||
#for i in range(3):
|
||||
currentDate = datetime(R.year,1,1) + timedelta(hours = R.time)
|
||||
timeCurrentStep = currentDate - startDate
|
||||
|
||||
f.write(struct.pack(">l",4))
|
||||
f.write(struct.pack(">f",timeCurrentStep.total_seconds()))
|
||||
f.write(struct.pack(">l",4))
|
||||
|
||||
|
||||
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
for key, value in nodeDict.items():
|
||||
writeConst('X-VEL',key,f)
|
||||
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
for key, value in nodeDict.items():
|
||||
writeConst('Y-VEL',key,f)
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
for key, value in nodeDict.items():
|
||||
writeConst('DEPTH',key,f)
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
for key, value in nodeDict.items():
|
||||
writeConst('FREE SURFACE',key,f)
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
|
||||
for c in constNum:
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
for key, value in nodeDict.items():
|
||||
writeConst(c,key,f)
|
||||
f.write(struct.pack(">l",len(NodeList)*4))
|
||||
f.close()
|
||||
|
||||
def writeConst(param,key,f):
|
||||
#get the surface node number
|
||||
# ['X-VEL','Y-VEL','DEPTH','FREE SURFACE','Constituent 1'......]
|
||||
|
||||
if param == 'X-VEL':
|
||||
tempR = R.xvel
|
||||
elif param == 'Y-VEL':
|
||||
tempR = R.yvel
|
||||
elif param == 'DEPTH':
|
||||
tempR = R.depth
|
||||
elif param == 'FREE SURFACE':
|
||||
tempR = R.elevation
|
||||
else:
|
||||
tempR = R.constit[c]
|
||||
|
||||
if key in node2nodevalue.keys():
|
||||
key = node2nodevalue[key]
|
||||
#based on the surface node number and option selected calculate the value
|
||||
if option == 'Max':
|
||||
tempArr = []
|
||||
for n in nodelayer[key]:
|
||||
tempArr.append(tempR[key])
|
||||
tempVal1 = max(tempArr)
|
||||
elif isinstance(option, int):
|
||||
temppos = (option - 1 ) * 2
|
||||
temppos2 = min([temppos,len(nodelayer[key])])
|
||||
|
||||
tempVal1 = tempR[nodelayer[key][temppos2]]
|
||||
else:
|
||||
tempVal1 = tempR[key]
|
||||
#save the value in the selaphin file
|
||||
f.write(struct.pack(">f",tempVal1))
|
||||
|
||||
|
||||
def readNodeLayers(fname,Nnodes):
|
||||
fn = open(fname)
|
||||
lines = fn.readlines()
|
||||
|
||||
surfaceNode = int(lines[0])
|
||||
nodelayer[surfaceNode] = []
|
||||
for l in lines:
|
||||
l = int(l)
|
||||
if (l != surfaceNode) & (l < Nnodes + 1):
|
||||
surfaceNode = l
|
||||
nodelayer[surfaceNode] = []
|
||||
nodelayer[surfaceNode].append(l)
|
||||
|
||||
# In[67]:
|
||||
|
||||
#Read mesh file and extract node (except mid node) and elements - plus convert 1D element to 2D for vizualisation
|
||||
nodelayer = {}
|
||||
NodeList = []
|
||||
ElementList = []
|
||||
ElementDict = {}
|
||||
nodeDict = {}
|
||||
node1Dduplicate = {} #Original Number: List of Duplicates
|
||||
node2nodevalue = {} #link between the node number and the node value to use
|
||||
#(e.g. if node 10 is a 1D node: 10 is not duplicate so {1:1},
|
||||
#but node 2050 (duplicate of 10) (1D to 2D) the value of the duplicated
|
||||
#node will be the same as the original so we might have {2050: 10})
|
||||
|
||||
with open(meshFilename) as f:
|
||||
line = f.readline()
|
||||
line = f.readline()
|
||||
line = f.readline()
|
||||
line = f.readline()
|
||||
|
||||
cpt = 1
|
||||
while line and line != ' 9999\n':
|
||||
|
||||
#temp = line.split()
|
||||
|
||||
temp = re.findall('.....',line)
|
||||
ElementDict[int(temp[0])] = [int(temp[i]) for i in range(1,9,2) if int(temp[i]) != 0 and int(temp[9]) < 100]
|
||||
ElementList.append(int(temp[0]))
|
||||
line = f.readline()
|
||||
|
||||
for key, value in ElementDict.items():
|
||||
NodeList.extend(value)
|
||||
|
||||
NodeList = list(set(NodeList))
|
||||
|
||||
line = f.readline()
|
||||
while line and line != ' 9999\n':
|
||||
|
||||
formatFix = (10,16,20,14,10,10)
|
||||
temp = []
|
||||
for form in formatFix:
|
||||
temp.append(line[:form])
|
||||
line = line[form:]
|
||||
|
||||
#line.split()
|
||||
if int(temp[0]) in NodeList:
|
||||
nodeDict[int(temp[0])] = [float(temp[1]),float(temp[2]),float(temp[3])]
|
||||
line = f.readline()
|
||||
|
||||
|
||||
for e in ElementList:
|
||||
oneD2triangle(e)
|
||||
square2Triangle(e)
|
||||
|
||||
for key in list(ElementDict): #Remove Special Element 902.....
|
||||
if len(ElementDict[key]) != 3:
|
||||
print(key, ElementDict[key])
|
||||
ElementDict.pop(key)
|
||||
ElementList.remove(key)
|
||||
|
||||
nodeOrdered = {}
|
||||
cpt = 1
|
||||
for key, value in nodeDict.items():
|
||||
nodeOrdered[key] = cpt
|
||||
cpt +=1
|
||||
|
||||
Nnodes = max(NodeList)
|
||||
# # Open and Read First Step of the RMA File and Save a Serafin
|
||||
|
||||
# In[72]:
|
||||
for option in Options:
|
||||
R=rma()
|
||||
R.open(RMAfilename)
|
||||
R.next()
|
||||
startDate = datetime(R.year,1,1) + timedelta(hours = R.time)
|
||||
if R.type==b'RMA11 ':
|
||||
constName = []
|
||||
readNodeLayers(NodeLayersFile,Nnodes)
|
||||
constName = ['X-VEL','Y-VEL','DEPTH','FREE SURFACE']
|
||||
for c in constNum:
|
||||
constName.append(R.constit_name[c].decode("utf-8"))
|
||||
print(c)
|
||||
|
||||
RMA11toSerafin(option)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue