parent
cd74f6c39c
commit
62f5c5330f
@ -0,0 +1,390 @@
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
# Download L5, L7, L8, S2 images of a given area
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
|
||||
|
||||
|
||||
#==========================================================#
|
||||
# Initial settings
|
||||
#==========================================================#
|
||||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pdb
|
||||
import ee
|
||||
|
||||
# other modules
|
||||
from osgeo import gdal, ogr, osr
|
||||
from urllib.request import urlretrieve
|
||||
import zipfile
|
||||
from datetime import datetime
|
||||
import pytz
|
||||
import pickle
|
||||
|
||||
# import own modules
|
||||
import functions.utils as utils
|
||||
import functions.sds as sds
|
||||
|
||||
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
||||
ee.Initialize()
|
||||
|
||||
#==========================================================#
|
||||
# Location
|
||||
#==========================================================#
|
||||
|
||||
## location (Narrabeen-Collaroy beach)
|
||||
#polygon = [[[151.301454, -33.700754],
|
||||
# [151.311453, -33.702075],
|
||||
# [151.307237, -33.739761],
|
||||
# [151.294220, -33.736329],
|
||||
# [151.301454, -33.700754]]];
|
||||
|
||||
# location (Tairua beach)
|
||||
sitename = 'TAIRUA'
|
||||
polygon = [[[175.835574, -36.982022],
|
||||
[175.888220, -36.980680],
|
||||
[175.893527, -37.029610],
|
||||
[175.833444, -37.031767],
|
||||
[175.835574, -36.982022]]];
|
||||
|
||||
# initialise metadata dictionnary (stores timestamps and georefencing accuracy of each image)
|
||||
metadata = dict([])
|
||||
|
||||
# create directories
|
||||
try:
|
||||
os.makedirs(os.path.join(os.getcwd(), 'data',sitename))
|
||||
except:
|
||||
print('directory already exists')
|
||||
|
||||
|
||||
#%%
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
# L5
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
|
||||
|
||||
|
||||
# define filenames for images
|
||||
suffix = '.tif'
|
||||
filepath = os.path.join(os.getcwd(), 'data', sitename, 'L5', '30m')
|
||||
try:
|
||||
os.makedirs(filepath)
|
||||
except:
|
||||
print('directory already exists')
|
||||
|
||||
#==========================================================#
|
||||
# Select L5 collection
|
||||
#==========================================================#
|
||||
|
||||
satname = 'L5'
|
||||
input_col = ee.ImageCollection('LANDSAT/LT05/C01/T1_TOA')
|
||||
|
||||
# filter by location
|
||||
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon))
|
||||
n_img = flt_col.size().getInfo()
|
||||
print('Number of images covering ' + sitename, n_img)
|
||||
im_all = flt_col.getInfo().get('features')
|
||||
|
||||
|
||||
#==========================================================#
|
||||
# Main loop trough images
|
||||
#==========================================================#
|
||||
|
||||
timestamps = []
|
||||
acc_georef = []
|
||||
all_names = []
|
||||
for i in range(n_img):
|
||||
|
||||
# find each image in ee database
|
||||
im = ee.Image(im_all[i].get('id'))
|
||||
|
||||
im_dic = im.getInfo()
|
||||
im_bands = im_dic.get('bands')
|
||||
t = im_dic['properties']['system:time_start']
|
||||
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
||||
timestamps.append(im_timestamp)
|
||||
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
|
||||
im_epsg = int(im_dic['bands'][0]['crs'][5:])
|
||||
try:
|
||||
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
|
||||
except:
|
||||
acc_georef.append(12)
|
||||
print('No geometric rmse model property')
|
||||
|
||||
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
||||
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
||||
|
||||
# bands for L5
|
||||
ms_bands = [im_bands[0], im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[7]]
|
||||
|
||||
# filenames
|
||||
filename = im_date + '_' + satname + '_' + sitename + suffix
|
||||
|
||||
print(i)
|
||||
if any(filename in _ for _ in all_names):
|
||||
filename = im_date + '_' + satname + '_' + sitename + '_dup' + suffix
|
||||
all_names.append(filename)
|
||||
|
||||
local_data = sds.download_tif(im, polygon, ms_bands, filepath)
|
||||
os.rename(local_data, os.path.join(filepath, filename))
|
||||
|
||||
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
|
||||
timestamps_sorted = sorted(timestamps)
|
||||
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
|
||||
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
|
||||
|
||||
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted, 'epsg':im_epsg}
|
||||
|
||||
#%%
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
# L7&L8
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
|
||||
|
||||
|
||||
# define filenames for images
|
||||
suffix = '.tif'
|
||||
filepath = os.path.join(os.getcwd(), 'data', sitename, 'L7&L8')
|
||||
filepath_pan = os.path.join(filepath, 'pan')
|
||||
filepath_ms = os.path.join(filepath, 'ms')
|
||||
try:
|
||||
os.makedirs(filepath_pan)
|
||||
os.makedirs(filepath_ms)
|
||||
except:
|
||||
print('directory already exists')
|
||||
|
||||
#==========================================================#
|
||||
# Select L7 collection
|
||||
#==========================================================#
|
||||
|
||||
satname = 'L7'
|
||||
input_col = ee.ImageCollection('LANDSAT/LE07/C01/T1_RT_TOA')
|
||||
|
||||
# filter by location
|
||||
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon))
|
||||
n_img = flt_col.size().getInfo()
|
||||
print('Number of images covering ' + sitename, n_img)
|
||||
im_all = flt_col.getInfo().get('features')
|
||||
|
||||
#==========================================================#
|
||||
# Main loop trough images
|
||||
#==========================================================#
|
||||
|
||||
timestamps = []
|
||||
acc_georef = []
|
||||
all_names = []
|
||||
for i in range(n_img):
|
||||
|
||||
# find each image in ee database
|
||||
im = ee.Image(im_all[i].get('id'))
|
||||
|
||||
im_dic = im.getInfo()
|
||||
im_bands = im_dic.get('bands')
|
||||
t = im_dic['properties']['system:time_start']
|
||||
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
||||
timestamps.append(im_timestamp)
|
||||
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
|
||||
im_epsg = int(im_dic['bands'][0]['crs'][5:])
|
||||
try:
|
||||
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
|
||||
except:
|
||||
acc_georef.append(12)
|
||||
print('No geometric rmse model property')
|
||||
|
||||
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
||||
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
||||
|
||||
# bands for L7
|
||||
pan_band = [im_bands[8]]
|
||||
ms_bands = [im_bands[0], im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[9]]
|
||||
|
||||
# filenames
|
||||
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + suffix
|
||||
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + suffix
|
||||
|
||||
print(i)
|
||||
if any(filename_pan in _ for _ in all_names):
|
||||
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + '_dup' + suffix
|
||||
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + '_dup' + suffix
|
||||
all_names.append(filename_pan)
|
||||
|
||||
local_data_pan = sds.download_tif(im, polygon, pan_band, filepath_pan)
|
||||
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
|
||||
local_data_ms = sds.download_tif(im, polygon, ms_bands, filepath_ms)
|
||||
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
|
||||
|
||||
#==========================================================#
|
||||
# Select L8 collection
|
||||
#==========================================================#
|
||||
|
||||
satname = 'L8'
|
||||
input_col = ee.ImageCollection('LANDSAT/LC08/C01/T1_RT_TOA')
|
||||
|
||||
# filter by location
|
||||
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon))
|
||||
n_img = flt_col.size().getInfo()
|
||||
print('Number of images covering Narrabeen:', n_img)
|
||||
im_all = flt_col.getInfo().get('features')
|
||||
|
||||
#==========================================================#
|
||||
# Main loop trough images
|
||||
#==========================================================#
|
||||
|
||||
for i in range(n_img):
|
||||
|
||||
# find each image in ee database
|
||||
im = ee.Image(im_all[i].get('id'))
|
||||
|
||||
im_dic = im.getInfo()
|
||||
im_bands = im_dic.get('bands')
|
||||
t = im_dic['properties']['system:time_start']
|
||||
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
||||
timestamps.append(im_timestamp)
|
||||
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
|
||||
im_epsg = int(im_dic['bands'][0]['crs'][5:])
|
||||
try:
|
||||
acc_georef.append(im_dic['properties']['GEOMETRIC_RMSE_MODEL'])
|
||||
except:
|
||||
acc_georef.append(12)
|
||||
print('No geometric rmse model property')
|
||||
|
||||
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
||||
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
||||
|
||||
# bands for L8
|
||||
pan_band = [im_bands[7]]
|
||||
ms_bands = [im_bands[1], im_bands[2], im_bands[3], im_bands[4], im_bands[5], im_bands[11]]
|
||||
|
||||
# filenames
|
||||
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + suffix
|
||||
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + suffix
|
||||
|
||||
print(i)
|
||||
if any(filename_pan in _ for _ in all_names):
|
||||
filename_pan = im_date + '_' + satname + '_' + sitename + '_pan' + '_dup' + suffix
|
||||
filename_ms = im_date + '_' + satname + '_' + sitename + '_ms' + '_dup' + suffix
|
||||
all_names.append(filename_pan)
|
||||
|
||||
local_data_pan = sds.download_tif(im, polygon, pan_band, filepath_pan)
|
||||
os.rename(local_data_pan, os.path.join(filepath_pan, filename_pan))
|
||||
local_data_ms = sds.download_tif(im, polygon, ms_bands, filepath_ms)
|
||||
os.rename(local_data_ms, os.path.join(filepath_ms, filename_ms))
|
||||
|
||||
|
||||
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
|
||||
timestamps_sorted = sorted(timestamps)
|
||||
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
|
||||
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
|
||||
|
||||
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted, 'epsg':im_epsg}
|
||||
|
||||
#%%
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
# S2
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
|
||||
|
||||
|
||||
# define filenames for images
|
||||
suffix = '.tif'
|
||||
filepath = os.path.join(os.getcwd(), 'data', sitename, 'S2')
|
||||
try:
|
||||
os.makedirs(os.path.join(filepath, '10m'))
|
||||
os.makedirs(os.path.join(filepath, '20m'))
|
||||
os.makedirs(os.path.join(filepath, '60m'))
|
||||
except:
|
||||
print('directory already exists')
|
||||
|
||||
#==========================================================#
|
||||
# Select L2 collection
|
||||
#==========================================================#
|
||||
|
||||
satname = 'S2'
|
||||
input_col = ee.ImageCollection('COPERNICUS/S2')
|
||||
|
||||
# filter by location
|
||||
flt_col = input_col.filterBounds(ee.Geometry.Polygon(polygon))
|
||||
n_img = flt_col.size().getInfo()
|
||||
print('Number of images covering ' + sitename, n_img)
|
||||
im_all = flt_col.getInfo().get('features')
|
||||
|
||||
#==========================================================#
|
||||
# Main loop trough images
|
||||
#==========================================================#
|
||||
|
||||
timestamps = []
|
||||
acc_georef = []
|
||||
all_names = []
|
||||
for i in range(n_img):
|
||||
|
||||
# find each image in ee database
|
||||
im = ee.Image(im_all[i].get('id'))
|
||||
|
||||
im_dic = im.getInfo()
|
||||
im_bands = im_dic.get('bands')
|
||||
t = im_dic['properties']['system:time_start']
|
||||
im_timestamp = datetime.fromtimestamp(t/1000, tz=pytz.utc)
|
||||
im_date = im_timestamp.strftime('%Y-%m-%d-%H-%M-%S')
|
||||
timestamps.append(im_timestamp)
|
||||
im_epsg = int(im_dic['bands'][0]['crs'][5:])
|
||||
try:
|
||||
if im_dic['properties']['GEOMETRIC_QUALITY_FLAG'] == 'PASSED':
|
||||
acc_georef.append(1)
|
||||
else:
|
||||
acc_georef.append(0)
|
||||
except:
|
||||
acc_georef.append(0)
|
||||
|
||||
# delete dimensions key from dictionnary, otherwise the entire image is extracted
|
||||
for j in range(len(im_bands)): del im_bands[j]['dimensions']
|
||||
|
||||
# bands for S2
|
||||
bands10 = [im_bands[1], im_bands[2], im_bands[3], im_bands[7]]
|
||||
bands20 = [im_bands[11]]
|
||||
bands60 = [im_bands[15]]
|
||||
|
||||
# filenames
|
||||
filename10 = im_date + '_' + satname + '_' + sitename + '_' + '10m' + suffix
|
||||
filename20 = im_date + '_' + satname + '_' + sitename + '_' + '20m' + suffix
|
||||
filename60 = im_date + '_' + satname + '_' + sitename + '_' + '60m' + suffix
|
||||
|
||||
print(i)
|
||||
if any(filename10 in _ for _ in all_names):
|
||||
filename10 = im_date + '_' + satname + '_' + sitename + '_' + '10m' + '_dup' + suffix
|
||||
filename20 = im_date + '_' + satname + '_' + sitename + '_' + '20m' + '_dup' + suffix
|
||||
filename60 = im_date + '_' + satname + '_' + sitename + '_' + '60m' + '_dup' + suffix
|
||||
all_names.append(filename10)
|
||||
|
||||
local_data = sds.download_tif(im, polygon, bands10, filepath)
|
||||
os.rename(local_data, os.path.join(filepath, '10m', filename10))
|
||||
|
||||
local_data = sds.download_tif(im, polygon, bands20, filepath)
|
||||
os.rename(local_data, os.path.join(filepath, '20m', filename20))
|
||||
|
||||
local_data = sds.download_tif(im, polygon, bands60, filepath)
|
||||
os.rename(local_data, os.path.join(filepath, '60m', filename60))
|
||||
|
||||
# sort timestamps and georef accuracy (dowloaded images are sorted by date in directory)
|
||||
timestamps_sorted = sorted(timestamps)
|
||||
idx_sorted = sorted(range(len(timestamps)), key=timestamps.__getitem__)
|
||||
acc_georef_sorted = [acc_georef[j] for j in idx_sorted]
|
||||
|
||||
metadata[satname] = {'dates':timestamps_sorted, 'acc_georef':acc_georef_sorted, 'epsg':im_epsg}
|
||||
|
||||
|
||||
|
||||
#%% save metadata
|
||||
|
||||
filepath = os.path.join(os.getcwd(), 'data', sitename)
|
||||
with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'wb') as f:
|
||||
pickle.dump(metadata, f)
|
||||
|
||||
|
Binary file not shown.
@ -0,0 +1,432 @@
|
||||
"""This module contains all the functions needed for data analysis """
|
||||
|
||||
# Initial settings
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.patches as mpatches
|
||||
from matplotlib import gridspec
|
||||
import pdb
|
||||
import ee
|
||||
|
||||
# other modules
|
||||
from osgeo import gdal, ogr, osr
|
||||
import scipy.interpolate as interpolate
|
||||
import scipy.stats as sstats
|
||||
|
||||
# image processing modules
|
||||
import skimage.filters as filters
|
||||
import skimage.exposure as exposure
|
||||
import skimage.transform as transform
|
||||
import sklearn.decomposition as decomposition
|
||||
import skimage.measure as measure
|
||||
import skimage.morphology as morphology
|
||||
|
||||
# machine learning modules
|
||||
from sklearn.cluster import KMeans
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.externals import joblib
|
||||
|
||||
import time
|
||||
|
||||
# import own modules
|
||||
import functions.utils as utils
|
||||
|
||||
def get_tide(dates_sds, dates_tide, tide_level):
|
||||
|
||||
tide = []
|
||||
for i in range(len(dates_sds)):
|
||||
dates_diff = np.abs(np.array([ (dates_sds[i] - _).total_seconds() for _ in dates_tide]))
|
||||
if np.min(dates_diff) <= 1800: # half-an-hour
|
||||
idx_closest = np.argmin(dates_diff)
|
||||
tide.append(tide_level[idx_closest])
|
||||
else:
|
||||
tide.append(np.nan)
|
||||
tide = np.array(tide)
|
||||
|
||||
return tide
|
||||
|
||||
def remove_duplicates(output, satname):
|
||||
" removes duplicates from output structure, keep the one with less cloud cover or best georeferencing "
|
||||
dates = output['dates']
|
||||
dates_str = [_.strftime('%Y%m%d') for _ in dates]
|
||||
dupl = utils.duplicates_dict(dates_str)
|
||||
if dupl:
|
||||
output_nodup = dict([])
|
||||
idx_remove = []
|
||||
if satname == 'L8' or satname == 'L5':
|
||||
for k,v in dupl.items():
|
||||
|
||||
idx1 = v[0]
|
||||
idx2 = v[1]
|
||||
|
||||
c1 = output['metadata']['cloud_cover'][idx1]
|
||||
c2 = output['metadata']['cloud_cover'][idx2]
|
||||
g1 = output['metadata']['acc_georef'][idx1]
|
||||
g2 = output['metadata']['acc_georef'][idx2]
|
||||
|
||||
if c1 < c2 - 0.01:
|
||||
idx_remove.append(idx2)
|
||||
elif g1 < g2 - 0.1:
|
||||
idx_remove.append(idx2)
|
||||
else:
|
||||
idx_remove.append(idx1)
|
||||
|
||||
else:
|
||||
for k,v in dupl.items():
|
||||
|
||||
idx1 = v[0]
|
||||
idx2 = v[1]
|
||||
|
||||
c1 = output['metadata']['cloud_cover'][idx1]
|
||||
c2 = output['metadata']['cloud_cover'][idx2]
|
||||
|
||||
if c1 < c2 - 0.01:
|
||||
idx_remove.append(idx2)
|
||||
else:
|
||||
idx_remove.append(idx1)
|
||||
|
||||
idx_remove = sorted(idx_remove)
|
||||
idx_all = np.linspace(0, len(dates_str)-1, len(dates_str))
|
||||
idx_keep = list(np.where(~np.isin(idx_all,idx_remove))[0])
|
||||
|
||||
output_nodup['dates'] = [output['dates'][k] for k in idx_keep]
|
||||
output_nodup['shorelines'] = [output['shorelines'][k] for k in idx_keep]
|
||||
output_nodup['metadata'] = dict([])
|
||||
for key in list(output['metadata'].keys()):
|
||||
output_nodup['metadata'][key] = [output['metadata'][key][k] for k in idx_keep]
|
||||
print(satname + ' : ' + str(len(idx_remove)) + ' duplicates')
|
||||
return output_nodup
|
||||
|
||||
else:
|
||||
print(satname + ' : ' + 'no duplicates')
|
||||
return output
|
||||
|
||||
|
||||
def merge(output):
|
||||
" merges data from the different satellites "
|
||||
|
||||
# stack all list together under one key
|
||||
output_all = {'dates':[], 'shorelines':[],
|
||||
'metadata':{'filenames':[], 'satname':[], 'cloud_cover':[], 'acc_georef':[]}}
|
||||
for satname in list(output.keys()):
|
||||
output_all['dates'] = output_all['dates'] + output[satname]['dates']
|
||||
output_all['shorelines'] = output_all['shorelines'] + output[satname]['shorelines']
|
||||
for key in list(output[satname]['metadata'].keys()):
|
||||
output_all['metadata'][key] = output_all['metadata'][key] + output[satname]['metadata'][key]
|
||||
|
||||
output_all_sorted = {'dates':[], 'shorelines':[],
|
||||
'metadata':{'filenames':[], 'satname':[], 'cloud_cover':[], 'acc_georef':[]}}
|
||||
# sort the dates
|
||||
idx_sorted = sorted(range(len(output_all['dates'])), key=output_all['dates'].__getitem__)
|
||||
output_all_sorted['dates'] = [output_all['dates'][i] for i in idx_sorted]
|
||||
output_all_sorted['shorelines'] = [output_all['shorelines'][i] for i in idx_sorted]
|
||||
for key in list(output_all['metadata'].keys()):
|
||||
output_all_sorted['metadata'][key] = [output_all['metadata'][key][i] for i in idx_sorted]
|
||||
|
||||
return output_all_sorted
|
||||
|
||||
def create_transects(x0, y0, orientation, chainage_length):
|
||||
" creates shore-normal transects "
|
||||
|
||||
transects = []
|
||||
|
||||
for k in range(len(x0)):
|
||||
|
||||
# orientation of cross-shore profile
|
||||
phi = (90 - orientation[k])*np.pi/180
|
||||
|
||||
# create a vector using the chainage length
|
||||
x = np.linspace(0,chainage_length,chainage_length+1)
|
||||
y = np.zeros(len(x))
|
||||
coords = np.zeros((len(x),2))
|
||||
coords[:,0] = x
|
||||
coords[:,1] = y
|
||||
|
||||
# translate and rotate the vector using the origin and orientation
|
||||
tf = transform.EuclideanTransform(rotation=phi, translation=(x0[k],y0[k]))
|
||||
coords_tf = tf(coords)
|
||||
|
||||
transects.append(coords_tf)
|
||||
|
||||
return transects
|
||||
|
||||
def calculate_chainage(sds, transects, orientation, along_dist):
|
||||
" intersect SDS with transect and compute chainage position "
|
||||
|
||||
chainage_mtx = np.zeros((len(sds),len(transects),6))
|
||||
|
||||
for i in range(len(sds)):
|
||||
|
||||
sl = sds[i]
|
||||
|
||||
for j in range(len(transects)):
|
||||
|
||||
# compute rotation matrix
|
||||
X0 = transects[j][0,0]
|
||||
Y0 = transects[j][0,1]
|
||||
phi = (90 - orientation[j])*np.pi/180
|
||||
Mrot = np.array([[np.cos(phi), np.sin(phi)],[-np.sin(phi), np.cos(phi)]])
|
||||
|
||||
# calculate point to line distance between shoreline points and profile
|
||||
p1 = np.array([X0,Y0])
|
||||
p2 = transects[j][-1,:]
|
||||
p3 = sl
|
||||
d = np.abs(np.cross(p2-p1,p3-p1)/np.linalg.norm(p2-p1))
|
||||
idx_close = utils.find_indices(d, lambda e: e <= along_dist)
|
||||
|
||||
# check if there are SDS points around the profile or not
|
||||
if not idx_close:
|
||||
chainage_mtx[i,j,:] = np.tile(np.nan,(1,6))
|
||||
|
||||
else:
|
||||
# change of base to shore-normal coordinate system
|
||||
xy_close = np.array([sl[idx_close,0],sl[idx_close,1]]) - np.tile(np.array([[X0],[Y0]]), (1,len(sl[idx_close])))
|
||||
xy_rot = np.matmul(Mrot, xy_close)
|
||||
|
||||
# put nan values if the chainage is negative (MAKE SURE TO PICK ORIGIN CORRECTLY)
|
||||
if np.any(xy_rot[0,:] < 0):
|
||||
xy_rot[0,np.where(xy_rot[0,:] < 0)] = np.nan
|
||||
|
||||
# compute mean, median max and std of chainage position
|
||||
n_points = len(xy_rot[0,:])
|
||||
mean_cross = np.nanmean(xy_rot[0,:])
|
||||
median_cross = np.nanmedian(xy_rot[0,:])
|
||||
max_cross = np.nanmax(xy_rot[0,:])
|
||||
min_cross = np.nanmin(xy_rot[0,:])
|
||||
std_cross = np.nanstd(xy_rot[0,:])
|
||||
|
||||
if std_cross > 10: # if large std, take the most seaward point
|
||||
mean_cross = max_cross
|
||||
median_cross = max_cross
|
||||
min_cross = max_cross
|
||||
|
||||
# store the statistics
|
||||
chainage_mtx[i,j,:] = np.array([mean_cross, median_cross, max_cross,
|
||||
min_cross, n_points, std_cross])
|
||||
|
||||
# format into dictionnary
|
||||
chainage = dict([])
|
||||
chainage['mean'] = chainage_mtx[:,:,0]
|
||||
chainage['median'] = chainage_mtx[:,:,1]
|
||||
chainage['max'] = chainage_mtx[:,:,2]
|
||||
chainage['min'] = chainage_mtx[:,:,3]
|
||||
chainage['npoints'] = chainage_mtx[:,:,4]
|
||||
chainage['std'] = chainage_mtx[:,:,5]
|
||||
|
||||
return chainage
|
||||
|
||||
def compare_sds(dates_sds, chain_sds, topo_profiles, mod=0, mindays=5):
|
||||
"""
|
||||
Compare sds with groundtruth data from topographic surveys / argus shorelines
|
||||
|
||||
KV WRL 2018
|
||||
|
||||
Arguments:
|
||||
-----------
|
||||
dates_sds: list
|
||||
list of dates corresponding to each row in chain_sds
|
||||
chain_sds: np.ndarray
|
||||
array with time series of chainage for each transect (each transect is one column)
|
||||
topo_profiles: dict
|
||||
dict containing the dates and chainage of the groundtruth
|
||||
mod: 0 or 1
|
||||
0 for linear interpolation between 2 closest surveys, 1 for only nearest neighbour
|
||||
min_days: int
|
||||
minimum number of days for which the data can be compared
|
||||
|
||||
Returns: -----------
|
||||
stats: dict
|
||||
contains all the statistics of the comparison
|
||||
|
||||
"""
|
||||
|
||||
# create 3 figures
|
||||
fig1 = plt.figure()
|
||||
gs1 = gridspec.GridSpec(chain_sds.shape[1], 1)
|
||||
fig2 = plt.figure()
|
||||
gs2 = gridspec.GridSpec(2, chain_sds.shape[1])
|
||||
fig3 = plt.figure()
|
||||
gs3 = gridspec.GridSpec(2,1)
|
||||
|
||||
dates_sds_num = np.array([_.toordinal() for _ in dates_sds])
|
||||
stats = dict([])
|
||||
data_fin = dict([])
|
||||
|
||||
# for each transect compare and plot the data
|
||||
for i in range(chain_sds.shape[1]):
|
||||
|
||||
pfname = list(topo_profiles.keys())[i]
|
||||
stats[pfname] = dict([])
|
||||
data_fin[pfname] = dict([])
|
||||
|
||||
dates_sur = topo_profiles[pfname]['dates']
|
||||
chain_sur = topo_profiles[pfname]['chainage']
|
||||
|
||||
# convert to datenum
|
||||
dates_sur_num = np.array([_.toordinal() for _ in dates_sur])
|
||||
|
||||
chain_sur_interp = []
|
||||
diff_days = []
|
||||
|
||||
for j, satdate in enumerate(dates_sds_num):
|
||||
|
||||
temp_diff = satdate - dates_sur_num
|
||||
|
||||
if mod==0:
|
||||
# select measurement before and after sat image date and interpolate
|
||||
|
||||
ind_before = np.where(temp_diff == temp_diff[temp_diff > 0][-1])[0]
|
||||
if ind_before == len(temp_diff)-1:
|
||||
chain_sur_interp.append(np.nan)
|
||||
diff_days.append(np.abs(satdate-dates_sur_num[ind_before])[0])
|
||||
continue
|
||||
ind_after = np.where(temp_diff == temp_diff[temp_diff < 0][0])[0]
|
||||
tempx = np.zeros(2)
|
||||
tempx[0] = dates_sur_num[ind_before]
|
||||
tempx[1] = dates_sur_num[ind_after]
|
||||
tempy = np.zeros(2)
|
||||
tempy[0] = chain_sur[ind_before]
|
||||
tempy[1] = chain_sur[ind_after]
|
||||
diff_days.append(np.abs(np.max([satdate-tempx[0], satdate-tempx[1]])))
|
||||
# interpolate
|
||||
f = interpolate.interp1d(tempx, tempy)
|
||||
chain_sur_interp.append(f(satdate))
|
||||
|
||||
elif mod==1:
|
||||
# select the closest measurement
|
||||
|
||||
idx_closest = utils.find_indices(np.abs(temp_diff), lambda e: e == np.min(np.abs(temp_diff)))[0]
|
||||
diff_days.append(np.abs(satdate-dates_sur_num[idx_closest]))
|
||||
if diff_days[j] > mindays:
|
||||
chain_sur_interp.append(np.nan)
|
||||
else:
|
||||
chain_sur_interp.append(chain_sur[idx_closest])
|
||||
|
||||
chain_sur_interp = np.array(chain_sur_interp)
|
||||
|
||||
# remove nan values
|
||||
idx_sur_nan = ~np.isnan(chain_sur_interp)
|
||||
idx_sat_nan = ~np.isnan(chain_sds[:,i])
|
||||
idx_nan = np.logical_and(idx_sur_nan, idx_sat_nan)
|
||||
|
||||
# groundtruth and sds
|
||||
chain_sur_fin = chain_sur_interp[idx_nan]
|
||||
chain_sds_fin = chain_sds[idx_nan,i]
|
||||
dates_fin = [k for (k, v) in zip(dates_sds, idx_nan) if v]
|
||||
|
||||
# calculate statistics
|
||||
slope, intercept, rvalue, pvalue, std_err = sstats.linregress(chain_sur_fin, chain_sds_fin)
|
||||
R2 = rvalue**2
|
||||
correlation = np.corrcoef(chain_sur_fin, chain_sds_fin)[0,1]
|
||||
diff_chain = chain_sur_fin - chain_sds_fin
|
||||
|
||||
rmse = np.sqrt(np.nanmean((diff_chain)**2))
|
||||
mean = np.nanmean(diff_chain)
|
||||
std = np.nanstd(diff_chain)
|
||||
q90 = np.percentile(np.abs(diff_chain), 90)
|
||||
|
||||
# store data
|
||||
stats[pfname]['rmse'] = rmse
|
||||
stats[pfname]['mean'] = mean
|
||||
stats[pfname]['std'] = std
|
||||
stats[pfname]['q90'] = q90
|
||||
stats[pfname]['diffdays'] = diff_days
|
||||
stats[pfname]['corr'] = correlation
|
||||
stats[pfname]['linfit'] = {'slope':slope, 'intercept':intercept, 'R2':R2, 'pvalue':pvalue}
|
||||
|
||||
data_fin[pfname]['dates'] = dates_fin
|
||||
data_fin[pfname]['sds'] = chain_sds_fin
|
||||
data_fin[pfname]['survey'] = chain_sur_fin
|
||||
|
||||
# make time-series plot
|
||||
plt.figure(fig1.number)
|
||||
fig1.add_subplot(gs1[i,0])
|
||||
plt.plot(dates_sur, chain_sur, 'o-', color='C1', markersize=4, label='survey all')
|
||||
plt.plot(dates_fin, chain_sur_fin, 'o', color=[0.3, 0.3, 0.3], markersize=2, label='survey interp')
|
||||
plt.plot(dates_fin, chain_sds_fin, 'o--', color='b', markersize=4, label='SDS')
|
||||
plt.title(pfname, fontweight='bold')
|
||||
# plt.xlim([dates_sds[0], dates_sds[-1]])
|
||||
plt.ylabel('chainage [m]')
|
||||
|
||||
# make scatter plot
|
||||
plt.figure(fig2.number)
|
||||
fig2.add_subplot(gs2[0,i])
|
||||
plt.axis('equal')
|
||||
plt.plot(chain_sur_fin, chain_sds_fin, 'ko', markersize=4, markerfacecolor='w', alpha=0.7)
|
||||
xmax = np.max([np.nanmax(chain_sds_fin),np.nanmax(chain_sur_fin)])
|
||||
xmin = np.min([np.nanmin(chain_sds_fin),np.nanmin(chain_sur_fin)])
|
||||
ymax = np.max([np.nanmax(chain_sds_fin),np.nanmax(chain_sur_fin)])
|
||||
ymin = np.min([np.nanmin(chain_sds_fin),np.nanmin(chain_sur_fin)])
|
||||
plt.plot([xmin, xmax], [ymin, ymax], 'k--')
|
||||
plt.plot([xmin, xmax], [xmin*slope + intercept, xmax*slope + intercept], 'b:')
|
||||
str_corr = ' y = %.2f x + %.2f\n R2 = %.2f' % (slope, intercept, R2)
|
||||
plt.text(xmin, ymax-5, str_corr, bbox=dict(facecolor=[0.7,0.7,0.7], alpha=0.5), horizontalalignment='left')
|
||||
plt.xlabel('chainage survey [m]')
|
||||
plt.ylabel('chainage satellite [m]')
|
||||
plt.title(pfname, fontweight='bold')
|
||||
|
||||
fig2.add_subplot(gs2[1,i])
|
||||
binwidth = 3
|
||||
bins = np.arange(min(diff_chain), max(diff_chain) + binwidth, binwidth)
|
||||
density = plt.hist(diff_chain, bins=bins, density=True, color=[0.8, 0.8, 0.8], edgecolor='k')
|
||||
plt.xlim([-50, 50])
|
||||
plt.xlabel('error [m]')
|
||||
str_stats = ' rmse = %.1f\n mean = %.1f\n std = %.1f\n q90 = %.1f' % (rmse, mean, std, q90)
|
||||
plt.text(15, np.max(density[0])-0.015, str_stats, bbox=dict(facecolor=[0.8,0.8,0.8], alpha=0.3), horizontalalignment='left', fontsize=10)
|
||||
|
||||
fig1.set_size_inches(19.2, 9.28)
|
||||
fig1.set_tight_layout(True)
|
||||
fig2.set_size_inches(19.2, 9.28)
|
||||
fig2.set_tight_layout(True)
|
||||
|
||||
# all transects together
|
||||
chain_sds_all = []
|
||||
chain_sur_all = []
|
||||
for i in range(chain_sds.shape[1]):
|
||||
pfname = list(topo_profiles.keys())[i]
|
||||
chain_sds_all = np.append(chain_sds_all,data_fin[pfname]['sds'])
|
||||
chain_sur_all = np.append(chain_sur_all,data_fin[pfname]['survey'])
|
||||
|
||||
# calculate statistics
|
||||
slope, intercept, rvalue, pvalue, std_err = sstats.linregress(chain_sur_all, chain_sds_all)
|
||||
R2 = rvalue**2
|
||||
correlation = np.corrcoef(chain_sur_all, chain_sds_all)[0,1]
|
||||
diff_chain_all = chain_sur_all - chain_sds_all
|
||||
|
||||
rmse = np.sqrt(np.nanmean((diff_chain_all)**2))
|
||||
mean = np.nanmean(diff_chain_all)
|
||||
std = np.nanstd(diff_chain_all)
|
||||
q90 = np.percentile(np.abs(diff_chain_all), 90)
|
||||
|
||||
stats['all'] = {'rmse':rmse,'mean':mean,'std':std,'q90':q90, 'corr':correlation,
|
||||
'linfit':{'slope':slope, 'intercept':intercept, 'R2':R2, 'pvalue':pvalue}}
|
||||
|
||||
# make plot
|
||||
plt.figure(fig3.number)
|
||||
fig3.add_subplot(gs3[0,0])
|
||||
plt.axis('equal')
|
||||
plt.plot(chain_sur_all, chain_sds_all, 'ko', markersize=4, markerfacecolor='w', alpha=0.7)
|
||||
xmax = np.max([np.nanmax(chain_sds_all),np.nanmax(chain_sur_all)])
|
||||
xmin = np.min([np.nanmin(chain_sds_all),np.nanmin(chain_sur_all)])
|
||||
ymax = np.max([np.nanmax(chain_sds_all),np.nanmax(chain_sur_all)])
|
||||
ymin = np.min([np.nanmin(chain_sds_all),np.nanmin(chain_sur_all)])
|
||||
plt.plot([xmin, xmax], [ymin, ymax], 'k--')
|
||||
plt.plot([xmin, xmax], [xmin*slope + intercept, xmax*slope + intercept], 'b:')
|
||||
str_corr = ' y = %.2f x + %.2f\n R2 = %.2f' % (slope, intercept, R2)
|
||||
plt.text(xmin, ymax-5, str_corr, bbox=dict(facecolor=[0.7,0.7,0.7], alpha=0.5), horizontalalignment='left')
|
||||
plt.xlabel('chainage survey [m]')
|
||||
plt.ylabel('chainage satellite [m]')
|
||||
plt.title(pfname, fontweight='bold')
|
||||
|
||||
fig3.add_subplot(gs3[1,0])
|
||||
binwidth = 3
|
||||
bins = np.arange(min(diff_chain_all), max(diff_chain_all) + binwidth, binwidth)
|
||||
density = plt.hist(diff_chain_all, bins=bins, density=True, color=[0.8, 0.8, 0.8], edgecolor='k')
|
||||
plt.xlim([-50, 50])
|
||||
plt.xlabel('error [m]')
|
||||
str_stats = ' rmse = %.1f\n mean = %.1f\n std = %.1f\n q90 = %.1f' % (rmse, mean, std, q90)
|
||||
plt.text(15, np.max(density[0])-0.015, str_stats, bbox=dict(facecolor=[0.8,0.8,0.8], alpha=0.3), horizontalalignment='left', fontsize=10)
|
||||
fig3.set_size_inches(9.2, 9.28)
|
||||
fig3.set_tight_layout(True)
|
||||
|
||||
return stats
|
@ -0,0 +1,589 @@
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
# Extract shorelines from Landsat images
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
|
||||
|
||||
#==========================================================#
|
||||
# Initial settings
|
||||
#==========================================================#
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import ee
|
||||
import pdb
|
||||
|
||||
# other modules
|
||||
from osgeo import gdal, ogr, osr
|
||||
import pickle
|
||||
import matplotlib.cm as cm
|
||||
from pylab import ginput
|
||||
from shapely.geometry import LineString
|
||||
|
||||
# image processing modules
|
||||
import skimage.filters as filters
|
||||
import skimage.exposure as exposure
|
||||
import skimage.transform as transform
|
||||
import sklearn.decomposition as decomposition
|
||||
import skimage.measure as measure
|
||||
import skimage.morphology as morphology
|
||||
|
||||
# machine learning modules
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neural_network import MLPClassifier
|
||||
from sklearn.preprocessing import StandardScaler, Normalizer
|
||||
from sklearn.externals import joblib
|
||||
|
||||
# import own modules
|
||||
import functions.utils as utils
|
||||
import functions.sds as sds
|
||||
|
||||
# some other settings
|
||||
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
||||
plt.rcParams['axes.grid'] = True
|
||||
plt.rcParams['figure.max_open_warning'] = 100
|
||||
ee.Initialize()
|
||||
|
||||
#==========================================================#
|
||||
# Parameters
|
||||
#==========================================================#
|
||||
|
||||
sitename = 'NARRA'
|
||||
|
||||
cloud_thresh = 0.7 # threshold for cloud cover
|
||||
plot_bool = False # if you want the plots
|
||||
output_epsg = 28356 # GDA94 / MGA Zone 56
|
||||
buffer_size = 7 # radius (in pixels) of disk for buffer (pixel classification)
|
||||
min_beach_size = 20 # number of pixels in a beach (pixel classification)
|
||||
dist_ref = 100 # maximum distance from reference point
|
||||
min_length_wl = 200 # minimum length of shoreline LineString to be kept
|
||||
manual_bool = True # to manually check images
|
||||
|
||||
|
||||
output = dict([])
|
||||
|
||||
#==========================================================#
|
||||
# Metadata
|
||||
#==========================================================#
|
||||
|
||||
filepath = os.path.join(os.getcwd(), 'data', sitename)
|
||||
with open(os.path.join(filepath, sitename + '_metadata' + '.pkl'), 'rb') as f:
|
||||
metadata = pickle.load(f)
|
||||
|
||||
|
||||
#%%
|
||||
#==========================================================#
|
||||
# Read S2 images
|
||||
#==========================================================#
|
||||
|
||||
satname = 'S2'
|
||||
dates = metadata[satname]['dates']
|
||||
input_epsg = 32756 # metadata[satname]['epsg']
|
||||
|
||||
# path to images
|
||||
filepath10 = os.path.join(os.getcwd(), 'data', sitename, satname, '10m')
|
||||
filenames10 = os.listdir(filepath10)
|
||||
filepath20 = os.path.join(os.getcwd(), 'data', sitename, satname, '20m')
|
||||
filenames20 = os.listdir(filepath20)
|
||||
filepath60 = os.path.join(os.getcwd(), 'data', sitename, satname, '60m')
|
||||
filenames60 = os.listdir(filepath60)
|
||||
if (not len(filenames10) == len(filenames20)) or (not len(filenames20) == len(filenames60)):
|
||||
raise 'error: not the same amount of files for 10, 20 and 60 m'
|
||||
N = len(filenames10)
|
||||
|
||||
# initialise variables
|
||||
cloud_cover_ts = []
|
||||
acc_georef_ts = []
|
||||
date_acquired_ts = []
|
||||
filename_ts = []
|
||||
satname_ts = []
|
||||
timestamp = []
|
||||
shorelines = []
|
||||
idx_skipped = []
|
||||
|
||||
spacing = '=========================================================='
|
||||
msg = ' %s\n %s\n %s' % (spacing, satname, spacing)
|
||||
print(msg)
|
||||
|
||||
for i in range(N):
|
||||
|
||||
# read 10m bands
|
||||
fn = os.path.join(filepath10, filenames10[i])
|
||||
data = gdal.Open(fn, gdal.GA_ReadOnly)
|
||||
georef = np.array(data.GetGeoTransform())
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im10 = np.stack(bands, 2)
|
||||
im10 = im10/10000 # TOA scaled to 10000
|
||||
|
||||
# if image is only zeros, skip it
|
||||
if sum(sum(sum(im10))) < 1:
|
||||
print('skip ' + str(i) + ' - no data')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
nrows = im10.shape[0]
|
||||
ncols = im10.shape[1]
|
||||
|
||||
# read 20m band (SWIR1)
|
||||
fn = os.path.join(filepath20, filenames20[i])
|
||||
data = gdal.Open(fn, gdal.GA_ReadOnly)
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im20 = np.stack(bands, 2)
|
||||
im20 = im20[:,:,0]
|
||||
im20 = im20/10000 # TOA scaled to 10000
|
||||
im_swir = transform.resize(im20, (nrows, ncols), order=1, preserve_range=True, mode='constant')
|
||||
im_swir = np.expand_dims(im_swir, axis=2)
|
||||
|
||||
# append down-sampled swir band to the 10m bands
|
||||
im_ms = np.append(im10, im_swir, axis=2)
|
||||
|
||||
# read 60m band (QA)
|
||||
fn = os.path.join(filepath60, filenames60[i])
|
||||
data = gdal.Open(fn, gdal.GA_ReadOnly)
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im60 = np.stack(bands, 2)
|
||||
im_qa = im60[:,:,0]
|
||||
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
|
||||
cloud_mask = transform.resize(cloud_mask,(nrows, ncols), order=0, preserve_range=True, mode='constant')
|
||||
# check if -inf or nan values on any band and add to cloud mask
|
||||
for k in range(im_ms.shape[2]):
|
||||
im_inf = np.isin(im_ms[:,:,k], -np.inf)
|
||||
im_nan = np.isnan(im_ms[:,:,k])
|
||||
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
||||
|
||||
# calculate cloud cover and if above threshold, skip it
|
||||
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
||||
if cloud_cover > cloud_thresh:
|
||||
print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
# rescale image intensity for display purposes
|
||||
im_display = sds.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False)
|
||||
|
||||
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
|
||||
im_classif, im_labels = sds.classify_image_NN_nopan(im_ms, cloud_mask, min_beach_size, plot_bool)
|
||||
|
||||
# if there aren't any sandy pixels
|
||||
if sum(sum(im_labels[:,:,0])) == 0 :
|
||||
# use global threshold
|
||||
im_ndwi = sds.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask, plot_bool)
|
||||
contours = sds.find_wl_contours(im_ndwi, cloud_mask, plot_bool)
|
||||
else:
|
||||
# use specific threhsold
|
||||
contours_wi, contours_mwi = sds.find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, plot_bool)
|
||||
|
||||
# convert from pixels to world coordinates
|
||||
wl_coords = sds.convert_pix2world(contours_mwi, georef)
|
||||
# convert to output epsg spatial reference
|
||||
wl = sds.convert_epsg(wl_coords, input_epsg, output_epsg)
|
||||
|
||||
# remove contour lines that have a perimeter < min_length_wl
|
||||
wl_good = []
|
||||
for l, wls in enumerate(wl):
|
||||
coords = [(wls[k,0], wls[k,1]) for k in range(len(wls))]
|
||||
a = LineString(coords) # shapely LineString structure
|
||||
if a.length >= min_length_wl:
|
||||
wl_good.append(wls)
|
||||
|
||||
# format points and only select the ones close to the refpoints
|
||||
x_points = np.array([])
|
||||
y_points = np.array([])
|
||||
for k in range(len(wl_good)):
|
||||
x_points = np.append(x_points,wl_good[k][:,0])
|
||||
y_points = np.append(y_points,wl_good[k][:,1])
|
||||
wl_good = np.transpose(np.array([x_points,y_points]))
|
||||
temp = np.zeros((len(wl_good))).astype(bool)
|
||||
for k in range(len(refpoints)):
|
||||
temp = np.logical_or(np.linalg.norm(wl_good - refpoints[k,[0,1]], axis=1) < dist_ref, temp)
|
||||
wl_final = wl_good[temp]
|
||||
|
||||
|
||||
# plot output
|
||||
plt.figure()
|
||||
im = np.copy(im_display)
|
||||
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
|
||||
for k in range(0,im_labels.shape[2]):
|
||||
im[im_labels[:,:,k],0] = colours[k,0]
|
||||
im[im_labels[:,:,k],1] = colours[k,1]
|
||||
im[im_labels[:,:,k],2] = colours[k,2]
|
||||
plt.imshow(im)
|
||||
for k,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color='k', linestyle='--')
|
||||
plt.title(satname + ' ' + metadata[satname]['dates'][i].strftime('%Y-%m-%d') + ' acc : ' + str(metadata[satname]['acc_georef'][i]) + ' m' )
|
||||
plt.draw()
|
||||
|
||||
pt_in = np.array(ginput(n=1, timeout=1000))
|
||||
plt.close()
|
||||
|
||||
# if image is rejected, skip it
|
||||
if pt_in[0][1] > nrows/2:
|
||||
print('skip ' + str(i) + ' - rejected')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
# if accepted, store the data
|
||||
cloud_cover_ts.append(cloud_cover)
|
||||
acc_georef_ts.append(metadata[satname]['acc_georef'][i])
|
||||
|
||||
filename_ts.append(filenames10[i])
|
||||
satname_ts.append(satname)
|
||||
date_acquired_ts.append(filenames10[i][:10])
|
||||
|
||||
timestamp.append(metadata[satname]['dates'][i])
|
||||
shorelines.append(wl_final)
|
||||
|
||||
# store in output structure
|
||||
output[satname] = {'dates':timestamp, 'shorelines':shorelines, 'idx_skipped':idx_skipped,
|
||||
'metadata':{'filenames':filename_ts, 'satname':satname_ts, 'cloud_cover':cloud_cover_ts,
|
||||
'acc_georef':acc_georef_ts}}
|
||||
del idx_skipped
|
||||
|
||||
|
||||
#%%
|
||||
#==========================================================#
|
||||
# Read L7&L8 images
|
||||
#==========================================================#
|
||||
|
||||
satname = 'L8'
|
||||
dates = metadata[satname]['dates']
|
||||
input_epsg = 32656 # metadata[satname]['epsg']
|
||||
|
||||
# path to images
|
||||
filepath_pan = os.path.join(os.getcwd(), 'data', sitename, 'L7&L8', 'pan')
|
||||
filepath_ms = os.path.join(os.getcwd(), 'data', sitename, 'L7&L8', 'ms')
|
||||
filenames_pan = os.listdir(filepath_pan)
|
||||
filenames_ms = os.listdir(filepath_ms)
|
||||
if (not len(filenames_pan) == len(filenames_ms)):
|
||||
raise 'error: not the same amount of files for pan and ms'
|
||||
N = len(filenames_pan)
|
||||
|
||||
# initialise variables
|
||||
cloud_cover_ts = []
|
||||
acc_georef_ts = []
|
||||
date_acquired_ts = []
|
||||
filename_ts = []
|
||||
satname_ts = []
|
||||
timestamp = []
|
||||
shorelines = []
|
||||
idx_skipped = []
|
||||
|
||||
|
||||
spacing = '=========================================================='
|
||||
msg = ' %s\n %s\n %s' % (spacing, satname, spacing)
|
||||
print(msg)
|
||||
|
||||
for i in range(N):
|
||||
|
||||
# get satellite name
|
||||
sat = filenames_pan[i][20:22]
|
||||
|
||||
# read pan image
|
||||
fn_pan = os.path.join(filepath_pan, filenames_pan[i])
|
||||
data = gdal.Open(fn_pan, gdal.GA_ReadOnly)
|
||||
georef = np.array(data.GetGeoTransform())
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im_pan = np.stack(bands, 2)[:,:,0]
|
||||
nrows = im_pan.shape[0]
|
||||
ncols = im_pan.shape[1]
|
||||
|
||||
# read ms image
|
||||
fn_ms = os.path.join(filepath_ms, filenames_ms[i])
|
||||
data = gdal.Open(fn_ms, gdal.GA_ReadOnly)
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im_ms = np.stack(bands, 2)
|
||||
|
||||
# cloud mask
|
||||
im_qa = im_ms[:,:,5]
|
||||
cloud_mask = sds.create_cloud_mask(im_qa, sat, plot_bool)
|
||||
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True, mode='constant').astype('bool_')
|
||||
# resize the image using bilinear interpolation (order 1)
|
||||
im_ms = im_ms[:,:,:5]
|
||||
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True, mode='constant')
|
||||
|
||||
# check if -inf or nan values on any band and add to cloud mask
|
||||
for k in range(im_ms.shape[2]+1):
|
||||
if k == 5:
|
||||
im_inf = np.isin(im_pan, -np.inf)
|
||||
im_nan = np.isnan(im_pan)
|
||||
else:
|
||||
im_inf = np.isin(im_ms[:,:,k], -np.inf)
|
||||
im_nan = np.isnan(im_ms[:,:,k])
|
||||
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
||||
|
||||
# calculate cloud cover and skip image if above threshold
|
||||
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
||||
if cloud_cover > cloud_thresh:
|
||||
print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
# Pansharpen image (different for L8 and L7)
|
||||
if sat == 'L7':
|
||||
# pansharpen (Green, Red, NIR) and downsample Blue and SWIR1
|
||||
im_ms_ps = sds.pansharpen(im_ms[:,:,[1,2,3]], im_pan, cloud_mask, plot_bool)
|
||||
im_ms_ps = np.append(im_ms[:,:,[0]], im_ms_ps, axis=2)
|
||||
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[4]], axis=2)
|
||||
im_display = sds.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False)
|
||||
elif sat == 'L8':
|
||||
# pansharpen RGB image and downsample NIR and SWIR1
|
||||
im_ms_ps = sds.pansharpen(im_ms[:,:,[0,1,2]], im_pan, cloud_mask, plot_bool)
|
||||
im_ms_ps = np.append(im_ms_ps, im_ms[:,:,[3,4]], axis=2)
|
||||
im_display = sds.rescale_image_intensity(im_ms_ps[:,:,[2,1,0]], cloud_mask, 99.9, False)
|
||||
|
||||
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
|
||||
im_classif, im_labels = sds.classify_image_NN(im_ms_ps, im_pan, cloud_mask, min_beach_size, plot_bool)
|
||||
|
||||
# if there aren't any sandy pixels
|
||||
if sum(sum(im_labels[:,:,0])) == 0 :
|
||||
# use global threshold
|
||||
im_ndwi = sds.nd_index(im_ms_ps[:,:,4], im_ms_ps[:,:,1], cloud_mask, plot_bool)
|
||||
contours = sds.find_wl_contours(im_ndwi, cloud_mask, plot_bool)
|
||||
else:
|
||||
# use specific threhsold
|
||||
contours_wi, contours_mwi = sds.find_wl_contours2(im_ms_ps, im_labels, cloud_mask, buffer_size, plot_bool)
|
||||
|
||||
# convert from pixels to world coordinates
|
||||
wl_coords = sds.convert_pix2world(contours_mwi, georef)
|
||||
# convert to output epsg spatial reference
|
||||
wl = sds.convert_epsg(wl_coords, input_epsg, output_epsg)
|
||||
|
||||
# remove contour lines that have a perimeter < min_length_wl
|
||||
wl_good = []
|
||||
for l, wls in enumerate(wl):
|
||||
coords = [(wls[k,0], wls[k,1]) for k in range(len(wls))]
|
||||
a = LineString(coords) # shapely LineString structure
|
||||
if a.length >= min_length_wl:
|
||||
wl_good.append(wls)
|
||||
|
||||
# format points and only select the ones close to the refpoints
|
||||
x_points = np.array([])
|
||||
y_points = np.array([])
|
||||
for k in range(len(wl_good)):
|
||||
x_points = np.append(x_points,wl_good[k][:,0])
|
||||
y_points = np.append(y_points,wl_good[k][:,1])
|
||||
wl_good = np.transpose(np.array([x_points,y_points]))
|
||||
temp = np.zeros((len(wl_good))).astype(bool)
|
||||
for k in range(len(refpoints)):
|
||||
temp = np.logical_or(np.linalg.norm(wl_good - refpoints[k,[0,1]], axis=1) < dist_ref, temp)
|
||||
wl_final = wl_good[temp]
|
||||
|
||||
# plot output
|
||||
plt.figure()
|
||||
plt.subplot(121)
|
||||
im = np.copy(im_display)
|
||||
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
|
||||
for k in range(0,im_labels.shape[2]):
|
||||
im[im_labels[:,:,k],0] = colours[k,0]
|
||||
im[im_labels[:,:,k],1] = colours[k,1]
|
||||
im[im_labels[:,:,k],2] = colours[k,2]
|
||||
plt.imshow(im)
|
||||
for k,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color='k', linestyle='--')
|
||||
plt.title(sat + ' ' + metadata[satname]['dates'][i].strftime('%Y-%m-%d') + ' acc : ' + str(metadata[satname]['acc_georef'][i]) + ' m' )
|
||||
|
||||
pt_in = np.array(ginput(n=1, timeout=1000))
|
||||
plt.close()
|
||||
|
||||
# if image is rejected, skip it
|
||||
if pt_in[0][1] > nrows/2:
|
||||
print('skip ' + str(i) + ' - rejected')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
# if accepted, store the data
|
||||
cloud_cover_ts.append(cloud_cover)
|
||||
acc_georef_ts.append(metadata[satname]['acc_georef'][i])
|
||||
|
||||
filename_ts.append(filenames_pan[i])
|
||||
satname_ts.append(sat)
|
||||
date_acquired_ts.append(filenames_pan[i][:10])
|
||||
|
||||
timestamp.append(metadata[satname]['dates'][i])
|
||||
shorelines.append(wl_final)
|
||||
|
||||
# store in output structure
|
||||
output[satname] = {'dates':timestamp, 'shorelines':shorelines, 'idx_skipped':idx_skipped,
|
||||
'metadata':{'filenames':filename_ts, 'satname':satname_ts, 'cloud_cover':cloud_cover_ts,
|
||||
'acc_georef':acc_georef_ts}}
|
||||
|
||||
del idx_skipped
|
||||
|
||||
|
||||
|
||||
#%%
|
||||
#==========================================================#
|
||||
# Read L5 images
|
||||
#==========================================================#
|
||||
|
||||
satname = 'L5'
|
||||
dates = metadata[satname]['dates']
|
||||
input_epsg = 32656 # metadata[satname]['epsg']
|
||||
|
||||
# path to images
|
||||
filepath_img = os.path.join(os.getcwd(), 'data', sitename, satname, '30m')
|
||||
filenames = os.listdir(filepath_img)
|
||||
N = len(filenames)
|
||||
|
||||
# initialise variables
|
||||
cloud_cover_ts = []
|
||||
acc_georef_ts = []
|
||||
date_acquired_ts = []
|
||||
filename_ts = []
|
||||
satname_ts = []
|
||||
timestamp = []
|
||||
shorelines = []
|
||||
idx_skipped = []
|
||||
|
||||
|
||||
spacing = '=========================================================='
|
||||
msg = ' %s\n %s\n %s' % (spacing, satname, spacing)
|
||||
print(msg)
|
||||
|
||||
for i in range(N):
|
||||
|
||||
# read ms image
|
||||
fn = os.path.join(filepath_img, filenames[i])
|
||||
data = gdal.Open(fn, gdal.GA_ReadOnly)
|
||||
georef = np.array(data.GetGeoTransform())
|
||||
bands = [data.GetRasterBand(k + 1).ReadAsArray() for k in range(data.RasterCount)]
|
||||
im_ms = np.stack(bands, 2)
|
||||
|
||||
# down-sample to half hte original pixel size
|
||||
nrows = im_ms.shape[0]*2
|
||||
ncols = im_ms.shape[1]*2
|
||||
|
||||
# cloud mask
|
||||
im_qa = im_ms[:,:,5]
|
||||
im_ms = im_ms[:,:,:-1]
|
||||
cloud_mask = sds.create_cloud_mask(im_qa, satname, plot_bool)
|
||||
cloud_mask = transform.resize(cloud_mask, (nrows, ncols), order=0, preserve_range=True, mode='constant').astype('bool_')
|
||||
|
||||
# resize the image using bilinear interpolation (order 1)
|
||||
im_ms = transform.resize(im_ms,(nrows, ncols), order=1, preserve_range=True, mode='constant')
|
||||
|
||||
# adjust georef vector (scale becomes 15m and origin is adjusted to the center of new corner pixel)
|
||||
georef[1] = 15
|
||||
georef[5] = -15
|
||||
georef[0] = georef[0] + 7.5
|
||||
georef[3] = georef[3] - 7.5
|
||||
|
||||
# check if -inf or nan values on any band and add to cloud mask
|
||||
for k in range(im_ms.shape[2]):
|
||||
im_inf = np.isin(im_ms[:,:,k], -np.inf)
|
||||
im_nan = np.isnan(im_ms[:,:,k])
|
||||
cloud_mask = np.logical_or(np.logical_or(cloud_mask, im_inf), im_nan)
|
||||
|
||||
# calculate cloud cover and skip image if above threshold
|
||||
cloud_cover = sum(sum(cloud_mask.astype(int)))/(cloud_mask.shape[0]*cloud_mask.shape[1])
|
||||
if cloud_cover > cloud_thresh:
|
||||
print('skip ' + str(i) + ' - cloudy (' + str(np.round(cloud_cover*100).astype(int)) + '%)')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
# rescale image intensity for display purposes
|
||||
im_display = sds.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9, False)
|
||||
|
||||
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
|
||||
im_classif, im_labels = sds.classify_image_NN_nopan(im_ms, cloud_mask, min_beach_size, plot_bool)
|
||||
|
||||
# if there aren't any sandy pixels
|
||||
if sum(sum(im_labels[:,:,0])) == 0 :
|
||||
# use global threshold
|
||||
im_ndwi = sds.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask, plot_bool)
|
||||
contours = sds.find_wl_contours(im_ndwi, cloud_mask, plot_bool)
|
||||
else:
|
||||
# use specific threhsold
|
||||
contours_wi, contours_mwi = sds.find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, plot_bool)
|
||||
|
||||
# convert from pixels to world coordinates
|
||||
wl_coords = sds.convert_pix2world(contours_mwi, georef)
|
||||
# convert to output epsg spatial reference
|
||||
wl = sds.convert_epsg(wl_coords, input_epsg, output_epsg)
|
||||
|
||||
# remove contour lines that have a perimeter < min_length_wl
|
||||
wl_good = []
|
||||
for l, wls in enumerate(wl):
|
||||
coords = [(wls[k,0], wls[k,1]) for k in range(len(wls))]
|
||||
a = LineString(coords) # shapely LineString structure
|
||||
if a.length >= min_length_wl:
|
||||
wl_good.append(wls)
|
||||
|
||||
# format points and only select the ones close to the refpoints
|
||||
x_points = np.array([])
|
||||
y_points = np.array([])
|
||||
for k in range(len(wl_good)):
|
||||
x_points = np.append(x_points,wl_good[k][:,0])
|
||||
y_points = np.append(y_points,wl_good[k][:,1])
|
||||
wl_good = np.transpose(np.array([x_points,y_points]))
|
||||
temp = np.zeros((len(wl_good))).astype(bool)
|
||||
for k in range(len(refpoints)):
|
||||
temp = np.logical_or(np.linalg.norm(wl_good - refpoints[k,[0,1]], axis=1) < dist_ref, temp)
|
||||
wl_final = wl_good[temp]
|
||||
|
||||
# plot output
|
||||
plt.figure()
|
||||
plt.subplot(121)
|
||||
im = np.copy(im_display)
|
||||
colours = np.array([[1,128/255,0/255],[204/255,1,1],[0,0,204/255]])
|
||||
for k in range(0,im_labels.shape[2]):
|
||||
im[im_labels[:,:,k],0] = colours[k,0]
|
||||
im[im_labels[:,:,k],1] = colours[k,1]
|
||||
im[im_labels[:,:,k],2] = colours[k,2]
|
||||
plt.imshow(im)
|
||||
for k,contour in enumerate(contours_mwi): plt.plot(contour[:, 1], contour[:, 0], linewidth=2, color='k', linestyle='--')
|
||||
plt.title(satname + ' ' + metadata[satname]['dates'][i].strftime('%Y-%m-%d') + ' acc : ' + str(metadata[satname]['acc_georef'][i]) + ' m' )
|
||||
plt.subplot(122)
|
||||
plt.axis('equal')
|
||||
plt.axis('off')
|
||||
plt.plot(refpoints[:,0], refpoints[:,1], 'k.')
|
||||
plt.plot(wl_final[:,0], wl_final[:,1], 'r.')
|
||||
mng = plt.get_current_fig_manager()
|
||||
mng.window.showMaximized()
|
||||
plt.tight_layout()
|
||||
plt.draw()
|
||||
|
||||
pt_in = np.array(ginput(n=1, timeout=1000))
|
||||
plt.close()
|
||||
|
||||
# if image is rejected, skip it
|
||||
if pt_in[0][1] > nrows/2:
|
||||
print('skip ' + str(i) + ' - rejected')
|
||||
idx_skipped.append(i)
|
||||
continue
|
||||
|
||||
# if accepted, store the data
|
||||
cloud_cover_ts.append(cloud_cover)
|
||||
acc_georef_ts.append(metadata[satname]['acc_georef'][i])
|
||||
|
||||
filename_ts.append(filenames[i])
|
||||
satname_ts.append(satname)
|
||||
date_acquired_ts.append(filenames[i][:10])
|
||||
|
||||
timestamp.append(metadata[satname]['dates'][i])
|
||||
shorelines.append(wl_final)
|
||||
|
||||
# store in output structure
|
||||
output[satname] = {'dates':timestamp, 'shorelines':shorelines, 'idx_skipped':idx_skipped,
|
||||
'metadata':{'filenames':filename_ts, 'satname':satname_ts, 'cloud_cover':cloud_cover_ts,
|
||||
'acc_georef':acc_georef_ts}}
|
||||
|
||||
del idx_skipped
|
||||
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
#==========================================================#
|
||||
|
||||
#%%
|
||||
# save output
|
||||
with open(os.path.join(filepath, sitename + '_output' + '.pkl'), 'wb') as f:
|
||||
pickle.dump(output, f)
|
||||
|
||||
# save idx_skipped
|
||||
#idx_skipped = dict([])
|
||||
#for satname in list(output.keys()):
|
||||
# idx_skipped[satname] = output[satname]['idx_skipped']
|
||||
#with open(os.path.join(filepath, sitename + '_idxskipped' + '.pkl'), 'wb') as f:
|
||||
# pickle.dump(idx_skipped, f)
|
||||
|
@ -1,382 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
#==========================================================#
|
||||
# Compare Narrabeen SDS with 3D quadbike surveys
|
||||
#==========================================================#
|
||||
|
||||
# Initial settings
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pdb
|
||||
import ee
|
||||
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.cm as cm
|
||||
from datetime import datetime, timedelta
|
||||
import pickle
|
||||
import pytz
|
||||
import scipy.io as sio
|
||||
import scipy.interpolate as interpolate
|
||||
import statsmodels.api as sm
|
||||
import skimage.measure as measure
|
||||
|
||||
# my functions
|
||||
import functions.utils as utils
|
||||
|
||||
# some settings
|
||||
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
|
||||
plt.rcParams['axes.grid'] = True
|
||||
plt.rcParams['figure.max_open_warning'] = 100
|
||||
|
||||
au_tz = pytz.timezone('Australia/Sydney')
|
||||
|
||||
# load quadbike dates and convert from datenum to datetime
|
||||
filename = 'data\quadbike\survey_dates.mat'
|
||||
filepath = os.path.join(os.getcwd(), filename)
|
||||
dates_quad = sio.loadmat(filepath)['dates'] # matrix containing year, month, day
|
||||
dates_quad = [datetime(dates_quad[i,0], dates_quad[i,1], dates_quad[i,2],
|
||||
tzinfo=au_tz) for i in range(dates_quad.shape[0])]
|
||||
|
||||
# load timestamps from satellite images
|
||||
satname = 'L8'
|
||||
sitename = 'NARRA'
|
||||
filepath = os.path.join(os.getcwd(), 'data', satname, sitename)
|
||||
with open(os.path.join(filepath, sitename + '_output_new' + '.pkl'), 'rb') as f:
|
||||
output = pickle.load(f)
|
||||
|
||||
dates_l8 = output['t']
|
||||
# convert to AEST
|
||||
dates_l8 = [_.astimezone(au_tz) for _ in dates_l8]
|
||||
# remove duplicates
|
||||
dates_l8_str = [_.strftime('%Y%m%d') for _ in dates_l8]
|
||||
dupl = utils.duplicates_dict(dates_l8_str)
|
||||
idx_remove = []
|
||||
for k,v in dupl.items():
|
||||
|
||||
idx1 = v[0]
|
||||
idx2 = v[1]
|
||||
|
||||
c1 = output['cloud_cover'][idx1]
|
||||
c2 = output['cloud_cover'][idx2]
|
||||
g1 = output['acc_georef'][idx1]
|
||||
g2 = output['acc_georef'][idx2]
|
||||
|
||||
if c1 < c2 - 0.01:
|
||||
idx_remove.append(idx2)
|
||||
elif g1 < g2 - 0.1:
|
||||
idx_remove.append(idx2)
|
||||
else:
|
||||
idx_remove.append(idx1)
|
||||
idx_remove = sorted(idx_remove)
|
||||
idx_all = np.linspace(0,70,71)
|
||||
idx_keep = list(np.where(~np.isin(idx_all,idx_remove))[0])
|
||||
output['t'] = [output['t'][k] for k in idx_keep]
|
||||
output['shorelines'] = [output['shorelines'][k] for k in idx_keep]
|
||||
output['cloud_cover'] = [output['cloud_cover'][k] for k in idx_keep]
|
||||
output['acc_georef'] = [output['acc_georef'][k] for k in idx_keep]
|
||||
# convert to AEST
|
||||
dates_l8 = output['t']
|
||||
dates_l8 = [_.astimezone(au_tz) for _ in dates_l8]
|
||||
|
||||
# load wave data (already AEST)
|
||||
filename = 'data\wave\SydneyProcessed.mat'
|
||||
filepath = os.path.join(os.getcwd(), filename)
|
||||
wave_data = sio.loadmat(filepath)
|
||||
idx = utils.find_indices(wave_data['dates'][:,0], lambda e: e >= dates_l8[0].year and e <= dates_l8[-1].year)
|
||||
hsig = np.array([wave_data['Hsig'][i][0] for i in idx])
|
||||
wdir = np.array([wave_data['Wdir'][i][0] for i in idx])
|
||||
dates_wave = [datetime(wave_data['dates'][i,0], wave_data['dates'][i,1],
|
||||
wave_data['dates'][i,2], wave_data['dates'][i,3],
|
||||
wave_data['dates'][i,4], wave_data['dates'][i,5],
|
||||
tzinfo=au_tz) for i in idx]
|
||||
|
||||
# load tide data (already AEST)
|
||||
filename = 'SydTideData.mat'
|
||||
filepath = os.path.join(os.getcwd(), 'data', 'tide', filename)
|
||||
tide_data = sio.loadmat(filepath)
|
||||
idx = utils.find_indices(tide_data['dates'][:,0], lambda e: e >= dates_l8[0].year and e <= dates_l8[-1].year)
|
||||
tide = np.array([tide_data['tide'][i][0] for i in idx])
|
||||
dates_tide = [datetime(tide_data['dates'][i,0], tide_data['dates'][i,1],
|
||||
tide_data['dates'][i,2], tide_data['dates'][i,3],
|
||||
tide_data['dates'][i,4], tide_data['dates'][i,5],
|
||||
tzinfo=au_tz) for i in idx]
|
||||
|
||||
#%% make a plot of all the dates with wave data
|
||||
orange = [255/255,140/255,0]
|
||||
blue = [0,191/255,255/255]
|
||||
f = plt.figure()
|
||||
months = mdates.MonthLocator()
|
||||
month_fmt = mdates.DateFormatter('%b %Y')
|
||||
days = mdates.DayLocator()
|
||||
years = [2013,2014,2015,2016]
|
||||
for k in range(len(years)):
|
||||
sel_year = years[k]
|
||||
ax = plt.subplot(4,1,k+1)
|
||||
idx_year = utils.find_indices(dates_wave, lambda e : e.year >= sel_year and e.year <= sel_year)
|
||||
plt.plot([dates_wave[i] for i in idx_year], [hsig[i] for i in idx_year], 'k-', linewidth=0.5)
|
||||
hsigmax = np.nanmax([hsig[i] for i in idx_year])
|
||||
cbool = True
|
||||
for j in range(len(dates_quad)):
|
||||
if dates_quad[j].year == sel_year:
|
||||
if cbool:
|
||||
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange, label='survey')
|
||||
cbool = False
|
||||
else:
|
||||
plt.plot([dates_quad[j], dates_quad[j]], [0, hsigmax], color=orange)
|
||||
cbool = True
|
||||
for j in range(len(dates_l8)):
|
||||
if dates_l8[j].year == sel_year:
|
||||
if cbool:
|
||||
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue, label='landsat8')
|
||||
cbool = False
|
||||
else:
|
||||
plt.plot([dates_l8[j], dates_l8[j]], [0, hsigmax], color=blue)
|
||||
if k == 3:
|
||||
plt.legend()
|
||||
plt.xlim((datetime(sel_year,1,1), datetime(sel_year,12,31, tzinfo=au_tz)))
|
||||
plt.ylim((0, hsigmax))
|
||||
plt.ylabel('Hs [m]')
|
||||
ax.xaxis.set_major_locator = months
|
||||
ax.xaxis.set_major_formatter(month_fmt)
|
||||
f.subplots_adjust(hspace=0.2)
|
||||
plt.draw()
|
||||
|
||||
#%% calculate difference between dates (quad and sat)
|
||||
diff_days = [ [(x - _).days for _ in dates_quad] for x in dates_l8]
|
||||
max_diff = 14
|
||||
idx_closest = [utils.find_indices(_, lambda e: abs(e) <= max_diff) for _ in diff_days]
|
||||
# store in dates_diff dictionnary
|
||||
dates_diff = []
|
||||
cloud_cover = []
|
||||
for i in range(len(idx_closest)):
|
||||
if not idx_closest[i]:
|
||||
continue
|
||||
elif len(idx_closest[i]) > 1:
|
||||
idx_best = np.argmin(np.abs([diff_days[i][_] for _ in idx_closest[i]]))
|
||||
dates_temp = [dates_quad[_] for _ in idx_closest[i]]
|
||||
days_temp = [diff_days[i][_] for _ in idx_closest[i]]
|
||||
dates_diff.append({"date sat": dates_l8[i],
|
||||
"date quad": dates_temp[idx_best],
|
||||
"days diff": days_temp[idx_best]})
|
||||
else:
|
||||
dates_diff.append({"date sat": dates_l8[i],
|
||||
"date quad": dates_quad[idx_closest[i][0]],
|
||||
"days diff": diff_days[i][idx_closest[i][0]]
|
||||
})
|
||||
# store cloud data
|
||||
cloud_cover.append(output['cloud_cover'][i])
|
||||
|
||||
# store wave data
|
||||
wave_hsig = []
|
||||
for i in range(len(dates_diff)):
|
||||
wave_hsig.append(hsig[np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).total_seconds() for _ in dates_wave])))])
|
||||
|
||||
# make a plot
|
||||
plt.figure()
|
||||
counter = 0
|
||||
for i in range(len(dates_diff)):
|
||||
counter = counter + 1
|
||||
if dates_diff[i]['date quad'] > dates_diff[i]['date sat']:
|
||||
date_min = dates_diff[i]['date sat']
|
||||
date_max = dates_diff[i]['date quad']
|
||||
color1 = orange
|
||||
color2 = blue
|
||||
else:
|
||||
date_min = dates_diff[i]['date quad']
|
||||
date_max = dates_diff[i]['date sat']
|
||||
color1 = blue
|
||||
color2 = orange
|
||||
idx_t = utils.find_indices(dates_wave, lambda e : e >= date_min and e <= date_max)
|
||||
hsigmax = np.nanmax([hsig[i] for i in idx_t])
|
||||
hsigmin = np.nanmin([hsig[i] for i in idx_t])
|
||||
if counter > 9:
|
||||
counter = 1
|
||||
plt.figure()
|
||||
ax = plt.subplot(3,3,counter)
|
||||
plt.plot([dates_wave[i] for i in idx_t], [hsig[i] for i in idx_t], 'k-', linewidth=1.5)
|
||||
plt.plot([date_min, date_min], [0, 4.5], color=color2, label='survey')
|
||||
plt.plot([date_max, date_max], [0, 4.5], color=color1, label='landsat8')
|
||||
plt.ylabel('Hs [m]')
|
||||
ax.xaxis.set_major_locator(mdates.DayLocator(tz=au_tz))
|
||||
ax.xaxis.set_minor_locator(mdates.HourLocator(tz=au_tz))
|
||||
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d'))
|
||||
ax.xaxis.set_minor_locator(months)
|
||||
plt.title(dates_diff[i]['date sat'].strftime('%b %Y') + ' (' + str(abs(dates_diff[i]['days diff'])) + ' days)')
|
||||
plt.draw()
|
||||
plt.gcf().subplots_adjust(hspace=0.5)
|
||||
|
||||
# mean day difference
|
||||
np.mean([ np.abs(_['days diff']) for _ in dates_diff])
|
||||
|
||||
#%% Compare shorelines in elevation
|
||||
|
||||
dist_buffer = 50 # buffer of points selected for interpolation
|
||||
|
||||
# load quadbike .mat files
|
||||
foldername = 'data\quadbike\surveys3D'
|
||||
folderpath = os.path.join(os.getcwd(), foldername)
|
||||
filenames = os.listdir(folderpath)
|
||||
|
||||
# get the satellite shorelines
|
||||
sl = output['shorelines']
|
||||
|
||||
# get dates from filenames
|
||||
dates_quad = [datetime(int(_[6:10]), int(_[11:13]), int(_[14:16]), tzinfo= au_tz) for _ in filenames]
|
||||
|
||||
zav = []
|
||||
ztide = []
|
||||
sl_gt = []
|
||||
for i in range(len(dates_diff)):
|
||||
|
||||
sl_smooth = sl[i]
|
||||
|
||||
# select closest 3D survey and load .mat file
|
||||
idx_closest = np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).days for _ in dates_quad])))
|
||||
survey3d = sio.loadmat(os.path.join(folderpath, filenames[idx_closest]))
|
||||
# reshape to a vector
|
||||
xs = survey3d['x'].reshape(survey3d['x'].shape[0] * survey3d['x'].shape[1])
|
||||
ys = survey3d['y'].reshape(survey3d['y'].shape[0] * survey3d['y'].shape[1])
|
||||
zs = survey3d['z'].reshape(survey3d['z'].shape[0] * survey3d['z'].shape[1])
|
||||
# remove nan values
|
||||
idx_nan = np.isnan(zs)
|
||||
xs = xs[~idx_nan]
|
||||
ys = ys[~idx_nan]
|
||||
zs = zs[~idx_nan]
|
||||
|
||||
# find water level at the time the image was acquired
|
||||
idx_closest = np.argmin(np.abs(np.array([(dates_diff[i]['date sat'] - _).total_seconds() for _ in dates_tide])))
|
||||
tide_level = tide[idx_closest]
|
||||
ztide.append(tide_level)
|
||||
|
||||
# find contour corresponding to the water level on 3D surface (if below minimum, add 0.05m increments)
|
||||
if tide_level < np.nanmin(survey3d['z']):
|
||||
tide_level = np.nanmin(survey3d['z'])
|
||||
sl_tide = measure.find_contours(survey3d['z'], tide_level)
|
||||
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
|
||||
count = 0
|
||||
while len(sl_tide) < 900:
|
||||
count = count + 1
|
||||
tide_level = tide_level + 0.05*count
|
||||
sl_tide = measure.find_contours(survey3d['z'], tide_level)
|
||||
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
|
||||
print('added ' + str(0.05*count) + ' cm - contour with ' + str(len(sl_tide)) + ' points')
|
||||
else:
|
||||
sl_tide = measure.find_contours(survey3d['z'], tide_level)
|
||||
sl_tide = sl_tide[np.argmax(np.array([len(_) for _ in sl_tide]))]
|
||||
# remove nans
|
||||
if np.any(np.isnan(sl_tide)):
|
||||
index_nan = np.where(np.isnan(sl_tide))[0]
|
||||
sl_tide = np.delete(sl_tide, index_nan, axis=0)
|
||||
# get x,y coordinates
|
||||
xtide = [survey3d['x'][int(np.round(sl_tide[m,0])), int(np.round(sl_tide[m,1]))] for m in range(sl_tide.shape[0])]
|
||||
ytide = [survey3d['y'][int(np.round(sl_tide[m,0])), int(np.round(sl_tide[m,1]))] for m in range(sl_tide.shape[0])]
|
||||
sl_gt.append(np.transpose(np.array([np.array(xtide), np.array(ytide)])))
|
||||
# interpolate SDS on 3D surface to get elevation (point by point)
|
||||
zq = []
|
||||
for j in range(sl_smooth.shape[0]):
|
||||
xq = sl_smooth[j,0]
|
||||
yq = sl_smooth[j,1]
|
||||
dist_q = np.linalg.norm(np.transpose(np.array([[xq - _ for _ in xs],[yq - _ for _ in ys]])), axis=1)
|
||||
idx_buffer = dist_q <= dist_buffer
|
||||
if sum(idx_buffer) > 0:
|
||||
tck = interpolate.bisplrep(xs[idx_buffer], ys[idx_buffer], zs[idx_buffer])
|
||||
zq.append(interpolate.bisplev(xq, yq, tck))
|
||||
|
||||
zq = np.array(zq)
|
||||
plt.figure()
|
||||
plt.hist(zq, bins=100)
|
||||
plt.draw()
|
||||
# plt.figure()
|
||||
# plt.axis('equal')
|
||||
# plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
|
||||
# label='quad data')
|
||||
# plt.plot(xs[idx_buffer], ys[idx_buffer], 'ko')
|
||||
# plt.plot(xq,yq,'ro')
|
||||
# plt.draw()
|
||||
|
||||
# store the alongshore median elevation
|
||||
zav.append(np.median(utils.reject_outliers(zq, m=2)))
|
||||
|
||||
# make plot
|
||||
red = [255/255, 0, 0]
|
||||
gray = [0.75, 0.75, 0.75]
|
||||
plt.figure()
|
||||
plt.subplot(121)
|
||||
plt.axis('equal')
|
||||
plt.scatter(xs, ys, s=10, c=zs, marker='o', cmap=cm.get_cmap('jet'),
|
||||
label='3D survey')
|
||||
plt.plot(xtide, ytide, '--', color=gray, linewidth=2.5, label='tide level contour')
|
||||
plt.plot(sl_smooth[:,0], sl_smooth[:,1], '-', color=red, linewidth=2.5, label='SDS')
|
||||
# plt.plot(sl[i][idx_beach,0], sl[i][idx_beach,1], 'w-', linewidth=2)
|
||||
plt.xlabel('Eastings [m]')
|
||||
plt.ylabel('Northings [m]')
|
||||
plt.title('Shoreline comparison')
|
||||
plt.colorbar(label='mAHD')
|
||||
plt.legend()
|
||||
plt.ylim((6266100, 6267000))
|
||||
plt.subplot(122)
|
||||
plt.plot(np.linspace(0,1,len(zq)), zq, 'ko-', markersize=5)
|
||||
plt.plot([0, 1], [zav[i], zav[i]], 'r-', label='median')
|
||||
plt.plot([0, 1], [ztide[i], ztide[i]], 'g--', label = 'measured tide')
|
||||
plt.xlabel('Northings [m]')
|
||||
plt.ylabel('Elevation [mAHD]')
|
||||
plt.title('Alongshore SDS elevation')
|
||||
plt.legend()
|
||||
mng = plt.get_current_fig_manager()
|
||||
mng.window.showMaximized()
|
||||
plt.tight_layout()
|
||||
plt.draw()
|
||||
|
||||
print(i)
|
||||
|
||||
#%% Calculate some error statistics
|
||||
zav = np.array(zav)
|
||||
ztide = np.array(ztide)
|
||||
|
||||
f = plt.figure()
|
||||
plt.subplot(3,1,1)
|
||||
plt.bar(np.linspace(1,len(zav),len(zav)), zav-ztide)
|
||||
plt.ylabel('Error in z [m]')
|
||||
plt.title('Elevation error')
|
||||
plt.xticks([])
|
||||
plt.draw()
|
||||
|
||||
plt.subplot(3,1,2)
|
||||
plt.bar(np.linspace(1,len(zav),len(zav)), wave_hsig, color=orange)
|
||||
plt.ylabel('Hsig [m]')
|
||||
plt.xticks([])
|
||||
plt.draw()
|
||||
|
||||
plt.subplot(3,1,3)
|
||||
plt.bar(np.linspace(1,len(zav),len(zav)), np.array(cloud_cover)*100, color='g')
|
||||
plt.ylabel('Cloud cover %')
|
||||
plt.xlabel('comparison #')
|
||||
plt.grid(False)
|
||||
plt.grid(axis='y')
|
||||
f.subplots_adjust(hspace=0)
|
||||
plt.draw()
|
||||
|
||||
np.sqrt(np.mean((zav - ztide)**2))
|
||||
|
||||
|
||||
|
||||
#%% plot to show LOWESS smoothing
|
||||
#i = 0
|
||||
#idx_beach = [np.min(np.linalg.norm(sl[i][k,:] - narrabeach, axis=1)) < dist_thresh for k in range(sl[i].shape[0])]
|
||||
#x = sl[i][idx_beach,0]
|
||||
#y = sl[i][idx_beach,1]
|
||||
#sl_smooth = lowess(x,y, frac=1./10, it = 10)
|
||||
#
|
||||
#plt.figure()
|
||||
#plt.axis('equal')
|
||||
#plt.scatter
|
||||
#plt.plot(x,y,'bo', linewidth=2, label='original SDS')
|
||||
#plt.plot(sl_smooth[:,1], sl_smooth[:,0], 'ro', linewidth=2, label='smoothed SDS')
|
||||
#plt.legend()
|
||||
#plt.xlabel('Eastings [m]')
|
||||
#plt.ylabel('Northings [m]')
|
||||
#plt.title('Local weighted scatterplot smoothing (LOWESS)')
|
||||
#plt.draw()
|
||||
|
Loading…
Reference in New Issue